

HPV41-HPV77-HPV310 PROPORTIONAL DIRECTIONAL VALVES

Technical Catalogue

February 202 I

Table of contents

Introduction	A-3
HPV41 until 140 l/min [37 US gpm]	
Inlet section Open Centre and Closed Centre	B-1
Technical data	B-8
HPV41 Composition form	B-21
Order form	B-23
HSE inlet sections	B-27
HEM working sections	B-38
HSC end sections	B-88
Stay bolts kit	B-94
Spare parts seals kits	B-98
HPV77 until 200 l/min [58 US gpm]	
Inlet section Open Centre and Closed Centre	C-1
Technical data	C-8
HPV77 Composition form	C-25
Order form	C-27
HSE inlet sections	C-31
HEM working sections	C-43
HSC end sections	C-88
Stay bolts kit	C-97
Spare parts seals kits	-102
HPV310 until 550 l/min [145 US gpm]	
Technical data	D-1
HPV310 Composition form	D-9
Order form	D-11
HSE inlet section	D-14
HEM working sections	D-23
HSC end sections	D-42
HSRR stay bolts kit	D-45
Spare parts seals kits	D-48
Electrical connections	
Electrical connections scheme	.E-2

© 2019 Dana Motion Systems Italia S.r.I. all rights reserved. Hydr-App, SAM Hydraulik, Aron, Brevini Hydraulics, BPE Electronics, VPS Brevini, OT Oiltechnology, logos are trademarks or are registered trademarks of Dana Motion Systems Italia S.r.I. or other companies of the Dana in Italy and other countries.

The technical features supplied in this catalogue are non binding and no legal action can be taken against such material. Dana will not be held responsible for information and specifications which may lead to error or incorrect interpretations. Given the continuous technical research aimed at improved technical features of our products, Dana reserves the right to make change that are considered appropriate without any prior notice. This catalogue cannot be reproduced (in while or in part) without the prior written consent of Dana. This catalogue supersedes all previous ones.

Use of the products in this catalogue must comply with the operating limits given in the technical specifications. The type of application and operating conditions must be assessed as normal or in malfunction in order to avoid endangering the safety of people and/or items.

Introduction

Optimised performances and integration of the greatest number of functions are the objectives planned and achieved through the development of the HPV valves, a range of the latest generation of proportional directional valves that perform two simultaneous functions: directional control and flow control that is unaffected by load variations.

Their operation is based on the proportional hydraulic principle, i.e. keeping the pressure drop constant through a variable section

The HPV spool can assume an infinite number of positions making the crossing areas infinitely variable, thus regulating the flow in relation to the pressure difference (Δp) throughout the entire operating range. By means of logical selection, an LS signal (feedback) is taken from the highest pressure ports and it's sent to the flow-pressure regulator in the inlet section (if the circuit operates with a fixed displacement pump) or directly to the Load Sensing pump (for a closed centre circuit).

As long as the circuit senses the Δp , the valve will maintain its proportionality properties. Instead, if Δp tends to decrease, for example if actuator flow demand exceeds the overall pump flow (multiple simultaneous operations), the flow to the ports will be completely random, and in any case will tend to flow toward the actuators which will work at the lowest pressure values.

The baric compensation provided by the two-way pressure compensators installed on each element, allows multiple operations to be performed at the same time without reciprocal effects. On the other hand, operating at the same time elements without compensators, the flows will vary in relation to the work pressure values.

The main hydraulic features of the HPV valve are summarised below:

- Flow control (metering) is independent from load, therefore the flow provided at the ports does not change with a variation in work pressure of the utilities they control.
- The flow of each function is independent from the simultaneous work pressures, thus allowing simultaneous operations to be carried out without reciprocal effects.
- Electrical unloading of the LsA and LsB signals on each element
- Excellent flow control characteristics, without dead bands.
- Symmetrical distribution, that allows the position of the manual control to be reversed with all servocontrols.
- Precise and safe remote controls (hydraulic, proportional electrohydraulic) that are easy to install.
- Operation with both fixed displacement and variable displacement pumps with Load Sensing regulator.
- Remote control of operating pressure of each port.
- Internal pilot line supply.
- · Externally fed hydraulic manipulators.
- Possibility of lowering the stand-by pressure of the pump (only with the open centre version).

Mineral oil hydraulic fluids

All mineral oil fluids are more or less suitable for use.

The properties required for such fluid include:

- · high viscosity index
- · low yield point
- high thermal stability
- high hydrolytic stability (minimum formation of corrosive phenomena inthe presence of water)
- excellent anti-wear, anti-corrosion and demulsification properties.

The requirements described above are generally met by the normal mineral oil fluids designated as HPL and HVLP according to DIN 51524.

Ecological hydraulic fluids

Considering the minimum requirements according to DIN 51524, the HPV can also be used with vegetal oil hydraulic fluids HGT (cole or rape oil) without particular precautions. Vegetal-based fluids can be mixed with mineral oils; however, it should be recalled that if the oil is changed, only the part consisting of the vegetal oil is biodegradable. The polyglycol biodegradable oils HPG or synthetic phosphoric ester biodegradable fluids HPDR can be used with the HPV, replacing the usual gaskets with those made with FPM (Viton). Therefore, when ordering, we recommend to indicate the use of the HPV with these types of synthetic fluids. It should also be pointed out that the synthetic fluids cannot be mixed with mineral oils.

Hydraulic fluid filtering

It has been widely demonstrated that efficient hydraulic equipment operation depends to a great extent on the degree of contamination of the circulating oil.

Today, users require hydraulic plants to have:

- high performances
- operating precision
- sensitive controls
- reduced maintenance expenses without giving up extended plant service life.

Carefully considering these requirements, it can be understood that specific filtering measures are needed with high-quality filtering elements to satisfy such conditions. The maximum degree of contaminations for particles tolerated in HPV proportional directional calves cannot be greater than contamination class 9 according to NAS 1638 (20/18/15 according to ISO 4406). This required purity class is generally achieved using filters with a retention capacity of β 20 \geq 100. Our experience suggests that a pressurised filter with a nominal rating of nominal 20 μm or absolute 10 μm is suitable to maintain the required oil cleaning parameters. In addition, it is always recommended to use pressurised filters with a clogging indicator.

The HPV are equipped with some built-in filters which are not suitable to filter the oil of the entire hydraulic circuit, but only some pilot lines order to protect some important components of the HPV against large-sized contaminating particles. The internal filters of the load sensing line and the low-pressure line are easy to replace and are available as spare parts.

ATEX modules

Safety instructions ATEX modules

Before installation, please carefully read what is illustrated in the instruction manual attached to the electro-hydraulic modules. All the maintenance operations must be carried out in accordance with what is shown in the manual.

All the installation and maintenance operations must be carried out by qualified personnel.

The modules can be combined with each other in a number that varies up to a maximum of sixteen, in order to monitor 8 HEM elements of HPV distribution.

When modules are individually supplied (not as a complete MHOX-HEM o MHPX-HEM valve), the customer has to verify the compatibility and suitability for use in the place of installation / use.

The MHOX and MHPX electro-hydraulic modules must be used in environments with low mechanical risk or it is necessary to ensure the presence of a suitable mechanical protection against a high degree of mechanical risk for the solenoid valves.

The MHOX, MHPX and MHFOX modules must be installed and maintained in accordance with the system and maintenance standards in environments classified against the risk of explosion due to the presence of gas, vapours or combustible powders (e.g.: EN 60079-14, EN 60079-17, EN 61241-14, EN61241-17 or other national norms/standards).

The solenoid valves must be earthed by means of a suitable anti-loosening and anti-rotation connection placed on the coil connector; after the connection, check the correct earthing with a continuity meter.

To make the connections to the process, the user must use metallic or anti-static tubes.

The user must provide a temperature monitoring system for the hydraulic fluid (mineral oil, phosphorous esters, water-glycol

or water-oil mixtures) in such a way as not to exceed fluid temperature shown in label.

In the case of combustible powders provision must be made for the regular cleaning and removal of layers with suitable equipment, in order to limit the formation of layers.

For the safety aspects linked to the use of the coils, see the solenoid valve safety instructions; the coils must not be open when live.

The user must periodically check the level of encrustation, cleanliness, the state of wear and tear and the correction functioning of the valves, in accordance with the conditions of use and substances.

Methods of use and maintenance Use

- Observe the functional limits shown in the technical characteristic section and those indicated in the solenoid safety instructions if they are restrictive.
- The oil used must be a part of the category of oils specified by the manufacturer and its level of contamination must be kept with the limits indicated.

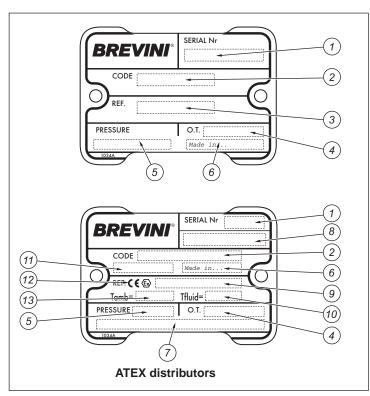
Maintenance

- The user must periodically check, depending on the conditions of use and substances, the presence of encrustations, cleanliness, the state of wear and tear and the proper functioning of the valves.
- If the O-rings are damaged, replace them only with those specifically provided by the manufacturer.

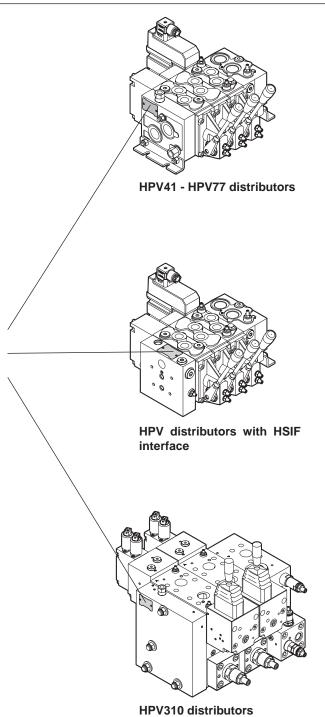
Methods of conveying and storing

The user must guarantee a correct transport and storage of the module, in order to not compromise the specific characteristics of the protection way and the good operation

In particular, don't enliven the module raising it through the cable connected to the connector.

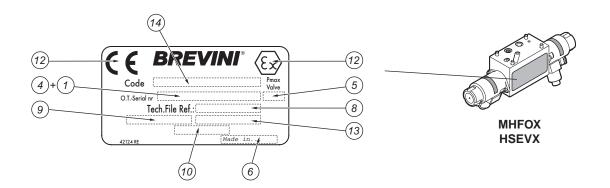

Marking and products identification

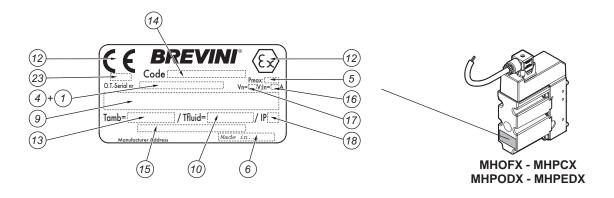
Registered mark plate for HPV distributors

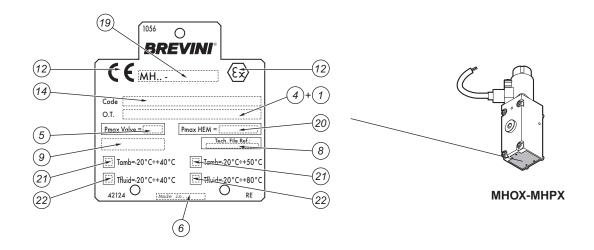

The registered mark plate provides all technical information on design and operating features, it must be kept intact and

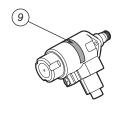
Registred mark and identification ATEX products

The distributors and the modules are equipped with a **Registered** mark plate and a Declaration of conformity, according to 94/4/ EC Directive, reporting all the characteristic features regarding operation and identification.




Ref.	Description
1	Serial Nr: serial number
2	Code: product code
3	Ref: customer code
4	O.T.: batch number
5	Pressure: max working pressure
6	Made in : preferential origin
7	Manufacturer adress
8	ATEX certificate number
9	ATEX marking
10	Working fluid temperature
11	Product serie
12	CE marking in accordance with the ATEX directive
13	Working ambient temperature
14	Ordering code
15	ATEX certified number and IECEx certified number
16	Max nominal current
17	Max nominal voltage
18	IP protection degree
19	Product serie + "HEM" if assemblen on a working section HEM
20	Max working pressure of the HEM section
21	Working ambient temperature (printed with X)
22	Working fluid temperature (printed with X)
23	Notified number authority




Dangerous are	eas	ATEX categories	EPL
Gas, vapor or mist	Zone 0	1G	Ga
Gas, vapor or mist	Zone 1	2G or 1G	Gb or Ga
Gas, vapor or mist	Zone 2	3G, 2G or 1G	Gc, Gb or Ga
Dust	Zone 20	1D	Da
Dust	Zone 21	2D or 1D	Db or Da
Dust	Zone 22	3D, 2D or 1D	Dc, Db or Da
Mine	_	M1	Ма
Mine	_	M2	Mb or Ma

Marking and products identification

HSEVX

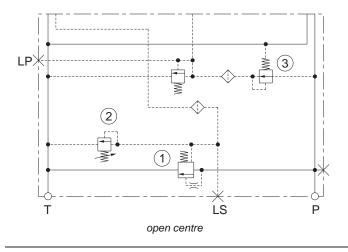
Inlet section Open Centre and Closed Centre

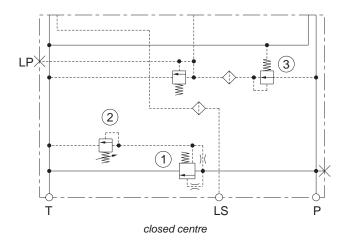
Standard HSE inlet section

Standard HSE inlet sections

The inlet sections are availables in two versions:

- open centre for use with fixed displacement pumps
- closed centre for use with load-sensing pumps


In the **open centre** versions, when the spool is not working, the flow/ pressure regulator - pos. 1 - unloads to T the entire pump flow (see characteristic curves).

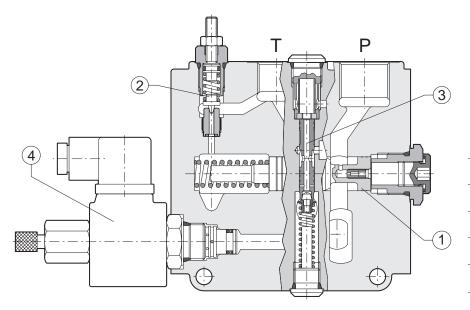

Otherwise, when the spool is working, it will feed the controlled element or elements, adapting instantaneously to the actual flow required by the ports and unloading any excess flow at the highest pressure of that moment to the tank.

By changing two internal pilot lines, the section is converted into a **closed centre** version. In the closed centre versions, the regulator - pos. 1 - only maintains the pressure regulator function, becoming the first stage of the main pressure relief valve pos. 2, which must be calibrated to about 30 bar [435 psi] more than the maximum work pressure.

Both versions can be supplied with the pressure reduction valve - pos. 3 - where originates a low pressure line (18-22 bar - 261 \div 319 psi) that feeds the MHPED electrohydraulic modules or also the same hydraulic manipulators. Obviously, if the valve is only equipped with manual control, the pressure reduction valve is not required.

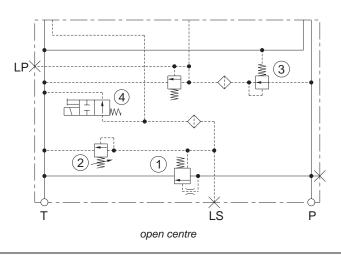
1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
Lp	Low pressure port, 18 ÷ 22 bar [261 ÷ 319 psi]

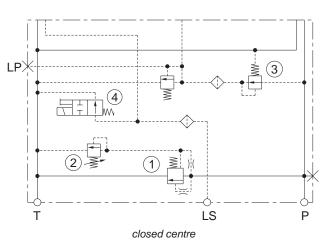
Inlet section Open Centre and Closed Centre


Standard HSE inlet sections with solenoid Ls unloading valve (CRP04HP)

All versions can be supplied with an Ls signal unloading solenoid valve - pos. 4. The solenoid valve can be normally open or normally closed. If it is activated during the work phases it immediately unloads the load sensing signal and subsequently stops all movements of the actuators.

In the open centre versions, the pump unloading pressure value is equal to the sum of the counterpressure acting on the T line plus the pressure required to open the flow/pressure regulator -pos. 1- to connect P to T (often from 8 to 15 bar - 116 to 218 psi).

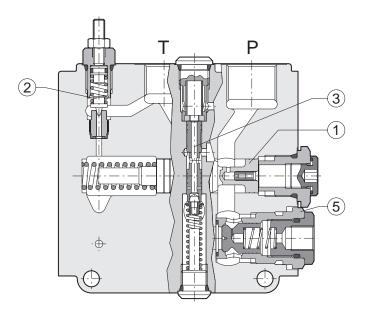

In the closed centre versions, unloading the Ls signal lowers the pressure in P at a value equal to the stand-by pressure at which the pump is regulated.


Using the solenoid Ls unloading valve on the inlet sections in the open and closed centre versions, we urge grate care in this method, because all functions requiring a lower working pressure, might be operated.

1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
4	Solenoid Ls unloading valve
Lp	Low pressure port, 18 ÷ 22 bar [261 ÷ 319 psi]

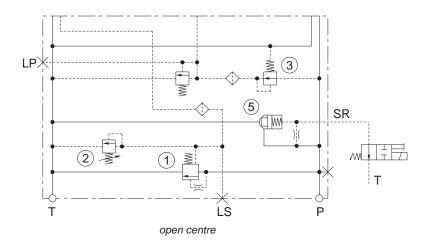
Standard HSE inlet section with solenoid Ls unloading valve (CRP04HP)

Inlet section Open Centre and Closed Centre



Standard HSE inlet sections with pump unloading valve function (HSER)

In the open and closed centre versions, it is possible to mount a **remote-controlled cartridge logic element** (pos. 5) for rapid pump unloading, thus by-passing the flow/pressure regulator (pos. 1).


In this configuration, the pump unloading pressure value is equal to the sum of the counterpressure acting on the T line, plus the pressure required to open the HSER valve (0.6 bar - 8.7 psi) to connect P with T.

With this solution the Δp for pump unloading is much lower than what would be created instead using the Ls signal unloading solenoid valve (see characteristic curves).

1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
5	Cartridge logic element, HSER
Lp	Low pressure port, 18 ÷ 22 bar [261 ÷ 319 psi]

Standard HSE inlet section with pump unloading valve function (HSER)

DANA

Open center systems

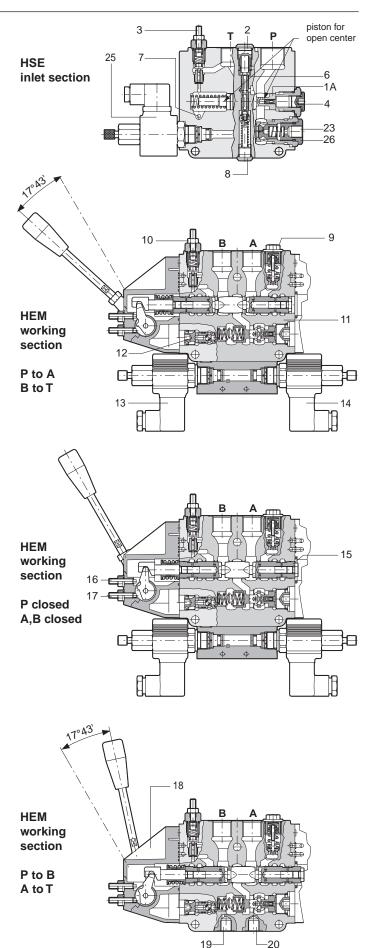
With the spools 15 in the central position, the Ls line, the chamber on the spring side of the flow/pressure regulator (1A) and the chamber on the spring side of the pressure compensator (11) are connected with the exhaust core (T), allowing the pump flow to be conveyed to the tank through the flow/ pressure regulator (1A).

The pump flow, the spring load of the flow/pressure regulator (1A) and the counterpressure acting on the exhaust line (T), determine the pump free circulation pressure (See characteristic curves).

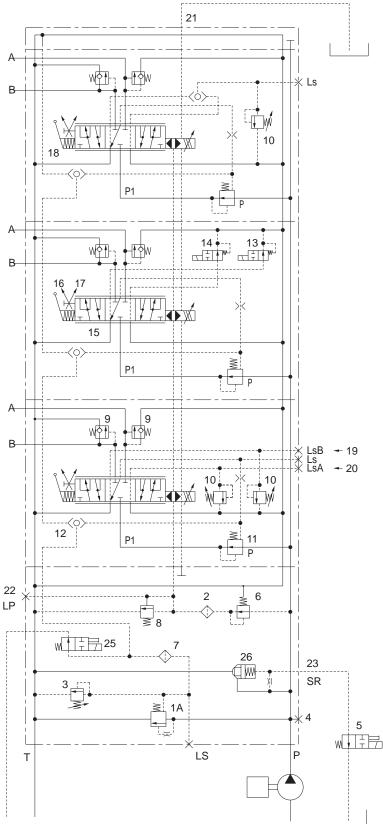
When the spool (15) is activated, the port selected is placed in communication with line P1 and the work pressure through line Ls is sent to the flow/pressure regulator (1A).

The flow obtained will only depend on the crossing area of the spool and the relative Δp that will be created along the spool adjustment range.

If two or more spools operating at different pressure values are activated at the same time, the pressure compensators (11) will keep the pressure drop constant (Δp) and thus the flow on the spools (15) will be constant within the maximum pump flow range.


On the other hand, if two or more spools of elements without pressure compensators are activated simultaneously, the flow on the spools will not be constant but will vary according to the work pressures.

The Load Sensing pressure relief valves (10), using a small pilot line flow, precisely limit the pressure at ports A/B without wasting energy, unlike the anti-shock valve which also when unloading the entire flow of the spools, are very wasteful.


The on-off solenoid valves (13-14) which cut off the LsA and LsB pilot lines, if activated, instantaneously cancel the flow on the relative port.

The pressure reduction valve (6) supplies a low pressure line (18-22 bar [261-319 psi]) which internally feeds the MHPE electrohydraulic modules and, externally, the hydraulic manipulators through the port 22.

The max. work pressures of ports A/B of each element can be remote controlled using the LsA and LsB pilot line ports.

Open center systems

- 1A Flow/pressure regulator
- 2 Low pressure line filter
- 3 Main pressure relief valve
- 4 Pump pressure gauge port
- 5 Pump unloading valve
- 6 Pressure reduction valve
- 7 Load sensing line filter
- 8 Low pressure line relief valve
- 9 Shock and suction valve
- 10 Ls pressure relief valve
- 11 Pressure compensator
- 12 Shuttle valve
- 13 LsB signal unloading solenoid valve
- 14 LsA signal unloading solenoid valve
- 15 Spool
- 16 A port flow fine adjustment register
- 17 B port flow fine adjustment register
- 18 Cover for manual control kinematic motion
- 19 LsB pressure pilot line port
- 20 LsA pressure pilot line port
- 21 Drain port
- 22 Low pressure pilot line port
- 23 Pilot line, pump unloading valve
- 25 Ls signal unloading solenoid valve
- 26 Pump unloading valve

Closed center systems

With the spools (15) in central position, the Ls line, the chamber on the spring side of the pressure compensators (11) and the pump flow/pressure regulator (24) are connected with the return line (T), allowing the pump to shift to the stand-by position.

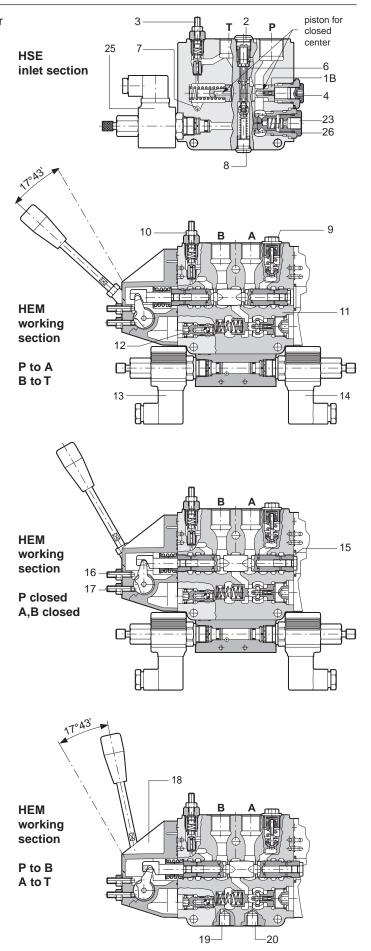
When the spool (15) is activated, the port selected is placed in communication with line P1 and the work pressure through line Ls is sent to the pump flow/pressure regulator (24).

The flow obtained will only depend on the crossing area uncovered by the spool stroke and on the resulting Δp .

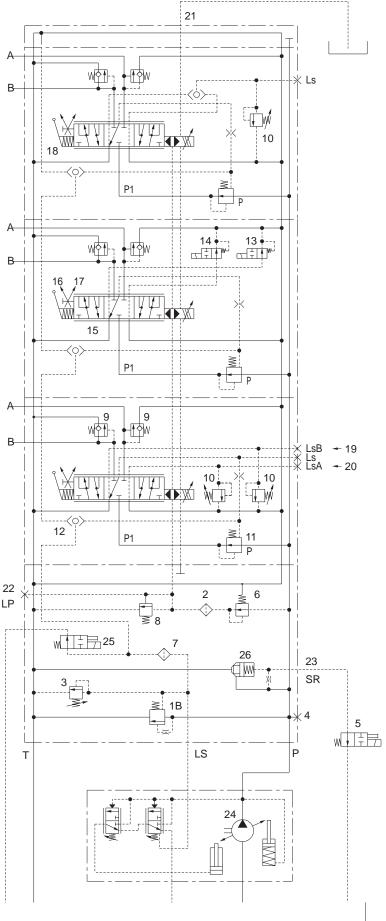
In this way the pump flow will adjust instantaneously to the actual flow required at the ports while keeping the differential pressure constant between the pump and the Ls signal.

The second stage of the pilot line pressure (3) must be set at 20-30 bar [290-435 psi] more than the maximum setting of the pump pressure/flow regulator (24).

If two or more spools operating at different pressure values are activated at the same time, the pressure compensators (11) will keep the pressure drop constant (Δp) and thus the flow at the spools (15) will be constant within the maximum pump flow range.


On the other hand, if two or more spools of elements without pressure compensators are activated simultaneously, the flow on the spools will not be constant but will vary according to the work pressures.

The Load Sensing pressure relief valves (10), activated by a small pilot flow, precisely limit the pressure at ports A/B with no energy dissipation, unlike the anti-shock valves which, also when unloading the entire flow of the spools, are very dissipative.


The on-off solenoid valves (13-14) which cut off the LsA and LsB pilot lines, if activated, instantaneously cancel the flow at the relative port.

From the pressure reduction valve (6) starts a low pressure line (18-22 bar [261-319 psi]) which internally feeds the MHPE electrohydraulic modules and, externally, the hydraulic manipulators through port 22.

The max. work pressures of A/B ports of each element can be remote controlled using the LsA and LsB pilot line ports.

Closed center systems

- 1B Pressure regulator first stage
- 2 Low pressure line filter
- 3 Main pressure relief valve
- 4 Pump pressure gauge port
- 5 Pump unloading valve
- 6 Pressure reduction valve
- 7 Load sensing line filter
- 8 Low pressure line relief valve
- 9 Shock and suction valve
- 10 Ls pressure relief valve
- 11 Pressure compensator
- 12 Shuttle valve
- 13 LsB signal unloading solenoid valve
- 14 LsA signal unloading solenoid valve
- 15 Spool
- 16 A port flow fine adjustment register
- 17 B port flow fine adjustment register
- 18 Cover for manual control kinematic motion
- 19 LsB pressure pilot line port
- 20 LsA pressure pilot line port
- 21 Drain port
- 22 Low pressure pilot line port
- 23 Pilot line, pump unloading valve
- 24 Pump flow/pressure regulator
- 25 Ls signal unloading solenoid valve
- 26 Pump unloading valve

General features

The HPV proportional valves are proportional directional valves with two functional characteristics:

- Directional regulation.
- Flow regulation insensitive to the variation of the load applied to the actuator.

They can be remotely controlled and represent the most advanced technology in the world of applied hydraulics.

Proportional distributors differ in "open center" and "closed center":

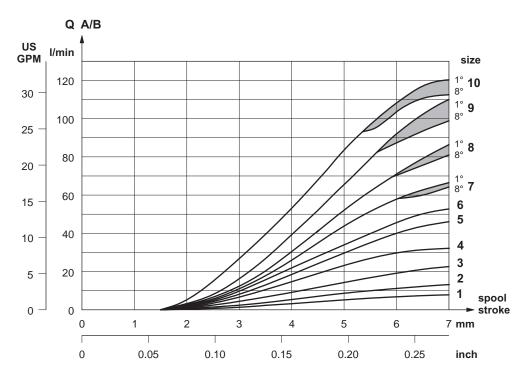
- Proportional open center distributors are used with fixed displacement pumps.
- The closed center proportional valves are used with variable displacement pumps with load sensing control.

Hydraulic features

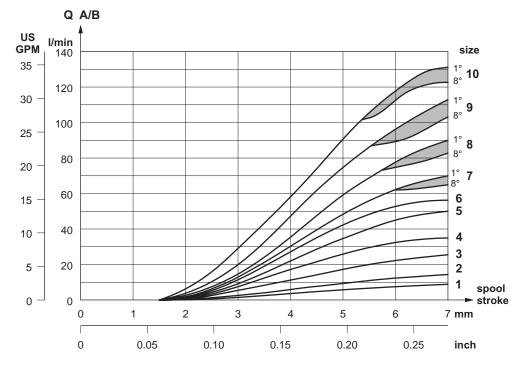
The hydraulic features reported below were measured using a mineral based hydraulic oil according to DIN 51524 or ISO 6743/4 with a viscosity of 25 mm²/s [130 SUS] at a temperature of 50 °C [122 °F]

	HSE inlet section	n P nort	160 l/min	42 US gpm
Rated flow	Mid inlet section, HFLS		250 l/min	66 US gpm
	A, B ports with pressure compensator		130 l/min	34 US gpm
		· · · · · · · · · · · · · · · · · · ·		0.
	A, B ports witho	ut pressure compensator	140 l/min	37 US gpm
	Connection	Pressure relief valve setting	400 bar	5800 psi
	P / P port	Working pressure	370 bar	5370 psi
Max. working pressure	Ports A, B		370 bar	5370 psi
Max. Working pressure	Connection Y		to	tank
	Commontion T	Static	25 bar	363 psi
	Connection T	Dynamic	35 bar	508 psi
Max. pilot pressure oil supply			18 ÷ 22 bar	260 ÷ 320 psi
	Recommended		-30 ÷ 60 °C	-22 ÷ +140 °F
Oil temperature	Min.		-25 °C	-13 °F
	Max.		+80 °C	+176 °F
Ambient temperature			-30 ÷ 60 °C	-22 ÷ +140 °F
	Recommended		12 ÷ 80 mm²/s (cSt)	
Viscosiy	Min.		4 mm²/s (cSt)	
	Max.		460 mm²/s (cSt)	
Filtering	Max. contamina 4406)	tion: class 9 according to NAS	1638 (20/18/15 acc	cording to ISO
Otracla	Spool stroke		± 7 mm	± 0.276 in
Stroke	Proportional		± 5.5 mm	± 0.217 in
Dead band			± 1.5 mm	± 0.059 in
Nominal internal leakage at 180 bar	$A, B \rightarrow T$	Without anti-shock valves	23 cm³/min	1.40 in³/min
(2611 psi)		With anti-shock valves	29 cm³/min	1.77 in³/min

HPV 41 internal (easy replacement) filters, mesh 100 μm.

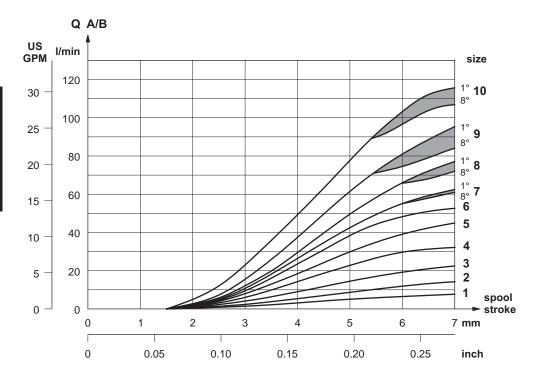

Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4. HPV 41 can also be used with phosphorous esters (HFDR), water-glycol /HFC) or water-oil (HFB) mixes, subject to our Technical Dept. approval.

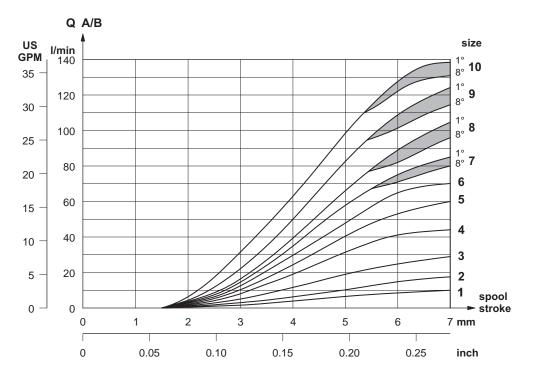
Hydraulic control - MHPH module				
Pilot pressure	Start	4.5 bar	65 psi	
Filot pressure	End stroke	15 bar	218 psi	
Max. pilot pressure		30 bar	436 psi	

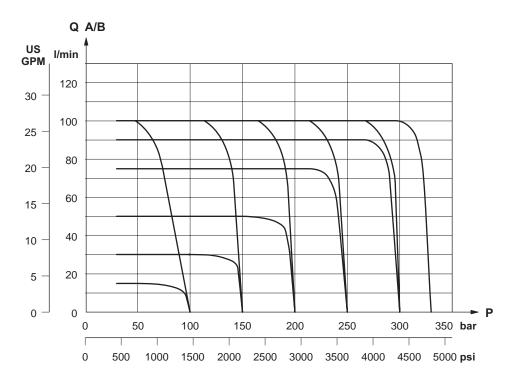


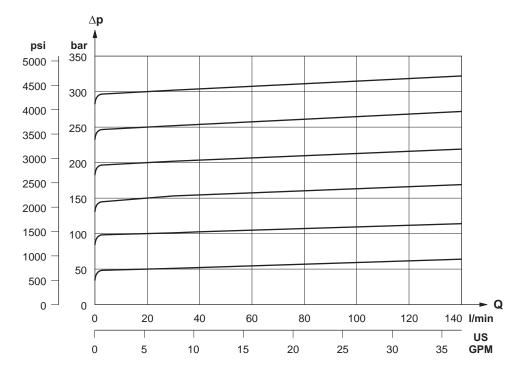
Technical data

Characteristic curves

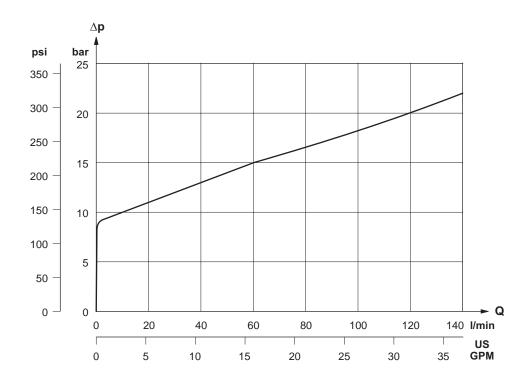

Flow characteristics of section with compensator from 1st to 8th section with open or closed centre type inlet section


Flow characteristics of section without compensator from 1st to 8th section with open centre type inlet section

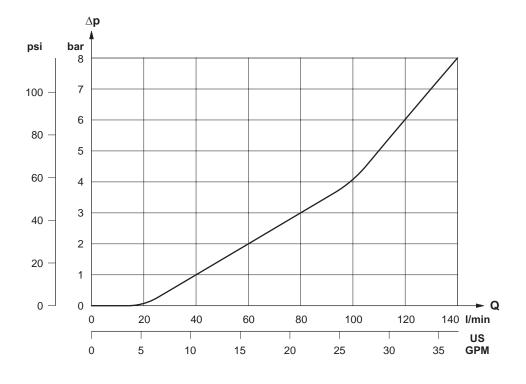

Characteristic curves


Flow characteristics of section without compensator from 1st to 8th section with closed centre type inlet section and 14 bar [203 psi] pump standby pressure

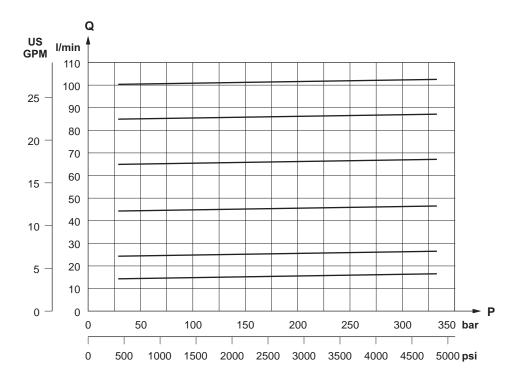
Flow characteristics of section without compensator from 1st to 8th section with closed centre type inlet section and 21 bar [305 psi] pump standby pressure

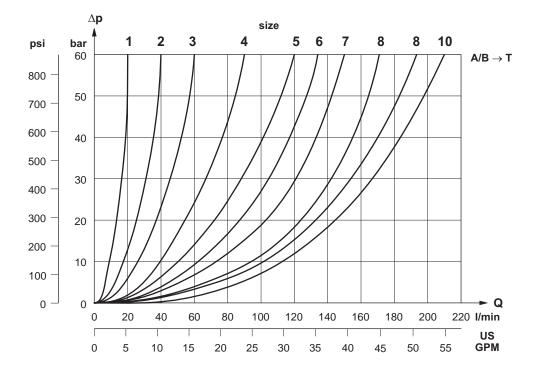


Flow characteristics at A / B ports with pressure limitation on the same (section with pressure compensator)

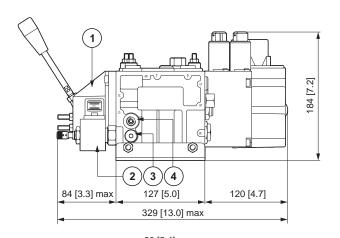


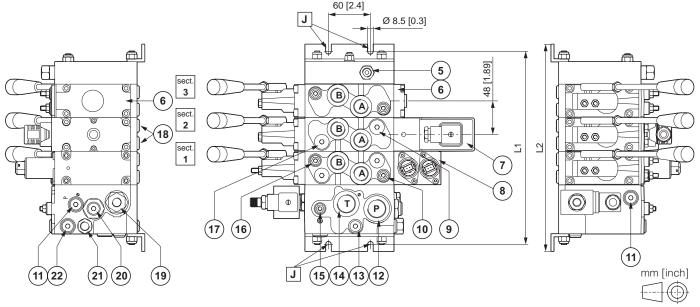
Characteristics of main pressure relief valve


Characteristic curves


Pressure drop on inlet section, open centre type, with spools in neutral position

Pressure drop on inlet section with pump unloading valve and spools in neutral position (for open centre inlet sections only)




Characteristics of baric compensation: flow independent from load

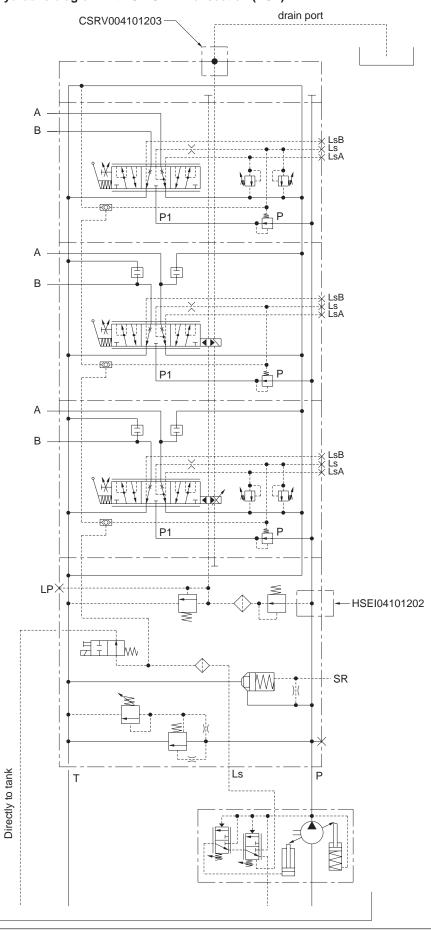
 ΔP figures with spool on complete deadlock and a or B in T

HPV 41 overall dimensions with SINGLE inlet section (HSE)

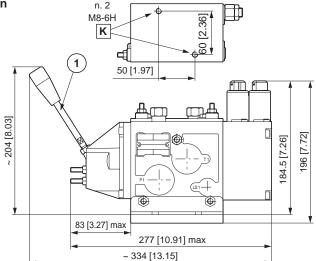
A/B Ports, 1/2" BSPP or 7/8" - 14 UNF - 2B (SAE 10)

- J Fixing means
- 1 Manual control, HCM
- 2 Ls signal unloading solenoid valve
- 3 Ls signal filter cartridge
- 4 Ls port, 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- 5 Electronic controls drain line
- 6 Manual control plate, HCP
- 7 ON-OFF electrohydraulic control module, MHOF
- 8 Module for current electrohydraulic control, MHPF
- 9 A port anti-shock and anti-cavitation valve
- 10 LsA pressure relief valve
- 11 P, T pressure ports
- 12 Pump side port, 3/4" BSPP or 1 1/16" 12 UN 2B (SAE 12)
- 13 Low pressure line filter cartridge
- 14 Return line port, 3/4"BSPP or 1 1/16" 12UN 2B (SAE 12)
- 15 Main pressure relief valve
- 16 LsB pressure relief valve
- 17 B port anti-shock and anti-cavitation valve
- 18 LsA LsB pressure remote control port, 1/4" BSPP or 7/16" 20 UNF -2B
- 19 Pilot line port for pump stand-by, ¼" BSPP or 7/16" 20UNF 2B (SAE 4)
- 20 Pump gauge port, 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- 21 Pressure reducing valve external feed port for electrohydraulic controls, 1/4" BSPP or 7/16"- 20UNF 2B (SAE 4)
- 22 External pilot oil supply, 1/4" BSPP or 7/16" 20UNF 2B

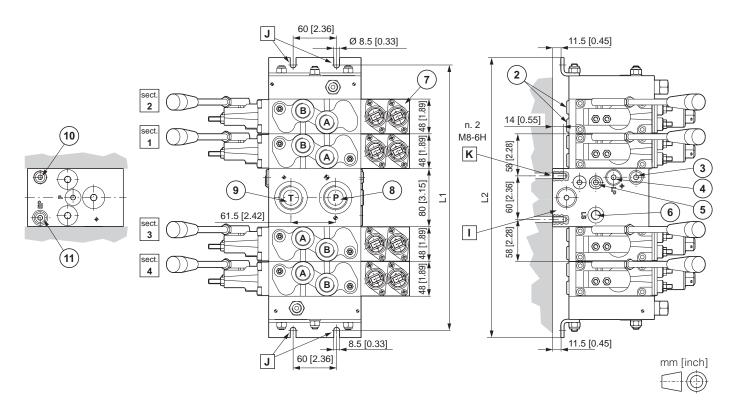
Working Sections	L1 mm [inch]	L2 mm [inch]
1	180 [7.09]	200 [7.87]
2	228 [8.98]	248 [9.76]
3	276 [10.87]	296 [11.65]
4	324 [12.76]	344 [13.54]
5	372 [14.65]	392 [15.43]
6	420 [16.54]	440 [17.32]
7	468 [18.43]	488 [19.21]
8	516 [20.31]	536 [21.10]
9	564 [22.20]	584 [22.99]
10	612 [24.09]	632 [24.88]


Fixing instructions

The distributor must be fixed by means (J) of the slots in the feet. We decline all responsibility in the case of malfunctioning or oil leakage caused by the wrong fixing of the distributor.


Note

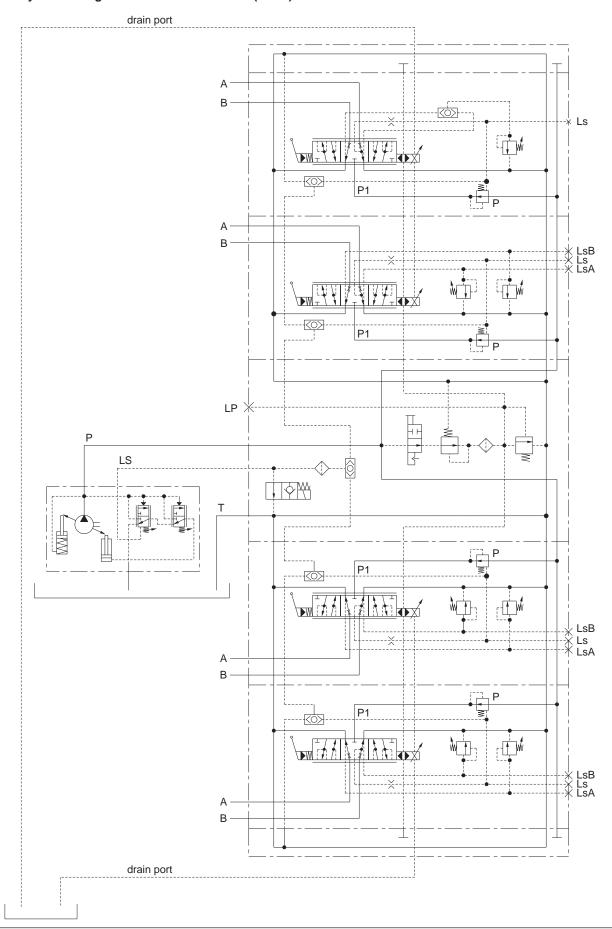
See the order form, page B-24).


HPV 41 hydraulic diagram with SINGLE inlet section (HSE)

HPV 41 overall dimensions with MID inlet section (HFLS)

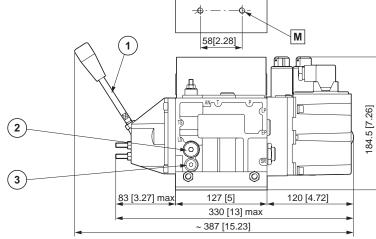
Working Sections	L1 mm [inch]	L2 mm [inch]	
2	270 [10.63]	290 [11.42]	
3	318 [12.52]	338 [13.31]	
4	366 [14.41]	386 [15.20]	
5	414 [16.30]	434 [17.09]	
6	462 [18.19]	482 [18.98]	
7	510 [20.08]	530 [20.87]	
8	558 [21.97]	578 [22.76]	
9	606 [23.86]	626 [24.65]	
10	654 [25.75]	674 [26.54]	

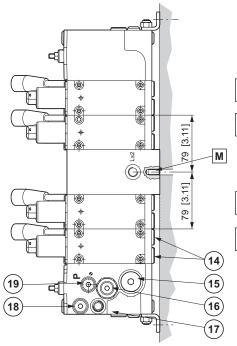
A/B Ports, 1/2" BSPP or 7/8" - 14 UNF - 2B (SAE 10)

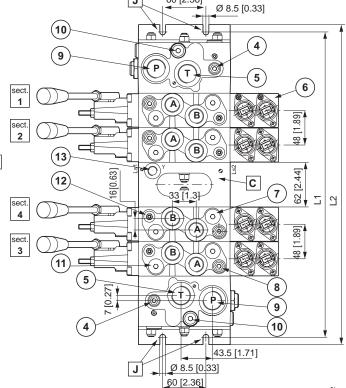

- Mid inlet section HFLS
- Fixing means
- Κ Fixing holes M8
- Manual control, HCM
- 2 LsA - LsB pressure remote control port, 1/4" BSPP or 7/16" - 20 UNF -2B
- 3 Low pressure line filter cartridge
- External pilot oil supply, 1/4" BSPP or 7/16" 20UNF 2B
- Ls signal filter cartridge
- Ls port, 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- Module for current electrohydraulic control, MHPF
- Pump side port, 3/4" BSPP or 1 1/16" 12 UN 2B (SAE 12) Return line port, 3/4"BSPP or 1 1/16" 12UN 2B (SAE 12) 8
- Pressure reducing valve external feed port for electrohydraulic controls, 1/4" BSPP or 7/16"- 20UNF - 2B (SAE 4)
- P, T pressure ports

Fixing instructions

The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M8-6H (K) in the mid inlet section HFLS (I). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.


On the working sections no. 3, 4 (as in the above example), the A - B port positions are reversed (see also the order form, page B-25).


HPV 41 hydraulic diagram with MID inlet section (HFLS)



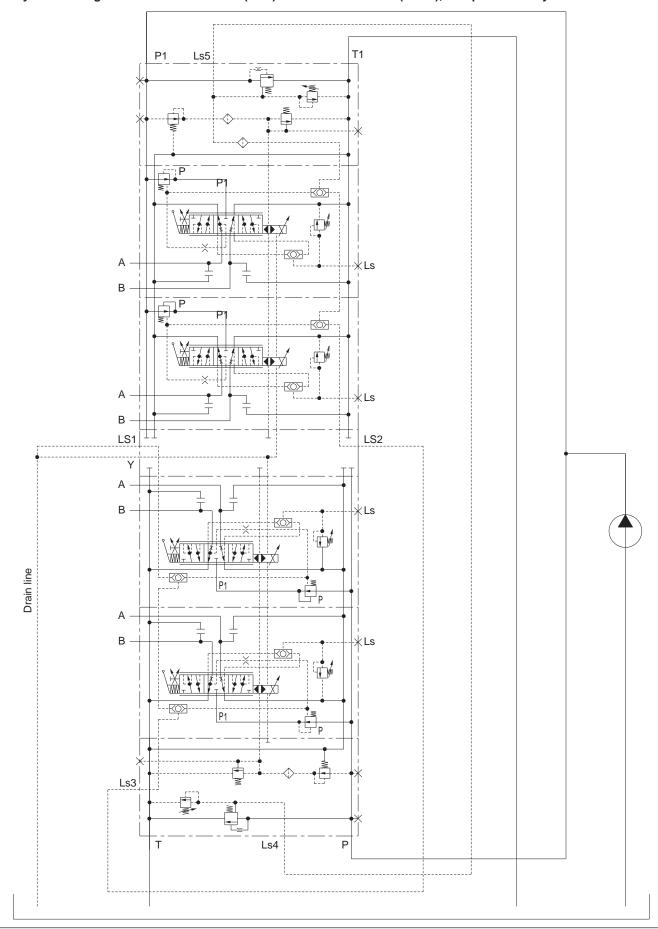
HPV 41 overall dimensions with 2 inlet sections (HSE) and mid end section (HPFS)

Working Sections	L1 mm [inch]	L2 mm [inch]	
2	328 [12.91]	348 [13.70]	
3	376 [14.80]	396 [15.59]	
4	424 [16.69]	444 [17.48]	
5	472 [18.58]	492 [19.37]	
6	520 [20.47]	540 [21.26]	
7	568 [22.36]	588 [23.15]	
8	616 [24.25]	636 [25.04]	
9	664 [26.14]	684 [26.93]	
10	712 [28.03]	732 [28.82]	

A/B Ports, 1/2" BSPP or 7/8" - 14 UNF - 2B (SAE 10)

- C Mid inlet section HPFS
- J Fixing means
- M Fixing holes M8
- 1 Manual control, HCM
- 2 Ls port, 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- 3 Ls signal filter cartridge
- 3 Module for current electrohydraulic control, MHPF
- 4 Main pressure relief valve
- 5 Return line port, 3/4"BSPP or 1 1/16" 12UN 2B (SAE 12)
- 7 A port anti-shock and anti-cavitation valve
- 8 LsA pressure relief valve
- 9 Pump side port, 3/4" BSPP or 1 1/16" 12 UN 2B (SAE 12)
- 10 Low pressure line filter cartridge
- 11 B port anti-shock and anti-cavitation valve
- 12 LsB pressure relief valve
- 13 Electronic controls drain line
- 14 Pilot line port for pump stand-by, 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- 14 LsA LsB pressure remote control port, 1/4" BSPP or 7/16" 20 UNF -2B
- 16 Pump gauge port, 1/4" BSPP or 7/16" 20UNF 2B
- 17 Pressure reducing valve external feed port for electrohydraulic controls, 1/4" BSPP or 7/16"- 20UNF 2B (SAE 4)
- 18 External pilot oil supply, 1/4" BSPP or 7/16" 20UNF 2B
- 19 P, T pressure ports

Fixing instructions

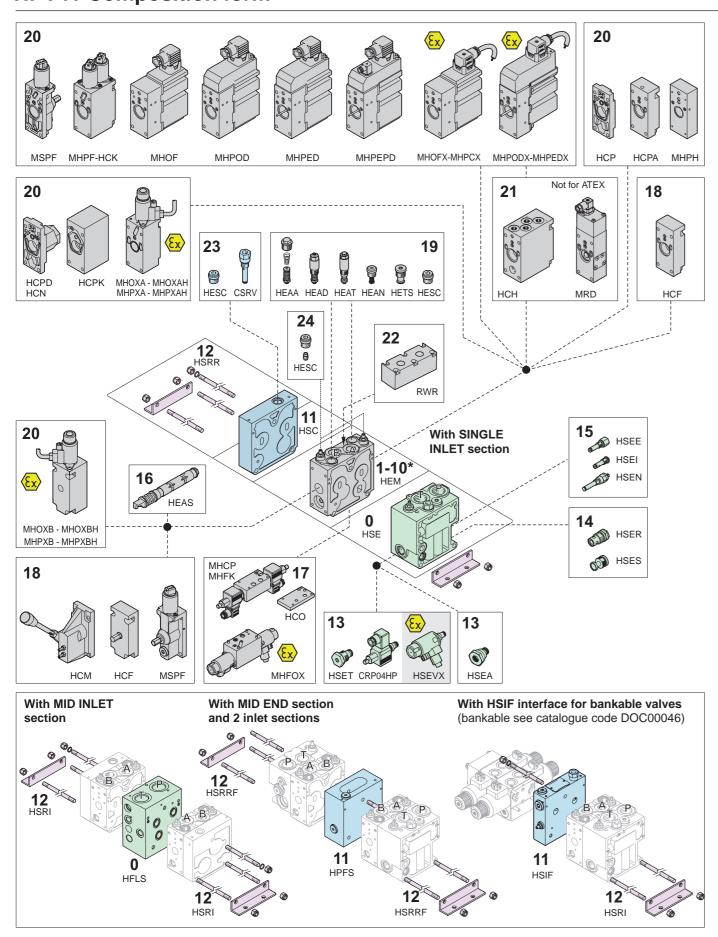

The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M8-6H (M) in the mid end section HPFS (C). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

Note:

On the working sections no. 1, 2 (as in the above example), the A - B port positions are reversed (see also the order form, page B-26).

mm [inch]

HPV 41 hydraulic duagram with 2 inlet sections (HSE) and mid end section (HPFS), for open centre system



HPV41 Composition form HPV41 Composition form

HPV41 Composition form

^{*} Working sections HEM (1-10) are reversibles, actuators (18-20-21) can be assembled on side ports A or B of element.

FIELD 0 - INLET SECTIONS HSE - Inlet section	B-27
HFLS - Mid inlet section	B-33
FIELD 1 to 10 - WORKING SECTIONS HEM - Working section	B-38
FIELD 11 - END SECTIONS	
HSC - End section	B-88
HPFS - Intermediate end section	
HSIF - Interface between HPV 41 and CXDH3 / CX3 / CDH3 / CD3 / CDC3	B-91
FIELD 12 - STAY BOLTS KITS	
HSRR - Stay bolts kit for single inlet HSE	D 04
HSRI - Stay bolts kit for mid inlet HFLS	
HSRRF - Stay bolts kit for mid end section HPFS	
HSRI - Stay bolts kit for HSIF interface	
FIELD 13 - FACILITIES FOR SOLENOID LS UNLOADING VALVES	0.
HSET - Plug	R-35
CRP04HP - Electrical valve	
HSEA - Cartridge	
HSEVX - ATEX electrical valve	
	00
FIELD14 - FACILITIES FOR PUMP UNLOADING HSER, HSES - Valve and plug	R-37
	D-51
FIELD 15 - PILOT OIL SUPPLY	
HSEE, HSEI, HSEN - Cartridges	B-37
FIELD 16 - SPOOLS	
HEAS - Main spools	B-46
FIELD 17 - ELECTRICAL UNLOADING LSA-B MODULE	
MHFK, MHCP - Unloading modules	B-82
MHFOX - ATEX unloading module	B-84
HCO - Closing module	
FIELD 18 - MECHANICAL ACTUATORS	
HCM Mechanical control	R-53
HCF Rear cover	
MSPF - Current electrohydraulic proportional module	
	0 .
FIELD 19 - SHOCK AND SUCTION VALVE HEAA, HEAD, HEAT, HEAN, HETS, HESC - Valves and plugs	B 50
	D-30
FIELD 20 - MECHANICAL, HYDRAULIC AND ELECTRICAL ACTUATORS	
HCN - Friction	
HCP - Rear cover	
HCPA - Adjustabler rear cover	
HCPK - Kick-Out device	
·	
MHPH - Hydraulic activation	
HCK - electrohydraulic proportional module with pilot oil connections	
MHOF - On/Off electrohydraulic module	
MHPOD - Open loop electrohydraulic proportional module	
MHPED - Closed loop electrohydraulic proportional module	
MHPEPD - Closed loop electrohydraulic proportional module	
MHOX, MHOX-H - On/Off electrohydraulic modules ATEX	
MHPX, MHPX-H - Proportional electrohydraulic modules ATEX	
MHOFX - On/Off electrohydraulic ATEX module	
MHPCX - Proportional electrohydraulic ATEX module	B-74
MHPODX - Open loop electrohydraulic proportional ATEX module	B-75
MHPEDX - Closed loop electrohydraulic proportiona ATEX module	B-76
FIELD 21 - REMOTE CONTROL	
HCH - Hydraulic and electrical remote control	B-78
MRD - Electrical spool movement device	
·	
FIELD 22 - MODULE WITH CHECK VALVE RWR - Double pilot operated check valve module	R-21
	D-0 I
FIELD 23 - ACCESSORIES FOR HSC AND HSIF ELEMENTS	_
CSRV module - electrical activations external drain	B-93
HESC module - manual and hydraulic activations internal drain	B-93
FIELD 24 - PLUGS KIT	
Kit for closing pressure relief valve cavity	B-52
SPARE PARTS KIT	B-98

This order form is the only one ensuring that the product will be defined and ordered correctly without any possible mistakes. It is divided into sectors of pertinence, from 0 to 24, within which the code of the required module must be inserted.

It is also necessary to indicate:

- the setting in bar of the pressure relief valve (sector 0, inlet section);
- when requested, the setting in bar of the LsA/LsB pressure relief valves (sectors 1 to 10, HEM spool elements);

Dana suggests to indicate the pump type and the flow that feeds the proportional valve, so it is possible to test it in working conditions.

The valve is always assembled as indicated in the module assembly selection table (see page B-21), i.e. the HCM module for the manual control inserted in sector of pertinence 18, and the rear modules HCP, HCPD, HCPK, MHPH, MHPE, MHPO, MHOF etc. inserted into sectors of pertinence 20, 21.

If the opposite assembly is required, just select from menu the desired assembly mode: Right / Left HPV feed, HPV feed with HFLS / HPFS module.

Combination table controls

Controls	нсм	HCF	MSPF	MHOXB	МНОХВН	MHPXB	MHPXBH
HCPD HCN	•	_	_	_	_	_	_
HCPK	•	_	•	•	•	•	•
MHOXA	•	_	_	•	_	_	_
MHOXAH	•	_	_	_	•	_	_
MHPXA	•	_	_	_	_	•	_
MHPXAH	•	_	_	_	_	_	•
MSPF	•	•	•	_	_	_	_
MHPF-HCK	•	_	_	_	_	_	_
MHOF	•	_	_	_	_	_	_
MHPOD	•	_	_	_	_	_	_
MHPED	•	_	_	_	_	_	_
MHPEPD	•	_	_	_	_	_	_
MHOFX MHPCX	•	_	_	_	_	_	_
MHPODX MHPEDX	•	_	_	_	_	_	_
HCP	•	_	_	_	_	_	_
HCPA	•	_	_	_	_	_	_
MHPH	•	•	_	_	_	_	_
HCF	_	_	•	•	•	•	•

• = combinable — = not combinable

ATEX controls. For the ATEX versions you need to use the cast iron controls.

Order form

With SINGLE inlet section (HSE)

Controlled	В		11 23			A		Controlled		
function	Port	Field	-	12	-			Port		function
	18			bar		16			18	
	19	10	LsA LsB						19	
	20 21		LSB	22	_	17			20	
	18			bar		16			18	
	19 20	9	LsA LsB			17			19 20	
	21		LSD	22		17			21	
	18			bar		16			18	
	19 20	8	LsA LsB			17			19 20	
	21		LOD	22					21	
	18 19		LsA	bar		16			18 19	
	20	7	LsB			17			20	
	21			22					21	
	18	\dashv	LsA	bar		16			18 19	
	20	6	LsA LsB			17			20	
	21 18		-	22 bar		16			21 18	
	19	5	LsA	υαι					19	
	20	J	LsB	22		17			20 21	
	21 18			bar		16			18	
	19	4	LsA						19	
	20 21	- 1	LsB	22	_	17			20 21	
	18			bar		16			18	
	19 20	3	LsA LsB			17			19 20	
	21		LSD	22		17			21	
	18			bar		16			18	
	19 20	2	LsA LsB			17			19 20	
	21		LOD	22					21	
	18		LsA	bar		16			18 19	
	20	1	LsB			17			20	
ata	21		P	22		10		Note	21	
ote		0	F			13 14		Note		
			bar			15				
Right HPV feed	d (Standard)			_			MAIN INFO	DRMATION		
Left HPV feed					7		Pump type	O Fixed displ.	LS control	O Constant pressure
				1	/		Pump flow, I/1'	000 liter / min		
							Type of threads	OUNF O	BSPP]
							Reference tension	O12 V O	24 V	O Not required
							Electric devices		Atex PWM	O ATEX Tens
ustomer:										
em description:					1					
ompilation form da					1					
ur valve internal co					1					
ustomer reference					1					
ompilation form m	odification index				1					
rder No.:					Order quantity					
rder Date:					Net price EUR					
elivery date:				PRICE LIST 2018 - v	vers. BSP	'P (GAS)				
rder ack. N°.:					Quotazione n° :		,			

NOTE: For working sections numbering, see page B-14.

Order form

With MID inlet section (HFLS)

Controlled function	B Port	Field		11 12		23		A Port		Controlled function
	18		ļ.,	bar		16			18	
	19 20	6	LsA LsB			17			19 20	
	21		LOD	22					21	
	18		I	bar		16			18	
	19 20	5	LsA LsB			17			19 20	
	21		LSD	22		17			21	
	18			bar		16			18	
	1 19	4	LsA			47			19	
	20 21	_	LsB	22		17			20	
	18			bar		16			18	
	19	3	LsA						18 19	
	20 21	-	LsB	22		17			20 21	
	18			bar		16			18	
	19	2	LsA LsB						19	
	20		LsB	22		17			20	
	21 18			22 bar	+	16		 	21 18	
	19	1	LsA						19	
	20		LsB	20	<u> </u>	17			20	
	21		Р	22		13		 	21	
HFLS	_A .	0	l'	+		14		В .		HFLS
20	Port	J	bar			15		Port		20
	18			bar		16			18	
	19	7	LsA LsB			17			19	
	20 21		LSB	22		17			20 21	
	18			bar		16			18	
	19	8	LsA			47			19	
	20 21	-	LsB	22		17			20	
	18			bar		16			18	
	19	9	LsA LsB						19	
	20	9	LsB	00		17			20	
	21 18			22 bar	+	16			21 18	
	19	10	LsA	Dui					I 19 I	
	20	10	LsA LsB			17			20	
	21 18			22 bar		16			21	
	19	- 44	LsA	Dai		10			18 19	
	20	11	LsA LsB			17			20	
	21 18			22 bor		16			21 18	
	I 19 I	40	LsA	bar		10			19	
	20 21	12	LsB			17			20	
.1.	21			22		00		N	21	
ote				11 12		23		Note		
				12						
HPV feed with	HFLS module						MAIN INFO	RMATION		
HPV feed with HF				V	7				ontro!	Constant areas
							Pump type		UNTFOI	O Constant pressure
							Pump flow, I/1'	000 liter / min		7
							Type of threads	OUNF OBSP	P	<u> </u>
							Reference tension	○12 V ○24 V		O Not required
							Electric devices	○ Standard	PWM	O ATEX Tens
intomes:										
ustomer:										
em description:										
ompilation form da										
ur valve internal co										
ustomer reference	code									
ompilation form m	odification index									
rder No.:					Order quantity					
					Net price EUR					
IUEL DAIE		1			· ·					
rder Date:					PRICE LIST 2018 - Vore	s RCI	PP (GAS)			
elivery date: rder ack. N°.:					PRICE LIST 2018 - vers	s. BSF	PP (GAS)			

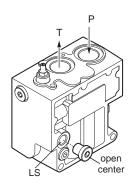
NOTE: For working sections numbering, see page B-14.

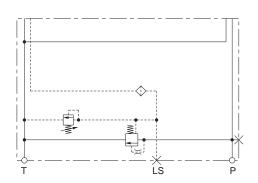
Order form

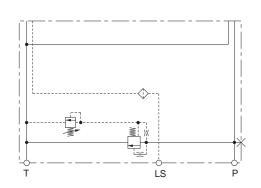
With 2 inlet sections (HSE) and mid end section (HPFS)

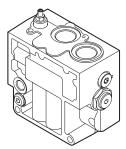
	-		1	-	1 10		I		
Controlled function	A Port	0		12	13 14 15		B Port		Controlled function
	18		ļ	bar	16			18	
	19 20	1	LsA LsB		17			19 20	-
	21		LSD	22				21	-
	18			bar	16			18	
	19 20	2	LsA LsB		17			19	-
	21		LOD	22	17			21	-
	18		L	bar	16			18	
	19 20	3	LsA LsB		17			19	-
	21		LSD	22				20	-
	18			bar	16			18	
	19 20	4	LsA LsB		17			19 20	-
	21		LSD	22				21	-
	18		L	bar	16			18	
	19 20	5	LsA LsB		17			19 20	-
	21		LSD	22	17			21	-
	18			bar	16			18	
	19 20	6	LsA LsB	-	17			19	-
	21		LOD	22	17			21	-
	В						A		
HPFS	Port	Field		11			Port		HPFS
			-	har	16			10	
	18 19	40	LsA	bar	10			18 19	-
	20	12	LsB		17			20	
	21			22	10			21	
	18	٠,	LsA	bar	16			18 19	_
	20	11	LsA LsB		17			20	
	21			22	10			21	
	18		ΙsΔ	bar	16			18 19	-
	20	10	LsA LsB		17			20	
	21			22	40			21	
	18 19		LsA	bar	16			18 19	-
	20	9	LsB		17			20	
	21			22				21	
	18 19	_	LsA	bar	16			18 19	-
	20	8	LsB		17			20	-
	21			22				21	
	18 19	_	LαΛ	bar	16			18 19	-
	20	7	LsA LsB		17			20	-
	21			22			N	20	
Note		0	-		13		Note		
		J		12	15		<u> </u>		
HPV feed with I	HPFS module					MAIN INFO	ORMATION		
HPV feed with HFI			j	V				ntro!	O Constant
				1		Pump type		ntrol	O Constant pressure
						Pump flow, I/1'	000 liter / min		
						Type of threads	○ UNF ○ BSPF		
						Reference tension	○12 V ○24 V		O Not required
						Electric devices	○ Standard ○ Atex	PWM	O ATEX Tens
0									
Customer:									
Item description:									
Compilation form da									
Our valve internal co									
Customer reference of	code								
	adification index								
Compilation form mo	odilication index								
	odification index				Order quantity				
Order No.:	ounication index								
Compilation form mo Order No.: Order Date: Delivery date:	ounication muex				Net price EUR	P(GAS)			
Order No.:	odification index					P(GAS)			

NOTE: For working sections numbering, see page B-16.


Features

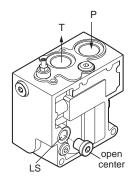

• Hydraulic features: see page B-8.

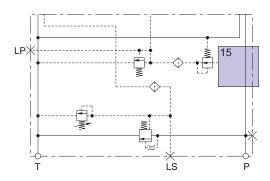

Connections: P, T: 3/4" BSPP or 1 1/16" - 12UN-2B
 Connessione Ls: 1/4" BSPP or 7/16" - 20UNF-2B

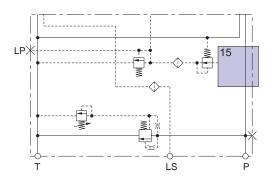

Made in cast iron

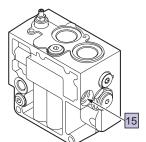
HSE for purely mechanically activated valves

Open center circuit for fixed displacement pumps

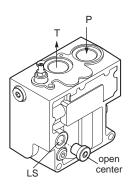

Code					
BSPP	UN - UNF				
HSE0004101010	HSE0004101020				

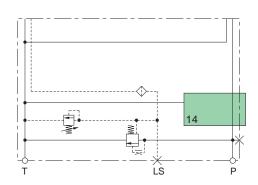

Closed center circuit for load sensing pumps

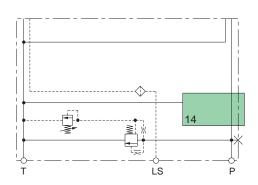

	• •							
Code								
BSPP	UN - UNF							
HSE0004101110	HSE0004101120							

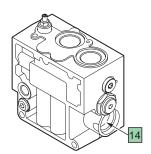

DANA

For electrically activated valves. With pilot oil supply Lp.


Open center circuit for fixed displacement pumps


Co	ode	LP	P(*)
BSPP	UN - UNF	bar	psi
HSE0004101050	HSE0004101060	22	319
HSE0004101229	HSE0004101231	30	435
HSE0004101230	HSE0004101232	36	522

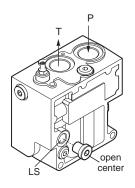

Closed center circuit for load sensing pumps

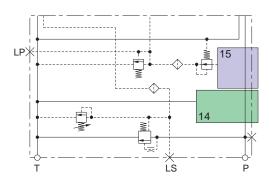

Co	Code			
BSPP	UN - UNF	bar	psi	
HSE0004101130	HSE0004101140	22	319	
HSE0004101251	HSE0004101253	30	435	
HSE0004101252	HSE0004101254	36	522	

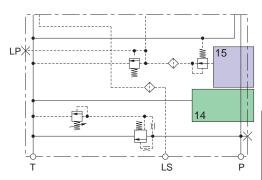
For purely mechanically activated valves. Prearranged for pump unloading valve, HSER

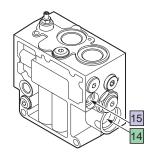
Open center circuit for fixed displacement pumps

Code					
BSPP	UN - UNF				
HSE0004101030	HSE0004101040				


Closed center circuit for load sensing pumps

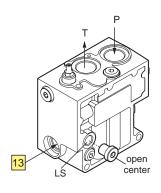

Code					
BSPP	UN - UNF				
HSE0004101161	HSE0004101162				

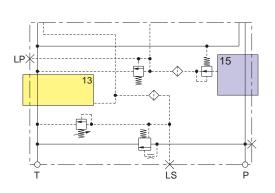

14 15 Seats, see accessories tables page B-37.

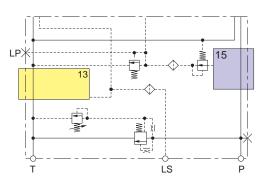

(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

For electrically activated valves.
With pilot oil supply. Prearranged for pump unloading valve, HSER

Open center circuit for fixed displacement pumps


Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101090	HSE0004101100	22	319
HSE0004101243	*	30	435
HSE0004101244	*	36	522


^{*} available on request

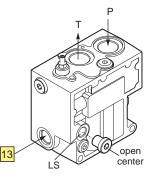

Closed center circuit for load sensing pumps

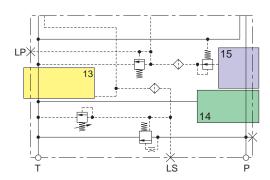
Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101163	HSE0004101164	22	319
HSE0004101259	HSE0004101262	30	435
HSE0004101260	HSE0004101264	36	522

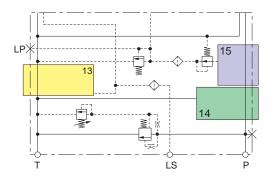
For electrically activated valves. With pilot oil supply. Prearranged for valves CRP04HP, HSET, HSEA

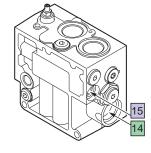
Open center circuit for fixed displacement pumps

Code		LP	P(*)
BSPP	UN - UNF	bar	psi
HSE0004101070	HSE0004101080	22	319
HSE0004101233	HSE0004101241	30	435
HSE0004101234	HSE0004101242	36	522


Closed center circuit for load sensing pumps

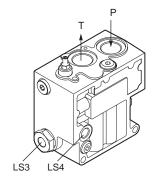

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101150	HSE0004101160	22	319
HSE0004101255	HSE0004101257	30	435
HSE0004101256	HSE0004101258	36	522

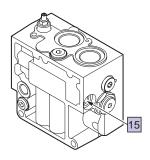

13 14 15 Seats, see accessories tables from page B-35.

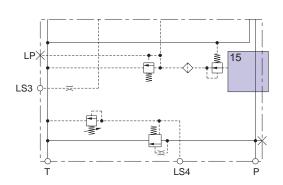

(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

For electrically activated valves. With pilot oil supply. Prearranged for HSER and CRP04HP / HSEA / HSET.

Open center circuit for fixed displacement pumps


Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101000	HSE0004101001	22	319
HSE0004101225	HSE0004101227	30	435
HSE0004101226	HSE0004101228	36	522

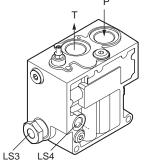

Closed center circuit for load sensing pumps

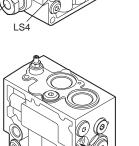

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101125	HSE0004101126	22	319
HSE0004101247	HSE0004101249	30	435
HSE0004101248	HSE0004101250	36	522

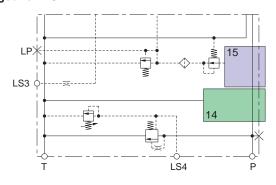
For electrically activated valves.

With pilot oil supply. For system with 2 inlet sections supplied by 1 pump only.

Open center circuit for fixed displacement pumps

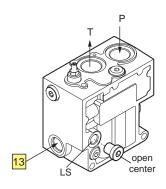

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0004101071	HSE0004101072	22	319
HSE0004101235	HSE0004101237	30	435
HSE0004101236	HSE0004101238	36	522

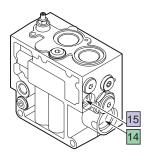

13 14 15 Seats, see accessories tables from page B-35.

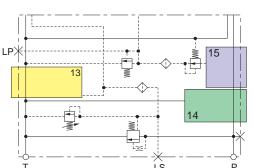

(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

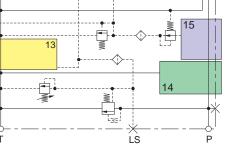
For electrically activated valves.

With pilot oil supply. For system with 2 inlet sections supplied by 1 pump only. Prearranged for HSER.




Open center circuit for fixed displacement pumps


Code		LP	P(*)
BSPP	UN - UNF	bar	psi
HSE0004101073	HSE0004101074	22	319
*	HSE0004101239	30	435
*	HSE0004101240	36	522

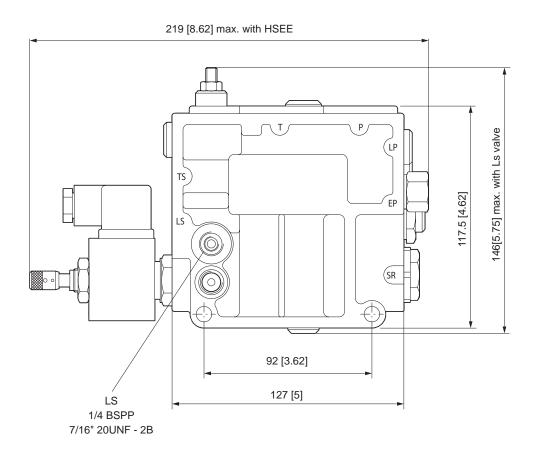

^{*} available on request

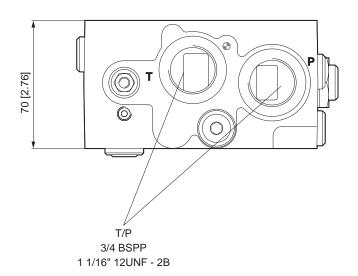
For electrically activated valves. With pilot oil supply. Prearranged for HSER and HSEVX. ATEX version.

Open center circuit for fixed displacement pumps

Code	LP	P(*)
BSPP	bar	psi
HSE0004101275	22	319

13 14 15 Seats, see accessories tables from page B-35.

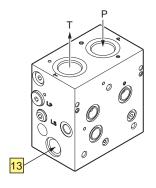

(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

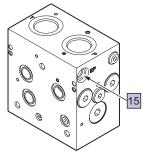


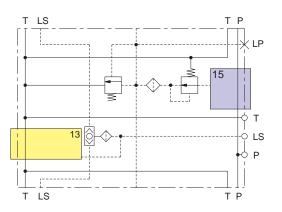
13 : can be assembled only with the electrical valves ATEX type

HSEVX.

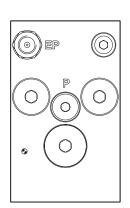
HSE inlet module overall dimensions

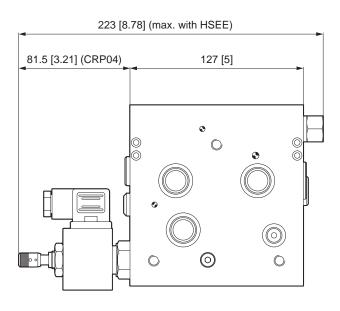


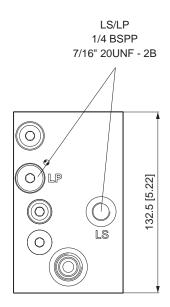


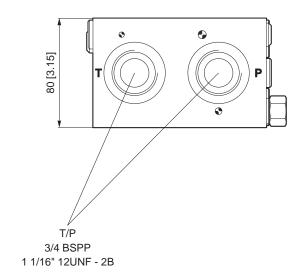


- Features
- Other hydraulic features: see page B-8.
- Connections: P, T: 3/4" BSPP o 1 1/16" 12UNF-2B
- Connessione Ls, LP: 1/4" BSPP or 7/16" 20UNF-2B
- Prearranged for CRP04HP / HSEA / HSET
- Cast iron body.


Closed center circuit for load sensing pumps


Code		LP(*)	
BSPP	UN - UNF	bar	psi
HFLS004101157	HFLS004101158	22	319
HFLS004101266	HFLS004101269	30	435
HFLS004101268	HFLS004101270	36	522


13 Seats, see accessories tables from page B-35.


(*) LP = Pilot pressure oil supply

HFLS inlet module overall dimensions

Field 13 - Facilities for solenoid Ls unloading valve

Code	Description	Symbol / Field	Draw	
HSET004101185	HSET Plug	13		
CRP04HPNAAE4P71 14 Vdc	CRP04HP Electrical Ls unloading valve	13		
CRP04HPNAAEVP71 28 Vdc	Normally open	ML		
CRP04HPNCAE4P01 14 Vdc	CRP04HP Electrical Ls unloading valve	13		
CRP04HPNCAEVP01 28 Vdc	Normally closed	M-T AZA	5	
HSEVX0NA12000 12 Vdc	HSEVX (*) Electrical Ls unloading valve Normally open	13	(Ex)	
HSEVX0NA24000 24 Vdc	ATEX	MLTITAZI		
HSEVX0NC12000 12 Vdc	HSEVX (*) Electrical Ls unloading valve	13		
HSEVX0NC24000 24 Vdc	Normally closed ATEX	w = I to z		
HSEA004101181 (connection X G 1/4)	HSEA Screw-in cartridge, Ls pilot pressure for HSE inlet sections, with Ø 0.8 mm [0.03 inch] orifice	LS3 13		
HSEA004101182 (connection X G 1/4)	HSEA Screw-in cartridge, Ls pilot pressure for HSE inlet sections	LS3 13		

^(*) The eletrical valves ATEX type XSEVX can be assembled only with the inlect section code HSE0004101275, page B-31.

Accessories for inlet sections

1) CRP04HP valve features

Pilot-operated, electrically controlled 2-way / 2-position Ls unloading directional valve. For high pressures. When energized (N.C.) or deenergized (N.O.), it enables a connection between the Ls signal and tank port and every machine's function will be cut-off except the ones whose pressure is lower than the remaining Δp (see page B-1). Tapered poppet made up in tempered and ground steel. Available in normally open (NA) or normally closed (NC) versions.

- NA, free flow from 2 to 1 with de-energized coil.
- NC, free flow from 2 to 1 with energized coil or from 1 to 2 with de-energized coil.

The valves work with DC coils whereas RAC coils with a connector with incorporated rectifier must be used for AC applications.

Sleeve made up in galvanised steel.

Further details of the CRP04 valve, see Dana catalog code DOC00044.

Max. operating pressure	370 bar [5366 psi]
Max. flow	30 l/min [7.93 US gpm]
Max. Leakage (0-5 drops/min)	0 ÷ 0,25 cm³/min [0.015 inch³/min]
Max. excitation frequency	2 Hz
Duty cycle	100% ED
Hydraulic fluids	Mineral oil
Oil viscosity	10 ÷ 500 mm²/s (cSt)
Oil temperature	-25 ÷ +75 °C [-13 ÷ +167 °F]
Ambient temperature	-25 ÷ +60 °C [-13 ÷ +140 °F]
Max. contamination level class with filter	ISO 4406:1999 class 21/19/16
Cartridge filter	280 μm
Degree of enclosure (depending on connector)	IP 65
Weight (with coil)	0,350 kg [0.77 lb]
Cartridge tightening torque	25 ÷ 30 Nm [18.4 ÷ 22.2 lbf.ft]
Coil ring nut tightening torque	7 Nm [5.2 lbf.ft]

2) HSEVX - ATEX valve features

In combination with the MHPX and MHOX electro-hydraulic modules another safety solenoid valve, HSEVX, can be inserted in the inlet sections.

The HSEVX solenoid valve can be configured normally open or normally closed. When deactivated (NO) or active (NC), it provides the immediate discharging of the signal with the consequent close down of all actuator movements (venting condition of the entire hydraulic system). HSEVX solenoid valve can be inserted into those inlet sections that are prearranged with the proper cavity: for further informations please refer to our Technical Dept.

The conformity certification of the solenoids of HSEVX will be provided separately, according to the ATEX 2014/34/UE Directive.

When the modules are individually supplied, a label is attached to the module with the following labelling:

C € ⟨Ex⟩ || 2 GD c T4 / T135°C Tamb= -20 °C ÷ +50 °C Tfluid= -20 °C ÷ +80 °C

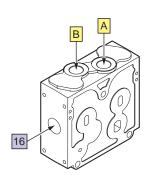
ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

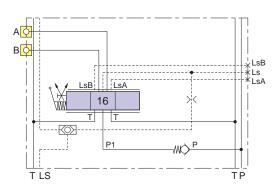
For the wiring diagram of module, please refer to Instruction manual.

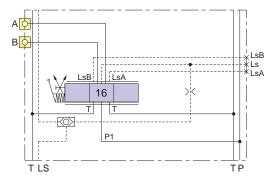
Nominal voltage	12 VDC	24 VDC
Coil resistance, R ₂₀	$9 \Omega \pm 6\%$	$35.8~\Omega \pm 6\%$
Min. current	700 mA	350 mA
Max. current	1850 mA	930 mA
Limit power	14.3 W	14.4 W
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage		acturer manual
Short-circuit protection	With fuse - See manual	coil manufacturer
Duty cycle	10	00%
Input pressure	Max. 400 bar [5800 psi]	
Switching pressure	Max 200 bar [2900 psi]	
Operating Limits		ax. flow 7 I/min . flow 1.85 US gpm]
Flow P \rightarrow T at $\Delta p = 2$ bar [29 psi]	> 6.5 l/min [1.71 US gpm]
Leakage P →T (Oil Temp. 50°C [122 °F] / Input press. 400 bar [5800 psi])	[< 0.005	ml/min 5 US gpm
Fluid temperature		+80 °C +176 °F]
Ground connection	Up to 4 mr	m² [11 AWG]
Protection class (DIN VDE 0580)		1
Fluids	•	to DIN 51524. F-oil
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	/ IP69K
Shock-resistance to EN 50014		4 J
ATEX directive	See p	age A-3
ATEX marking	See p	age A-4

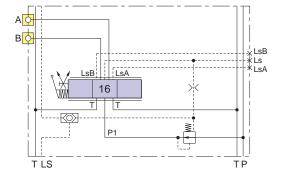
Field 14 - Pilot oil supply

Code		Description	Symbol / Field	Draw
BSPP	UN - UNF	Description	Symbol / Field	Draw
HSER004101190 (connection X G 1/4)	HSER004101191 (connection X 7/16 UNF)	HSER Pump unloading cartridge valve, for HSE modules only, key 30 mm [1.18 inch]. Tightening torque 24 ± 2 Nm [17.7 ± 1.5 lbt.ft]	\$R	CONT.
HSES004101195		HSES Plug for HSER cavity. HSE modules only.	14	


Field 15 - Facilities for pump unloading


Code		Description	Cumbal / Field	Duam	
BSPP	UN - UNF	Description	Symbol / Field	Draw	
HSEE004101200 (connection X G 1/4)	HSEE004101201 (connection X 7/16 UNF)	HSEE External pilot oil supply cartridge	15		
HSEI00	4101202	HSEI Internal pilot oil supply cartridge	15		
HSEN004101206		HSEN Internal pilot oil supply and cut-off cartridge	15}		




- Features
- Other hydraulic features: see page B-8.
- Connections: A,B: 1/2" BSPP or 7/8" 14UNF-2B
- Made in cast iron

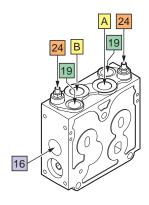
With no facilities for valves

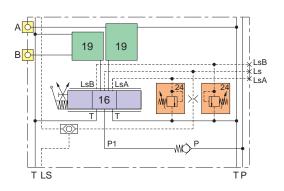
Without pressure compensator With load drop check valve

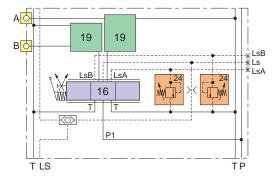
Code	
BSPP	UN - UNF
HEM0004102071	HEM0004102081

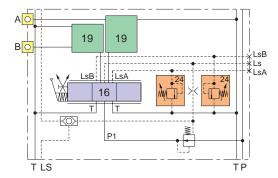
Without pressure compensator

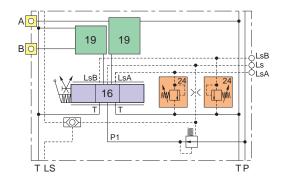
Code	
BSPP	UN - UNF
HEM0004102070	HEM0004102080


With pressure compensator


Code		
BSPP UN - UNF		
HEM0004102190	HEM0004102200	


16 Spool page B-46


A/B Alternatively closing plug HETS004103002 page B-52


With adjustable LsA LsB pressure relief valves. Prearranged for shock-suction valves

Without pressure compensator With load drop check valve

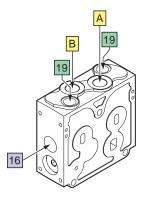
Code	
BSPP UN - UNF	
HEM0004102031	HEM0004102041

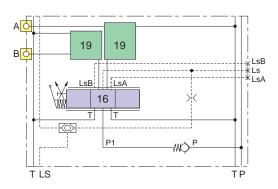
Without pressure compensator

Code	
BSPP UN - UNF	
HEM0004102030	HEM0004102040

With pressure compensator

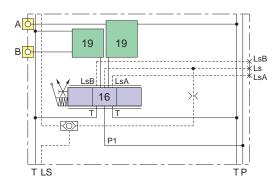
Code	
BSPP	UN - UNF
HEM0004102150	HEM0004102160

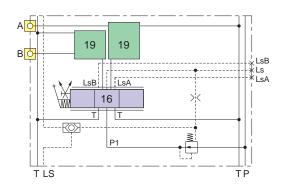

With pressure compensator


Code	
BSPP	UN - UNF
HEM0004102130	HEM0004102140

Prearranged for: shock-suction valves electrical LsA - LsB signal unloading modules (MHFK, MHCP, MHFOX modules).

- 16 Spool page B-46
- 19 Seats for valve HEAA HEAD HEAT HEAN or plug HETS page B-50
- Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC004103007 page B-52
- A/B + 19 Alternatively plugs kit HESC004103008 page B-52
- A/B + 19 + 24 Alternatively plugs kit HESC004103009 page B-52


Prearranged for shock-suction valves

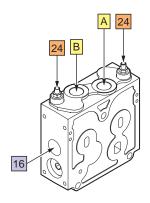

Without pressure compensator With load drop check valve

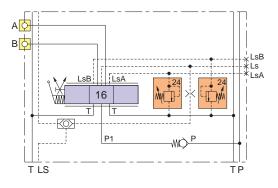
Code	
BSPP	UN - UNF
HEM0004102051	HEM0004102061

Without pressure compensator

	Code	
BSPP UN - U		UN - UNF
	HEM0004102050	HEM0004102060

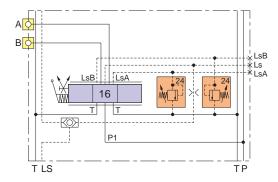
With pressure compensator

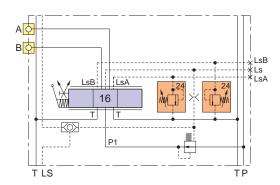

Code			
BSPP	UN - UNF		
HEM0004102170	HEM0004102180		


16 Spool page B-46

19 Seats for valve HEAA - HEAD - HEAT - HEAN or plug HETS page B-50

A/B + 19 Alternatively plugs kit HESC004103008 page B-52


With adjustable LsA LsB pressure relief valves

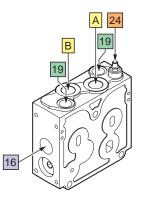

Without pressure compensator With load drop check valve

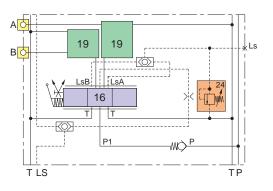
Code			
BSPP	UN - UNF		
HEM0004102091	HEM0004102101		

Without pressure compensator

Code			
BSPP	UN - UNF		
HEM0004102090	HEM0004102100		

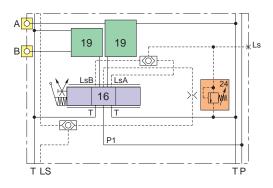
With pressure compensator

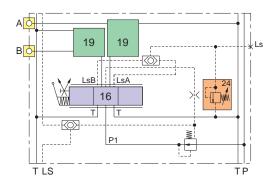

Code			
BSPP	UN - UNF		
HEM0004102210	HEM0004102220		


16 Spool page B-46

24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC004103007 page B-52

A/B Alternatively closing plug HETS004103002 page B-52

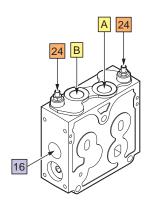

With single adjustable Ls pressure relief valve. Prearranged for shock-suction valves

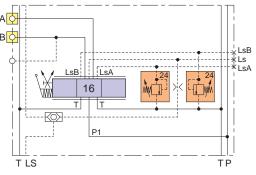

Without pressure compensator With load drop check valve

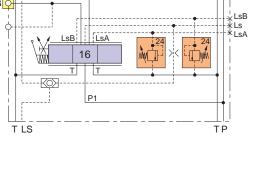
Code			
BSPP	UN - UNF		
HEM0004102111	HEM0004102121		

Without pressure compensator

Code			
BSPP	UN - UNF		
HEM0004102110	HEM0004102120		

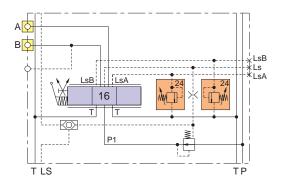



With pressure compensator


Code			
BSPP	UN - UNF		
HEM0004102230	HEM0004102240		

- 16 Spool page B-46
- 19 Seats for valve HEAA HEAD HEAT HEAN or plug HETS page B-50
- 24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC004103007 page B-52
- A/B + 19 Alternatively plugs kit HESC004103008 page B-52
- A/B + 19 + 24 Alternatively plugs kit HESC004103009 page B-52

With adjustable LsA LsB pressure relief valves. Prearranged for automatic hydraulic release (kick-out) in B port



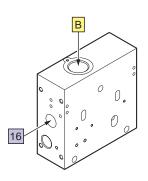
Without pressure compensator

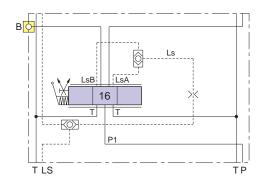
Code		
BSPP	UN - UNF	
*	HEM0004102104	

^{*} available on request

With pressure compensator

Code			
BSPP	UN - UNF		
HEM0004102221	*		

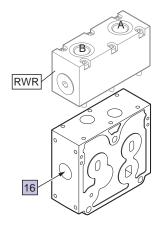

^{*} available on request

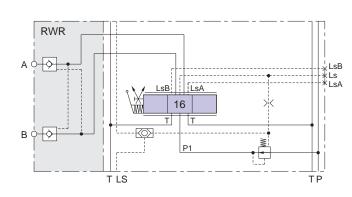

16 Spool page B-46

24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC004103007 page B-52

A/B Alternatively closing plug HETS004103002 page B-52

D. S. version (Special Distribution) for upstream / downstream subordinate actuator supply

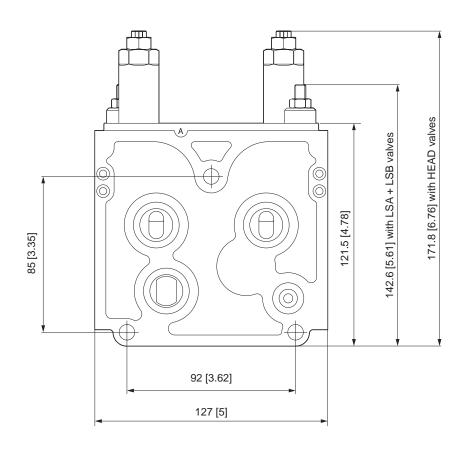

Without pressure compensator

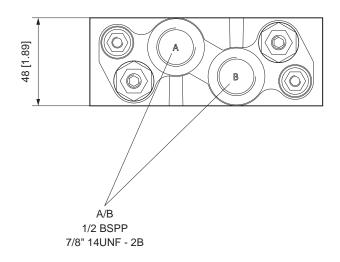

Code			
BSPP	UN - UNF		
HEM0004102123	*		

^{*} available on request

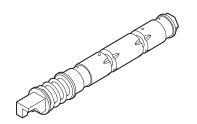
- 16 Spool page B-46
- B Alternatively closing plug HETS004103002 page B-52

Prearranged for RWR module (double pilot operated check valve) only





With pressure compensator


Code			
BSPP	UN - UNF		
HEM0004102400	HEM0004102401		

HEM module overall dimensions

Main spool for flow control, double acting

		Symbol and ordering code			
		ВА	ВА	ВА	ВА
Size	Max. pressure compensated oil flow	+ + + + + + + + + + + + + + + + + + + +			T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	l/min	TPT	TPT	TPT	TPT
	[US gpm)	4-way. 3-position	4-way. 3-position	4-way. 3-position	4-way. 3-position
		A. B closed	$A. B \rightarrow T$	$B \rightarrow T$; A closed	$A \rightarrow T$; B closed
	3 [0.8]	HEAS004104014	HEAS004104038	_	_
	5 [1.3]	HEAS004104009	HEAS004104039	_	_
1	7.5 [2]	HEAS004104010	HEAS004104040	HEAS004104070	HEAS004104100
	12 [3.2]	HEAS004104012	HEAS004104042	_	_
2	15 [4]	HEAS004104013	HEAS004104043	HEAS004104073	HEAS004104103
3	20 [5.3]	HEAS004104015	HEAS004104045	HEAS004104075	HEAS004104105
	25 [6.6]	HEAS004104016	HEAS004104046	-	-
4	30 [7.9]	HEAS004104018	HEAS004104048	HEAS004104078	HEAS004104108
5	40 [10.6]	HEAS004104020	HEAS004104050	HEAS004104080	HEAS004104110
6	50 [13.2]	HEAS004104021	HEAS004104051	HEAS004104081	HEAS004104111
7	60 [15.9]	HEAS004104025	HEAS004104055	HEAS004104085	HEAS004104115
8	80 [21.1]	HEAS004104030	HEAS004104060	HEAS004104090	HEAS004104120
9	100 [26.4]	HEAS004104035	HEAS004104065	HEAS004104095	HEAS004104125
10	130 [34.3]	HEAS004104036	HEAS004104066	_	_

Main spool for flow control, double acting, asymmetric flow

	·	Symbol and ordering code								
Max. pressure compensated oil flow I/min [US gpm)		ВА	ВА	ВА	ВА					
		TPT	TPT	TPT	TPT					
Α	В	4-way. 3-position A. B closed	4-way. 3-position A. B → T	4-way. 3-position $B \rightarrow T$; A closed	4-way. 3-position A → T; B closed					
7.5 [2]	15 [4]	HEAS00410AAAB (*)	HEAS00410ABAB (*)	_	_					
7.5 [2]	20 [5.3]	HEAS00410AAAD (*)	_	_	_					
7.5 [2]	30 [7.9]	_	_	HEAS00410ACCF (*)	_					
10 [2.6]	20 [5.3]	HEAS00410AACD (*)	_	_	_					
12 [3.2]	20 [5.3]	HEAS004104017 (*)	HEAS004104047 (*)	_	_					
12 [3.2]	30 [7.9]	_	_	_	HEAS004104076 (*)					
15 [4]	30 [7.9]	HEAS00410AABF (*)	_	_	_					
20 [5.3]	40 [10.6]	_	_	_	HEAS00410ACDH (*)					
30 [7.9]	50 [13.2]	HEAS00410AAFI (*)	HEAS00410ABIF (*)	_	_					
30 [7.9]	70 [18.5]	HEAS00410AAFO (*)	-	_	_					
30 [7.9]	130 [34.3]	_	HEAS00410ABFZ (*)	_	_					
40 [10.6]	60 [15.9]	_	HEAS00410ABMH (*)	_	_					
50 [13.2]	80 [21.1]	HEAS00410AAIQ (*)								
60 [15.9]	100 [26.4]	HEAS00410AAMU (*)	_	_	_					
60 [15.9]	80 [21.1]	HEAS00410AAMQ (*)	_	_	_					
70 [18.5]	130 [34.3]	_	HEAS00410ABOZ (*)	_	_					

(*) Special spool, available upon request

Main spool for flow control, single acting

		Symbol and o	Symbol and ordering code				
Size	Max. pressure compensated oil flow I/min [US gpm)	B A T P T 3-way, 3-position	B A T P T 3-way, 3-position				
		$P \rightarrow A$	$P \rightarrow B$				
1	7.5 [2]	HEAS004104130 (*)	HEAS004104160 (*)				
2	15 [4]	HEAS004104133 (*)	HEAS004104163 (*)				
3	20 [5.3]	HEAS004104135 (*)	HEAS004104165 (*)				
4	30 [7.9]	HEAS004104138 (*)	HEAS004104168 (*)				
5	40 [10.6]	HEAS004104140 (*)	HEAS004104170 (*)				
6	50 [13.2]	HEAS004104141 (*)	HEAS004104171 (*)				
7	60 [15.9]	HEAS004104145 (*)	HEAS004104175 (*)				
8	80 [21.1]	HEAS004104150 (*)	HEAS004104180 (*)				
9	100 [26.4]	HEAS004104155 (*)	HEAS004104185 (*)				

Main spool for flow control, double acting, with 4th floating position

		Symbol and ordering code					
Size	Max. pressure compensated oil flow I/min [US gpm)	B A T P T	B A T P T				
	[03 gpiii)	3-way, 4-position floating position on A port	3-way, 4-position floating position on B port				
1	7.5 [2]	HEAS004104190 (*)	HEAS004104390 (*)				
2	15 [4]	HEAS004104193 (*)	HEAS004104393 (*)				
3	20 [5.3]	HEAS004104195 (*)	HEAS004104395 (*)				
4	30 [7.9]	HEAS004104198 (*)	HEAS004104398 (*)				
5	40 [10.6]	HEAS004104200 (*)	HEAS004104400 (*)				
6	50 [13.2]	HEAS004104201 (*)	HEAS004104401 (*)				
7	60 [15.9]	HEAS004104205 (*)	HEAS004104405 (*)				
8	80 [21.1]	HEAS004104210 (*)	HEAS004104410 (*)				
9	100 [26.4]	HEAS004104215 (*)	HEAS004104415 (*)				

HEAS modules - Main spool for flow control, double acting, regenerative function

		Symbol and ordering code					
Size	Max. pressure compensated oil flow I/min [US gpm)	B A T P T Regenerative circuit on A port	B A T P T Regenerative circuit on B port				
5	40 [10.6]	HEAS004104500 (*)	HEAS004104600 (*)				
6	50 [13.2]	HEAS004104501 (*)	HEAS004104601 (*)				

Main spool for pressure control

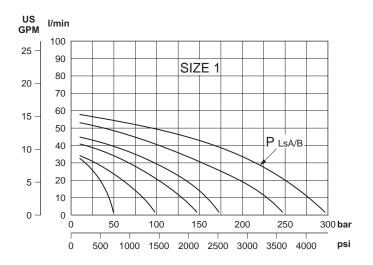
When using a proportional directional valve, where the overcenter valves are present, instability problems can happen to the whole system, in the form of a rise and fall of pressure. A new series of spools will suit these kinds of problems.

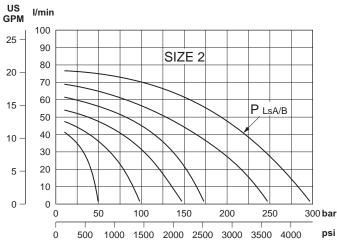
This system of control is called Pressure Control, and has been devised to make the overcenter valves pilot pressure more stable.

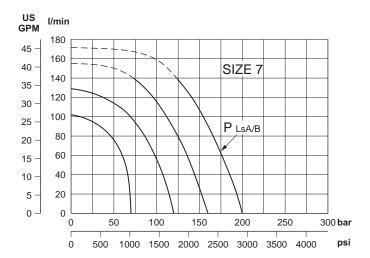
Generally, the Pressure Control function is requested for only one port (A or B), while the other port maintains the normal flow control function.

The problem manifests almost always during the re-entry of the rod, under the force of the positive load, where the only pressure requested is that which is necessary to pilot the

overcenter valves, to lower and control the load.

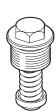

The Pressure Control spools must always be used with compensating elements and with pilot load sensing relief valves for A/B ports.


Using the Pressure Control solution allows a higher degree of stability to the system and the control of the function, however, we advise its use exclusively in severe cases, since:


- The valve loses own compensation, becoming "load dependent": namely, its performance varies at the variation of the working pressure;
- The pump pressure could be considerably higher than that necessary to move the load (the Δp through the spool is no more constant and controllable).

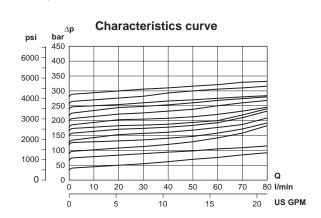
			Symbol and o			
Size	B A T P T	B A T P T	B A T P T	B A T P T	B A T P T	B A T P T
	4-way, 3-position, A, B closed	4-way, 3-position, A, B throttled open to T	4-way, 3-position, A, B closed	4-way, 3-position, A, B closed	4-way, 3-position, A throttled open to T, B closed	4-way, 3-position, A closed, B throttled open to T
1	HEAS00410AD07 (*) PC → A + B	HEAS00410AD11 (*) PC → A + B	HEAS00410AMAF (*) PC → A FC → B Q=30 l/min [7.9 US gpm]	PC → A FC → B Q=30 l/min		_
1	_	_	HEAS00410AMAI (*) PC → A FC → B Q=50 l/min [13.2 US gpm]	_	HEAS00410AVAI (*) PC → A FC → B Q=50 I/min [13.2 US gpm]	_
2	HEAS00410AD15 (*) PC → A + B	HEAS00410AD16 (*) PC → A + B	HEAS00410A040 (*) PC → A FC → B Q=60 l/min [15.8 US gpm]	_	_	_
7	_	_	HEAS00410A060 (*) PC → A FC → B Q=100 l/min [26.4 US gpm]	_	_	_

Pressure control flow characteristics, with end spool travel



P LsA/B: Pilot pressure relief valve setting

Typical spool oil flow tolerances

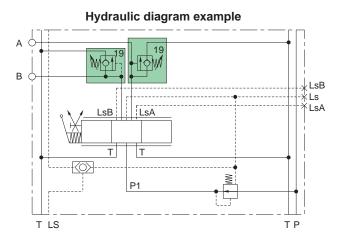

	Oil flow at max. spool travel						
Size	min I/min [US gpm]	max l/min [US gpm]					
1	7 [1.8]	8.5 [2.2]					
2	14.5 [3.8]	16 [4.2]					
3	19 [5]	21 [5.5]					
4	29 [7.7]	33 [8.7]					
5	39 [10.3]	44 [11.6]					
6	48.5 [12.8]	54 [14.3]					
7	59 [15.6]	65 [17.2]					
8	79 [20.9]	85 [22.5]					
9	94 [24.8]	101 [26.7]					
10	118 [31.2]	128 [33.8]					

DANA B-49

HEAA

Hydraulic diagram example A B LSB LSA LSA T LS T P

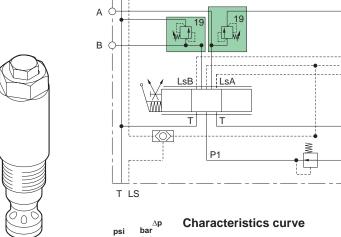
Not adjustable shock and suction valve for A – B ports,

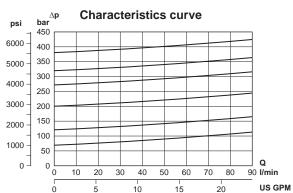

HEAA is designed to absorb shock effects only.

Don't use it as a pressure relief valve.

Range setting bar [psi]	Code (*)
45 [653]	HEAA004103045
60 [870]	HEAA004103060
75 [1088]	HEAA004103075
95 [1378]	HEAA004103095
120 [1740]	HEAA004103120
135 [1958]	HEAA004103135
155 [2248]	HEAA004103155
170 [2466]	HEAA004103170
190 [2756]	HEAA004103190
220 [3191]	HEAA004103220
240 [3481]	HEAA004103240
250 [3626]	HEAA004103250
270 [3916]	HEAA004103270
290 [4206]	HEAA004103290
320 [4641]	HEAA004103320

F	osi	bar 450	р	Cha	ract	eris	tics	cur	/e			
60	000 -	400								+	\dashv	
	000 -	350 300						_	=	=		
<u>e</u>	000 – –	250										
ressu	000 -	200 150										
	000 -	100						\equiv		\pm	=	
П		50 0										Q
	,	() 1	10 2 1 5			40 0	50	60 15	70	80 7 20	I/min US GPM

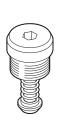

Adjustable shock and suction valve for A – B ports.


HEAD is designed to absorb shock effects only.

Don't use it as a pressure relief valve.

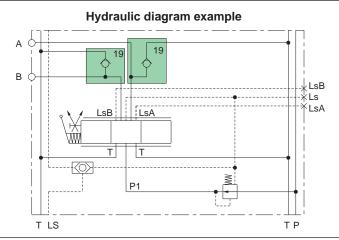
Code (*)
HEAD004103020
HEAD004103022
HEAD004103024
HEAD004103026
HEAD004103028
HEAD004103030

(*) In the order form indicate the lines A and/or B on which the valves are to be mounted



Hydraulic diagram example

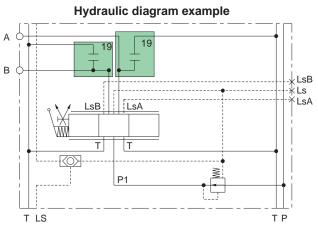
Adjustable shock valve for A – B ports


Don't use it as a pressure relief valve.

Range setting bar [psi]	Code (*)
10 ÷ 70 [150 ÷ 1020]	HEAT004103020
71 ÷ 120 [1021 ÷ 1740]	HEAT004103022
121 ÷ 200 [1741 ÷ 2900]	HEAT004103024
201 ÷ 270 [2901 ÷ 3920]	HEAT004103026
271 ÷ 320 [3921 ÷ 4640]	HEAT004103028
321 ÷ 380 [4641 ÷ 5510]	HEAT004103030

HEAT

HEAN


Suction valve

ΤP

Code (*)
HEAN004103005
112, 11100 1100000

HETS

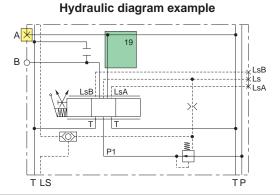
Replacing plug

Code (*) HETS004103000

 $(^{\star})$ In the order form indicate the lines A and/or B on which the valves/plugs are to be mounted

T LS

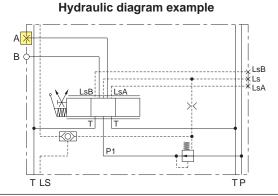
HESC


Hydraulic diagram example В

Kit for connecting the non-active port to tank, when using a single acting spool - to be fitted with HEM modules with LsA-LsB + shock and suction valves cavities

Code (*)
HESC004103009

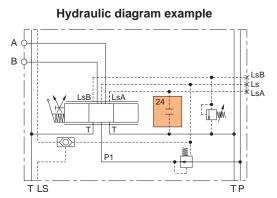
HESC



Plug for connecting the non-active port to tank, when using a single acting spool

Code (*)	
HESC004103008	

HETS


Plug for closing A or B port

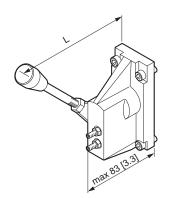
Code (*)		
0000()		
HETS004103002		

HESC

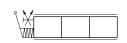
Kit for closing LsA and/or LsB pressure relief valve cavity

Code (*)	-	
HESC004103007		

(*) In the order form indicate the lines A and/or B on which the kit are to be mounted


Protection cap for Ls pressure relief valve regulation screw for HEM (working sections) and HSE (inlet sections). Code number and quantity (related to no. of Ls valve mounted) must be indicated under the HEM.. or HSE.. field of the order form.

Code KIT0004103995


(*) In the order form indicate the lines A and/or B on which the valves/plugs are to be mounted

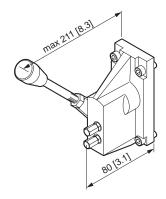
The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for

marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.

HCM

Mechanical control

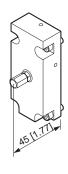
Control positions: see page B-4.


L	Code	Code
mm [inch]	(Aluminum)	(Cast iron)
211 [8.3]	HCM0004104001	HCM0004104000
261 [10.3]	HCM000410C000	*

^{*} available on request

Code		
KIT0004103994		
1110004103994		

Flow adjustement protective nuts kit for HCM mechanical control

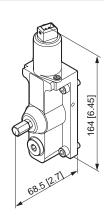




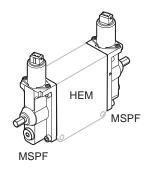
Mechanical control, with flow adjustement nuts protection Control positions: see page B-4.

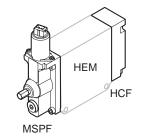
Code	Code
(Aluminum)	(Cast iron)
HCM0004104801	HCM0004104800

HCM



Rear cover flow adjustement for:


- MHPF electrical module
- MHPH module with stroke adjustment
- ATEX modules.


Codo	Codo
Code (Aluminum)	Code (Cast iron)
HCF0004103996	HCF0004103997

HCF

MSPF

Example with 2 modules MSPF (double effect)

Example with 1 module MSPF and rear cover HCF (single effect in B)

MSPF electrohydraulic proportional module

MSPF is one of the series of PWM open loop electrical activation units.

MSPF can be controlled either in proportional or in on-off mode. With electrical proportional actuation, the main spool position is adjusted by the pilot pressure, so that it corresponds to an electrical signal (PWM) coming from a remote control unit. With electrical on-off actuation, the main spool is moved from neutral to maximum stroke when one of the two pressure reducing solenoid valves is energized.

MSPF is recommended where there is a requirement for medium resolution proportional control and where hysteresis is not critical.

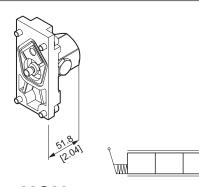
MSPF is being supplied without manual spool control, thus allowing both smaller overall dimensions and cost effective compared to MHPF, HCK modules.

The MSPF module has the following main features:

- · On-off and proportional mode;
- · Quick reaction time;
- Electro-proportional pressure reducing valves;
- PWM control of low-frequency solenoid valves;
- Low hysteresis and good sensitivity;
- Mechanical flow adjustment;
- Pilot pressure ports;
- Possibility of operating in double acting or single acting with HCF module (see page B-53).

Voltogo	Code (Aluminum)	
Voltage	BSPP	UN - UNF
12 Vdc	MSPF004107065	*
24 Vdc	MSPF004107066	*

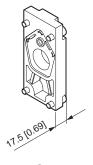
^{*} available on request


Rated voltage		12 Vdc	24 Vdc	
Supply voltage		11 to 15 V	22 to 30 V	
Max. ripple		8	8 %	
Max. current		1500 mA ± 10	750 mA ± 10	
Power consumption		18 W at 22 °C [71.6	18 W at 22 °C [71.6 °F] coil temperature	
Start spool travel		560 mA	260 mA	
End spool travel		1050 mA	520 mA	
R ₂₀		4.72 Ω ± 5 %	$20.8 \Omega \pm 5 \%$	
Heat insulation		Class H, 180	Class H, 180 °C [356 °F]	
Oil temperature	Recommended	-30 ÷ +60 °C [-22 ÷ +140 °F]	
	Min	-30 °C	[-22 °F]	
	Max	+90 °C [+194 °F]	
Dither adjustment		75 Hz		
Inductance		8.5 mH	70 mH	
Current variation		100 mA/s	50 mA/s	
Determine W. FD and W. annual and		14 V = 100	28 V = 100	
Duty cycle % ED on-off operating		15 V = 50	30 V = 50	
Plug connector		2-pole AMP Jun	ior Power Timer	
Reaction time from neutral position to end spool stroke (constant voltage)		120	120 ms	
Reaction time from end spool stroke to neutral position (constant voltage)		90	ms	
Grade of enclosure to IEC 529, with female connector		IP	65	

Electrical connections for MSPF-MHPF-HCK working sections, see page: E-2

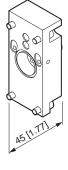
HCN-HCP-HCPA controls for HEM working sections

The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for


marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.

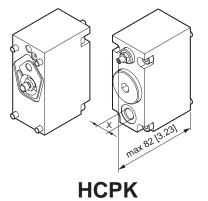
Friction control

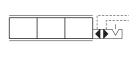
Code	Code
(Aluminum)	(Cast iron)
HCN0004103501	HCN0004103500


HCN

Rear cover

HCP

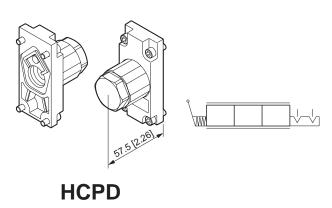

Rear cover with stroke adjustment



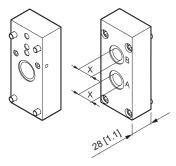
B-55

The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for

marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.



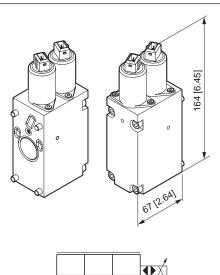
Mechanical B-port lock device, with automatic hydraulic release (kick-out)


For the working section HEM0004102221 (see page B-43).

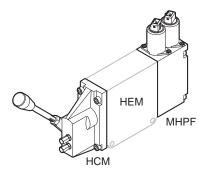
Control	Code (Cast iron)	
Control	(X) 1/4 BSPP	
$P \rightarrow B$ lock $P \rightarrow A$ free	HCPK004104218	

Mechanical spool lock device, manual release

Control	Code (Aluminum)	Code (Cast iron)
$P \rightarrow A lock$ $P \rightarrow B free$	HCPD004104003	HCPD004103900
$P \rightarrow B$ lock $P \rightarrow A$ free	HCPD004104004	HCPD004103901
$P \rightarrow A lock$ $P \rightarrow B lock$	HCPD004104005	HCPD004103902
$P \rightarrow A$ float $P \rightarrow B$ free	HCPD004103998	HCPD004103898
$P \rightarrow B$ float $P \rightarrow A$ free	HCPD004103999	HCPD004103899



MHPH


Hydraulic activation

- Start pilot pressure: 4.5 bar [65 psi]
- End stroke pressure: 15 bar [218 psi]
- Max. pilot pressure: 30 bar [435 psi]

Thread	Code (Aluminum)	Code (Cast iron)
(X) 1/4 BSPP	MHPH004104222	MHPH004104229
(X) 7/16" - 20 UNF	MHPH004104223	MHPH004104235

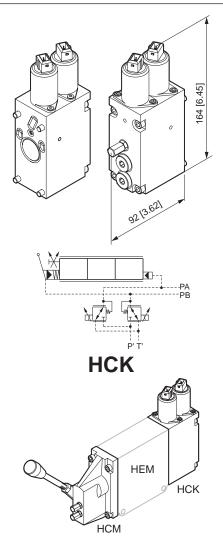
MHPF

Example with module MHPF and manual control HCM

MHPF electrohydraulic PROPORTIONAL module

MHPF proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. The MHPF module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults.


This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control, only.

MHPF module has the following main features:

- It can be operated with on-off signals also
- Short response time
- Electro-proportional pressure reduction valves
- PWM electric control of low-frequency solenoid valves
- Any adjustment to limit the flow or to create work ramps will be made directly on the remote control
- · Very low hysteresis and excellent sensitivity

Voltage	Code (Aluminum)	Code (Cast iron)
12 Vdc	MHPF004107051	MHPF004107053
24 Vdc	MHPF004107052	MHPF004107054

Rated voltage		12 Vdc	24 Vdc	
Power supply voltage range		11 to 15 V	22 to 30 V	
Max. ripple		8 %		
Max. current		1500 mA ± 10	$750 \text{ mA} \pm 10$	
Power consumption		18 W at 22 °C [71.6	18 W at 22 °C [71.6 °F] coil temperature	
Start spool travel		560 mA	280 mA	
End spool travel		1080 mA	520 mA	
R ₂₀		4.72 Ω ± 5 %	20.8 Ω ± 5 %	
Heat insulation		Class H, 180	°C [356 °F]	
	Recommended	-30 ÷ +60 °C [-22 ÷ +140 °F]		
Oil temperature	Min	-30 °C [-22 °F]		
on temperature	Max	+90 °C [+194 °F]		
Dither adjustment		75 Hz		
Inductance		8.5 mH	70 mH	
Current variation		100 mA/s	50 mA/s	
Duty cycle % ED on-off operati	na	14 V = 100	28 V = 100	
Duty cycle % ED on-on operati	ng .	15 V = 50	30 V = 50	
Plug connector		2-pole AMP Junior Power Timer		
Reaction time from neutral position to end spool stroke (constant voltage)		120 ms		
Reaction time from end spool stroke to neutral position (constant voltage)		90 ms		
Grade of enclosure to IEC 529, with female connector		IP	 65	

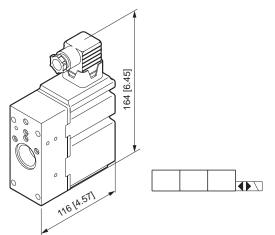
Example with module HCK and manual control HCM

HCK electrohydraulic PROPORTIONAL module with pilot oil connections

HCK proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. HCK module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults. This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control, only.

Thanks to the 2 additional pilot oil supply connections, HCK is recommended where there is a requirement for a single output control to be used to achieve 2 simultaneously or sequence spool movements, or to change the displacement onto hydraulic motors, making the use of HPV even more flexible.

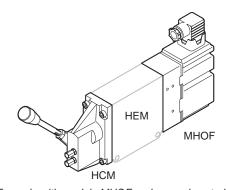

HCK module has the following main features:

- It can be operated with on-off signals also
- Short response time
- Electro-proportional pressure reduction valves
- PWM electric control of low-frequency solenoid valves
- Any adjustment to limit the flow or to create work ramps can be made directly on the remote control
- Very low hysteresis and excellent sensitivity

Voltage	Code (Cast iron)	
12 Vdc	HCK0004108100	
24 Vdc	HCK0004108101	

Rated voltage		12 Vdc	24 Vdc	
Power supply voltage range		11 to 15 V	22 to 30 V	
Max. ripple		8 %	8 %	
Max. current		1500 mA ± 10	750 mA ± 10	
Power consumption		18 W at 22 °C [71.6	F] coil temperature	
Start spool travel		560 mA	280 mA	
End spool travel		1080 mA	520 mA	
R ₂₀		4.72 Ω ± 5 %	20.8 Ω ± 5 %	
Max. pressure pilot oil supply		30 bar [4	35 psi]	
Heat insulation		Class H, 180 °C [356 °F]		
	Recommended	-30 ÷ +60 °C [-22 ÷ +140 °F]		
Oil temperature	Min	-30 °C [-	·22 °F]	
	Max	+90 °C [+	194 °F]	
Dither adjustment		75 Hz		
Inductance		8.5 mH	70 mH	
Current variation		100 mA/s	50 mA/s	
Duty avalo % ED on off aparati	na	14 V = 100	28 V = 100	
Duty cycle % ED on-off operati	ng	15 V = 50	30 V = 50	
Plug connector		2-pole AMP Junior Power Timer		
Reaction time from neutral position to end spool stroke (constant voltage)		120 ms		
Reaction time from end spool stroke to neutral position (constant voltage)		90 ms		
Grade of enclosure to IEC 529,	with female connector	IP 6	65	

Electrical connections for MSPF-MHPF-HCK working sections, see page: E-2

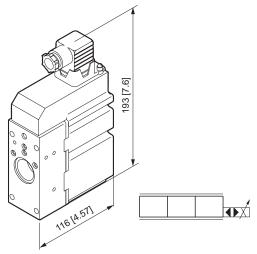

MHOF electrohydraulic ON-OFF module

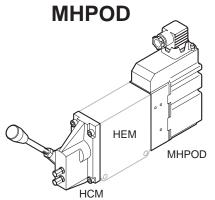
The MHOF electrohydraulic module moves the spool in relation to an electric signal generated by the joystick or by a switch.

The hydraulic pressure generated by the on-off solenoid valves forces the spool not to stop in any intermediate position between the neutral position and the maximum stroke

Voltage	Code (Aluminum)	
12 Vdc	MHOF004107027	
24 Vdc	MHOF004107028	

MHOF




Example with module MHOF and manual control HCM

Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		11 to 15 V	21 to 28 V
Resistance at 20 °C [68 °F]		9.1 Ω	36.2 Ω
Current consumption		1480 mA	750 mA
Rated absorbed power		16 V	V
Heat insulation		Class H, 180	°C [356 °F]
Duty cycle		ED 10	0%
Reaction time	From neutral position to max. spool travel	130 ms	
Reaction time	From max. spool travel to neutral position	110 ms	
Max. operating temperature		80° C [176 °F]	
Ambient temperature		-30 ÷ +60 °C [-22 ÷ +140 °F]	
Connector		Standard (IP 65) according to DIN 43650 / ISO 4400	
Enclosure to IEC 529		IP 65	

Electrical connections for MHOF controls, see page: E-3

Example with module MHPOD and manual control HCM

MHPOD electrohydraulic PROPORTIONAL module

MHPOD is a open loop electrohydraulic activation unit, whose design is based on digital technology.

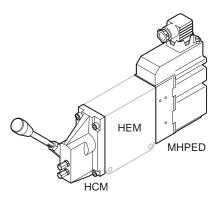
MHPOD has been specially developed to meet the harsh operating requirements of today's mobile machine market. MHPOD electrical open loop proportional actuation operates the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where a simple proportional control is required, and where hysteresis and reaction time are not critical.

MHPOD does not have the inductive position transceiver (LVDT) and any electronic circuit for faults monitoring. This means that any forces that override the pilot pressure spool forces may change the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

MHPOD is defined by:

- Capacity to handle three different kinds of input signal control (see chart below).
- The required signal control is to be stated in the order phase
- Integrated PWM (Pulse Width Modulator)
- Good flow regulation
- · Simple built-up.

		I	nput signal contro	I
Vol	tage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
		(A) joystick	(B) PLC	(C) PLC
12	Vdc	MHPOD04108077	MHPOD04108082	MHPOD04108086
24	Vdc	MHPOD04108075	MHPOD04108084	MHPOD04108088


Aluminum body

Rated voltage		12 Vdc	24 Vdc		
Power supply voltage range		11 ÷ 15 V	20 ÷ 28 V		
Max. ripple		5 %			
Current su	upply		520 mA	260 mA	
Current co	onsumption (neutral position, co	nstant voltage)	36 mA	46 mA	
Power cor	nsumption		6 W		
Heat insul	lation		Class H 180	°C [256 °F]	
Ponetion t	time (constant voltage)	From neutral position to max. spool travel	110 ÷ ′	140 ms	
Reaction	time (constant voltage)	From max. spool travel to neutral position	70 ÷ 9	90 ms	
Ponetion t	time (neutral switch)	From neutral position to max. spool travel	130 ÷ ′	170 ms	
Reaction	tille (lleutral switch)	From max. spool travel to neutral position	70 ÷ 9	90 ms	
Connecto	Connector		Standard (IP 65) according to DIN 43650 / ISO 4400		
Enclosure	Enclosure to IEC 529		IP	65	
	Land of made and a	Neutral position	0.5 x UDC		
(A)	Input signal control	Control range	0.25 x UDC to	0.25 x UDC to 0.75 x UDC	
joystick	Max. current signal control		0.5 mA	1 mA	
	Input impedance in relation to 0.5 x UDC		12 kΩ		
		Voltage	0 ÷ 10	VDC	
(D)	Input signal control	Neutral position	5 V	DC	
(B) PLC		Control range	0.25 x 10 VDC to	o 0.75 x 10 VDC	
1 20	Current signal control		0.5	mA	
	Input impedance in relation to	0 ÷ 10 VDC	20 kΩ		
		Current	0 ÷ 2	0 mA	
(C)	Input signal control	Neutral position	10	mA	
PLC		Control range	0.25 x 20 mA to	o 0.75 x 20 mA	
	Input impedance in relation to	0 ÷ 20 mA	0.5 kΩ		

Electrical connections for MHPOD controls, see page: E-4

MHPED

Example with module MHPED and manual control HCM

Thanks to the developments in digital electronics, it has been possible to integrate in the MHPED modules, besides all the algorithms needed for the spool movement control, also a wide range of advanced circuits above all conceived for the safety and handling of complete systems.

The use of the module in the **passive or active version** allows the electrohydraulic system to be obtained with different safety degrees, for the choice of which it is essential to know the required functions exactly.

Once this condition has been fullfilled, and work is going on in the area stated above, with the four examples described in the following pages, we can always give you the best solution.

The diagrams represents just a few possibilities, advised by experience, of how the assesment of degree of protection system ought always to be made.

This does not mean that considering the enormity of the subject and need for ever-increasing flexibility and performance of the industrial machinery with tighter and tighter safety rules, custom-built solutions can not be taken into account.

MHPED electrohydraulic PROPORTIONAL module

MHPED is a closed loop electrohydraulic activation unit, whose design is based on digital technology.

MHPED has been specially developed to meet the harsh operating requirements of today's mobile machine market.

MHPED electrical closed loop proportional actuation operates safely and precisely the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where precise metering control, low hysteresis, fault monitoring, and fast system reaction are paramount.

The input signal, by means of the PCB and the two reducing proportional solenoid valves, is converted into a low pilot pressure which inturn moves the HPV's spool.

The inductive transducer position (LVDT) ensures that the spool is being moved in the correct position, otherwise, in the event of uncontrolled spool positioning, the feed-back signal wuill detect it as an error and it will fast react operator independent (fault monitoring system, see diagrams in the following pages).

MHPED is defined by:

- Capacity to handle three different kinds of input signal control (see chart below).
 The required signal control is to be stated in the order phase
- Inductive transducer position, LVDT (Linear Variable Differential Transformer)
- Integrated PWM (Pulse Width Modulator)
- · Fault monitoring, transistor output for signal source
- Excellent regulation
- Low hysteresis
- · Short reaction time

Active version

	I	nput signal contro	I
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPED04108011	MHPED04108018	MHPED04108026
24 Vdc	MHPED04108010	MHPED04108020	MHPED04108028

Passive version

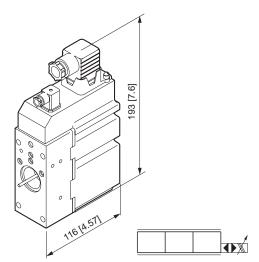
	I	nput signal contro	I
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPED04108009	MHPED04108022	MHPED04108030
24 Vdc	MHPED04108007	MHPED04108024	MHPED04108032

Aluminum body

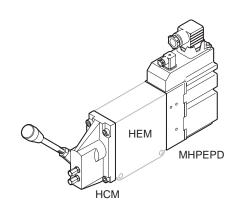
Electrical connections for MHPED controls, see page: E-5

MHPED voltage controls for HEM working sections

Rated volt	age		12 Vdc	24 Vdc
Power supply voltage range			11 ÷ 15 V	20 ÷ 28 V
Max. ripple		5 %		
	e spool current consumption		520 mA	260 mA
Current co	onsumption (neutral position, cor	nstant voltage)	36 mA	46 mA
Power con	sumption		6 W	
Heat insul	ation		Class H 180	°C [356 °F]
Fault moni	itoring system	Max. current on safety output (pin no. 3, page D-5)	50 mA	
		Reaction time at fault	550	ms
Donation t	ima (aanatant valtana)	From neutral position to max. spool travel	110 ÷ 1	40 ms
Reaction t	ime (constant voltage)	From max. spool travel to neutral position	70 ÷ 90 ms	
Donation t	ima (nautral awitah)	From neutral position to max. spool travel	130 ÷ 170 ms	
Reaction time (neutral switch) From max. spool travel to neutral position		From max. spool travel to neutral position	70 ÷ 90 ms	
Connector	r		Standard according to DIN 4	
Enclosure	to IEC 529		IP (65
		Neutral position	0.5 x	UDC
(A)	Input signal control	Control range	0.25 x UDC ÷ 0.75 x UDC	
joystick	Max. current signal control		0.5 mA	1 mA
	Input impedance in relation to	0.5 x UDC	12 kΩ	
		Voltage	0 ÷ 10	VDC
	Input signal control	Neutral position	5 VDC	
(B) PLC		Control range	0.25 x 10 VDC ÷	0.75 x 10 VDC
FLC	Current signal contro		0.5 mA	
Input impedance in relation to 0 ÷ 10 VDC		0 ÷ 10 VDC	20 1	kΩ
		Current	0 ÷ 20) mA
(C)	Input signal control	Neutral position	10 mA	
PLC		Control range	0.25 x 20 mA ÷	0.75 x 20 mA
	Input impedance in relation to	0 ÷ 20 mA	0.5 kΩ	
	• •			


MHPED (active version) modules behaviour in relation to the signal control

UDC	Signal control	Ground	Safety output (pin no. 3)	Effect
24 V	12 V (50% of UDC)	Connected	No output	Spool held electrical in neutral position
24 V	6 V (25% of UDC)	Connected	No output	Full flow $P \rightarrow A$
24 V	18 V (75% of UDC)	Connected	No output	Full flow $P \rightarrow B$
24 V	20.4 V (85% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	21.6 V (90% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	24 V (100% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	0 V (0% of UDC) selected	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	0 V (0% of UDC) interrupted	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	1 V (4% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
0 V	15.6 V (65% of UDC)	Connected	No output	Spool stays in neutral position (no light)
24 V	15.6 V (65% of UDC)	Disconnected	No output	Spool stays in neutral position (no light)


With the same data, given in percentages, the behaviour of the module is equal to the 12 VDC, $0 \div 20$ mA and $0 \div 10$ V also.

No. of flashes	Cause		
1	LVDT outside of its own position		
2	The demanded spool position doesn't correspond to the input signal		
3	LVDT is broken		
4	Short circuit in the output signal for direction indicator (MHPEPD)		
5	Internal electrical faults		
6	Short circuit in the proportional solenoid valves		
7	Short circuit in the warning output signal (pin no. 3)		
8	Input signal control exceeds min. / max. values (15% ÷ 85% of supply voltage)		

When an error state is detected the lamp of the module starts flashing red, and the number of flashes indicates the probable cause of failure.

MHPEPD

Example with module MHPEPD and manual control HCM

MHPEPD electrohydraulic PROPORTIONAL module

MHPEPD closed loop electrohydraulic proportional activation unit is the most advanced version of the closed loop control modules.

MHPEPD is defined by:

- Spool direction indicator output;
- Capacity to handle three different kinds of input signal control. The required signal control is to be stated in the order phase;
- Inductive transducer position, LVDT (Linear Variable Differential Transformer);
- Integrated PWM (Pulse Width Modulator);
- Fault monitoring, transistor output for signal source;
- Excellent regulation;
- · Low hysteresis;
- · Short reaction time.

Besides the afore mentioned features, another purpose of the module is to give an indication of the spool's movement, through an on/off output signal in the smaller connector (also when the spool is manually activated).

The diagrams on page E-11 show an example of how the direction output can be handled to activate or deactivate the Ls on/off pilot solenoid valve by means of the two relay (K1 - K2) and two electrical end of strokes.

This is just an example, as the use of MHPEPD is also destined for more demanding surroundings, that is solutions using artificial intelligence which dialogue at the higher level via bus, and which realize a real distributed control system able to carry out "stand-alone" processes.

This in turn send to the raised level only that information read as "positive" for the safe handling of machine.

All the electrohydraulics features, performance, and choice of safety degree system, are the same of those already described for the MHPED module.

Active version

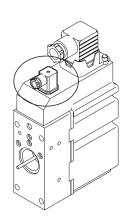
	Input signal control				
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA		
	(A) joystick	(B) PLC	(C) PLC		
12 Vdc	MHPEPD4108048	MHPEPD4108058	MHPEPD4108066		
24 Vdc	MHPEPD4108047	MHPEPD4108060	MHPEPD4108068		

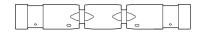
Passive version

	Input signal control				
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA		
	(A) joystick	(B) PLC	(C) PLC		
12 Vdc	MHPEPD4108046	MHPEPD4108054	MHPEPD4108062		
24 Vdc	MHPEPD4108045	MHPEPD4108056	MHPEPD4108064		

Aluminum body

Electrical connections for MHPEPD working sections, see page: E-11

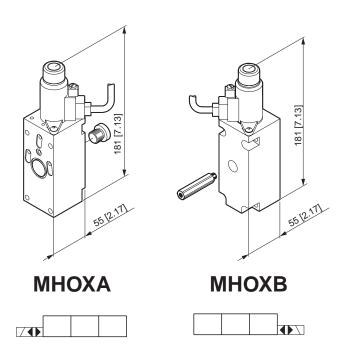

HPV41_EN/02


MHPEPD controls for HEM working sections

Rated voltage			12 Vdc	24 Vdc
Power supply voltage range		11 ÷ 15 V	20 ÷ 28 V	
Max. ripple			5 %	
End stroke spool current consumption			520 mA	260 mA
Current co	onsumption (neutral position, co	nstant voltage)	36 mA	46 mA
Power cor	nsumption		6	W
Heat insul	ation		Class H 180 °C [356 °F]	
Fault monitoring system		Max. current on safety output (pin no. 3)	50 mA	
		Reaction time at fault	550 ms	
Max. curre	ent output signal for indication a	ctuating direction	50	mA
Reaction time (constant voltage)		From neutral position to max. spool travel	110 ÷ 140 ms	
TCaction t	unic (constant voltage)	From max. spool travel to neutral position	70 ÷ 90 ms	
Reaction time (neutral switch)		From neutral position to max. spool travel	130 ÷ 170 ms	
r caction t	inic (ficultal switch)	From max. spool travel to neutral position	70 ÷ 90 ms	
			Standard (IP 65) according to DIN 43650 / ISO 4400	
Connectors		Spool direction indicator output (IP 65) according to DIN 40050		
Enclosure to IEC 529			IP	65
	Input signal control	Neutral position	0.5 x UDC	
(A)	input signal control	Control range	0.25 x UDC ÷ 0.75 x UDC	
joystick	Max. current signal control		0.5 mA	1 mA
	Input impedance in relation to 0.5 x UDC		12	kΩ
	Input signal control	Voltage	0 ÷ 10 VDC	
(B) PLC		Neutral position	5 VDC	
		Control range	0.25 x 10 VDC ÷ 0.75 x 10 VDC	
	Current signal contro		0.5 mA	
	Input impedance in relation to 0 ÷ 10 VDC		20	kΩ
		Current	0 ÷ 20 mA	
(C)	Input signal control	Neutral position	10 mA	
PLC		Control range	0.25 x 20 mA -	÷ 0.75 x 20 mA

Spool direction signals

Input impedance in relation to 0 ÷ 20 mA


 $0.5~\mathrm{k}\Omega$

0.5 0.02	0	0.5 0.02	mm inches
	1		"B" PORT
\dashv			——OFF
		i	
			ON
			• • •

PIN	Center position	Movement to A port	Movement to B port
1	free	free	free
2	no output	Udc (+)	no output
3	no output	no output	Udc (+)
4	To get the manual control this pin must be feeded with the supply voltage. To get the remote control the supply voltage must be taken off from this pin.		

MHOXA/MHOXB ATEX controls for HEM working sections

MHOX electro-hydraulic ON/OFF operated

The MHOXA and MHOXA modules are electro-hydraulics ON/ OFF devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of an electric signal.

Single acting for A or B ports:

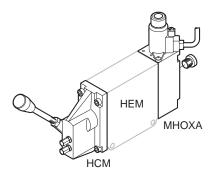
MHOXA: the distribution spool in the HEM element is moved onto port B by a manual HCM command and onto port A by the side MHOXA module.

MHOXB: the distribution spool in the HEM element is moved onto port A by a manual HCM command and onto

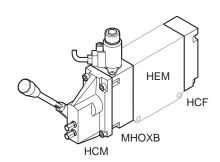
port B by the side MHOXB module

Double acting for A and B ports:

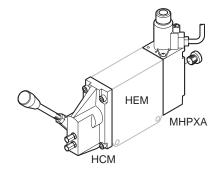
The MHOXA and MHOXB modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.


HCM/HCF cast iron modules must be used.

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.

Valtage	Code	
Voltage	Port A Port B	
12 Vdc	MHOXA04107157	MHOXB04107159
24 Vdc	MHOXA04107158	MHOXB04107160

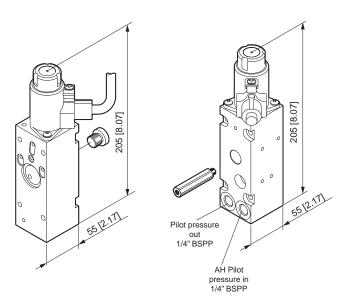

Cast iron body

Example with module MHOXA, single acting for A port

Example with module MHOXA, single acting for A port

Example with moduli MHOXA-MHOXB, double acting for A and B ports

MHOXA/MHOHB ATEX controls for HEM working sections (Ex)


Nominal voltage	12 Vdc	24 Vdc	
Coil resistance, R20	9 Ω ± 6 %	35.8 Ω ± 6 %	
Min. current	700 mA	350 mA	
Rated current	1330 mA	670 mA	
Max. current	1850 mA	930 mA	
Limit power	14.3 W	14.4 W	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Connection cable		mm ² [3 x 15 AWG] [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	ufacturer manual	
Short-circuit protection	With fuse - See coil	manufacturer manual	
Duty cycle	10	00%	
Input pressure	Max. 50 b	oar [725 psi]	
Switching pressure	>23 ba	r [334 psi]	
Fluid temperature	-20 ÷ +80 °C	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Ground connection	Up to 4 mm ² - 11 AWG		
Protection class (DIN VDE 0580)	· I		
Fluids	Hydraulic oil to	DIN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	IP67 / IP69K	
Shock-resistance to EN 50014		4 J	
Hydraulic features			
Max pilot pressure oil supply	30 bar	30 bar [435 psi]	
Start spool flow	4.5 ba	4.5 bar [65 psi]	
End spool flow	15 bar	15 bar [218 psi]	
HEM module hydraulic data			
Max pressure (static - input)	350 bar	350 bar [5076 psi]	
Max flow	130 l/min [3	34.3 US gpm]	
·			

ATEX modules marking

MHOX on complete proportional valve with or without HSEVX valve	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHOX individually supplied	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHOX modules	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

MHOXAH/MHOXBH ATEX controls for HEM working sections

MHOXAH

MHOXBH

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHOXAH electro-hydraulic ON/OFF operated and hydraulic activation

The MHOXAH and MHOXAH modules are electro-hydraulics ON/OFF devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of both an electric signal and hydraulic control.

Especially designed for those applications where the HPV (distributor) proportional valves must be controlled with a double remote control (electric and hydraulic). The module maintains the same electrical characteristics already described for the MHOXA / MHOXB modules. The value of the pilot pressure of the hydraulic control (coming from hydraulic manipulators) must be included between 3.5 bar and 28 bar [51 and 406 psi].

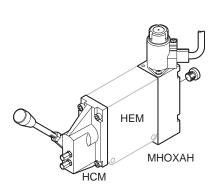
The distribution spool is positioned precisely by the hydraulic pressure generated by the hydraulic manipulator or, alternatively, by the solenoid valve V1 proportionally with an electric signal generated by the remote control. The solenoid valve and the hydraulic manipulator are fed by an internal line P at a pressure ranging between 20 and 35 bar [290 and 507 psi], while the discharges are gathered in line T.

Single acting for A or B ports:

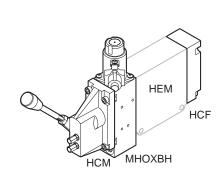
MHOXAH: the distribution spool in the HEM element is moved onto the B port by means of a manual control HCM and onto port A by the side MHOXAH module.

MHOXBH: the distribution spool in the HEM element is moved onto the B port by means of a manual control HCM and onto port B by the side MHOXBH module.

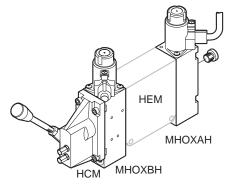
Double acting for A and B ports:


The MHOXAH and MHOXBH modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.

HCM/HCF cast iron modules must be used.


Valtage	Code	
Voltage	Port A Port B	
12 Vdc	MHOXAH4107357	MHOXBH4107359
24 Vdc	MHOXAH4107358	MHOXBH4107360

Cast iron body

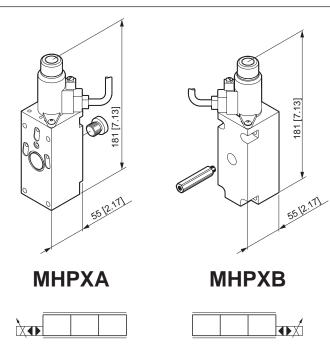

Hydraulic command outputs 1/4" BSPP.

Example with module MHOXAH, single acting for A port

Example with module MHOXBH, single acting for A port

Example with moduli MHOXAH-MHOXBH, double acting for A and B ports

MHOXAH/MHOXBH ATEX controls for HEM working sections (Ex)


Nominal voltage	12 Vdc	24 Vdc	
Coil resistance, R20	9 Ω ± 6 %	35.8 Ω ± 6 %	
Min. current	700 mA	350 mA	
Rated current	1330 mA	670 mA	
Max. current	1850 mA	930 mA	
Limit power	14.3 W	14.4 W	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Connection cable		mm ² [3 x 15 AWG] [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	facturer manual	
Short-circuit protection	With fuse - See coil	manufacturer manual	
Duty cycle	10	00%	
Input pressure	Max. 50 b	ar [725 psi]	
Switching pressure	>23 bar	>23 bar [334 psi]	
Fluid temperature	-20 ÷ +80 °C	-20 ÷ +80 °C [-68 ÷ +176 °F]	
Ground connection	Up to 4 mr	Up to 4 mm² - 11 AWG	
Protection class (DIN VDE 0580)		1	
Fluids	Hydraulic oil to [Hydraulic oil to DIN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	IP67 / IP69K	
Shock-resistance to EN 50014	4	4 J	
Hydraulic features			
Max pilot pressure oil supply		30 bar [435 psi]	
Start spool flow		4.5 bar [65 psi]	
End spool flow	15 bar	15 bar [218 psi]	
HEM module hydraulic data			
Max pressure (static - input)	350 bar	350 bar [5076 psi]	
Max flow	130 l/min [3	34.3 US gpm]	

ATEX modules marking

MHOX on complete proportional valve with or without HSEVX valve	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHOX individually supplied	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHOX modules	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

MHPXA/MHPXB ATEX controls for HEM working sections

MHPX electro-hydraulic PROPORTIONAL operated

The MHPXA module is an electro-hydraulic proportional device that allows the primary hydraulic state (HEM) to be monitored at a distance by means of an electric signal.

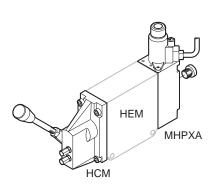
Single acting for A or B ports:

MHPXA: the distribution spool in the HEM element is moved onto port B by a manual HCM command and onto port A by the side MHPXA module.

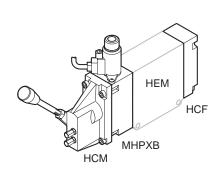
MHPXB: the distribution spool in the HEM element is moved onto port A by a manual HCM command and onto port B by the side MHPXB module .

Double acting for A and B ports:

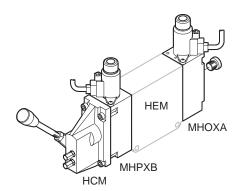
I moduli MHPXA e MHPXB possono essere accoppiati affinché tramite il comando remoto sia possibile azionare entrambi i moduli. Il principio di funzionamento è analogo a quello dei due moduli separati, con le elettrovalvole V1 e V2 che, alternativamente, possono regolare in modo continuo la pressione pilota agente sull'asta di distribuzione.


HCM/HCF cast iron modules must be used.

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.

Voltogo	Code	
Voltage	Port A Port B	
12 Vdc	MHPXA04107147	MHPXB04107149
24 Vdc	MHPXA04107148	MHPXB04107150


Cast iron body

Example with module MHPXA, single acting for A port

Example with module MHPXA, single acting for A port

Example with moduli MHPXA-MHPXB, double acting for A and B ports

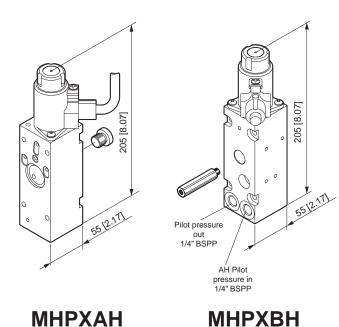
MHPXA/MHPXB ATEX controls for HEM working sections

Nominal voltage	12 Vdc	24 Vdc	
Voltage range	11 ÷ 15 Vdc	22 ÷ 28 Vdc	
Coil resistance, R20	4.3 Ω	15.3 Ω	
Rated current, IN	1360 mA	686 mA	
Max. current regulation range	0 ÷ 1500 mA	0 ÷ 750 mA	
Max. power	14.8 W	12.8 W	
Start spool travel	490 mA	240 mA	
Start spool flow	510 mA	260 mA	
End spool travel	875 mA	500 mA	
Pilot pressure	28 bar	[406 psi]	
Power supply	PWM	100 Hz	
Max. pressure (static)	50 bar	[725 psi]	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Fluid temperature	-20 ÷ +80 °C	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil	With fuse - See coil manufacturer manual	
Groud connection	Up to 4 mn	Up to 4 mm ² - 11 AWG	
Fluids	Hydraulic oil to [Hydraulic oil to DIN 51524.ATF-oil	
Grade of enclosure (DIN VDE 0470 / EN 60529)	IP67 / IP69K		
Shock-resistance to EN 50014	4 J		
Hydraulic features	·		
Max pilot pressure oil supply	30 bar	30 bar [435 psi]	
Start spool flow		4.5 bar [65 psi]	
End spool flow		15 bar [218 psi]	
•	I .	 	

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

HEM module hydraulic data

Max pressure (static - input)	350 bar [5076 psi]
Max flow	130 l/min [34.3 US gpm]


ATEX modules marking

MHPX on complete proportional valve with or without HSEVX valve	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHPX individually supplied	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHPX modules	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

MHPXAH/MHPXBH ATEX controls for HEM working sections

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHPXAH electro-hydraulic PROPORTIONAL operated and hydraulic activation

The MHPXAH module is an electro-hydraulic proportional device that allows the primary hydraulic state (HEM) to be monitored at a distance by means of both an electric signal and hydraulic control.

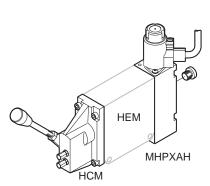
Especially designed for those applications where the HPV (distributor) proportional valves must be controlled with a double remote control (electric and hydraulic). The module maintains the same electrical characteristics already described for the MHPXA / MHPXB modules. The value of the pilot pressure of the hydraulic control (coming from hydraulic manipulators) must be included between 3.5 bar and 28 bar [51 and 406 psi].

The distribution spool is positioned precisely by the hydraulic pressure generated by the hydraulic manipulator or, alternatively, by the solenoid valve V1 proportionally with an electric signal generated by the remote control. The solenoid valve and the hydraulic manipulator are fed by an internal line P at a pressure ranging between 20 and 35 bar [290 and 507 psi], while the discharges are gathered in line T.

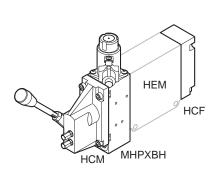
Single acting for A or B ports:

MHPXAH: the distribution spool in the HEM element is moved onto the B port by means of a manual control and onto port A by the side MHPXAH module.

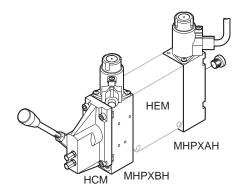
MHPXBH: , the distribution spool in the HEM element is moved onto the A port by means of a manual control and onto port B by the side MHPXBH module.


Double acting for A and B ports:

The MHPXAH and MHPXBH modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.


HCM/HCF cast iron modules must be used.

Voltage	Code	
Voltage	Port A Port B	
12 Vdc	MHPXAH4107347	MHPXBH4107349
24 Vdc	MHPXAH4107348	MHPXBH4107350


Cast iron body Hydraulic command outputs 1/4" BSPP.

Example with module MHPXAH, single acting for A port

Example with module MHPXBH, single acting for A port

Example with moduli MHPXAH-MHPXBH, double acting for A and B ports

MHPXAH/MHPXBH ATEX controls for HEM working sections

Nominal voltage	12 Vdc	24 Vdc	
Voltage range	11 ÷ 15 Vdc	22 ÷ 28 Vdc	
Coil resistance, R20	4.3 Ω	15.3 Ω	
Rated current, IN	1360 mA	686 mA	
Max. current regulation range	0 ÷ 1500 mA	0 ÷ 750 mA	
Max. power	14.8 W	12.8 W	
Start spool travel	490 mA	240 mA	
Start spool flow	510 mA	260 mA	
End spool travel	875 mA	500 mA	
Pilot pressure	28 bar	[406 pasi]	
Power supply	PWM	PWM 100 Hz	
Max. pressure (static)	50 bar	[725 psi]	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Fluid temperature	-20 ÷ +80 °C	[-4 ÷ +176 °F]	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil	With fuse - See coil manufacturer manual	
Groud connection	Up to 4 mi	Up to 4 mm ² - 11 AWG	
Fluids	Hydraulic oil to	Hydraulic oil to DIN 51524.ATF-oil	
Grade of enclosure (DIN VDE 0470 / EN 60529)	IP67	IP67 / IP69K	
Shock-resistance to EN 50014		4 J	
Hydraulic features Max pilot pressure oil supply	30 bar	[435 psi]	
Start spool flow		4.5 bar [65 psi]	
End spool flow		15 bar [218 psi]	

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

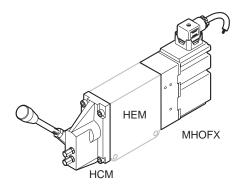
HEM module hydraulic data

Max pressure (static - input)	350 bar [5076 psi]	
Max flow	130 l/min [34.3 US gpm]	


ATEX modules marking

MHPX on complete proportional valve with or without HSEVX valve	€ 🕾	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHOX individually supplied	C € € ⊗	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHPX modules	C € €∞	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

MHOFX ATEX controls for HEM working sections



MHOF electrohydraulic ON-OFF module

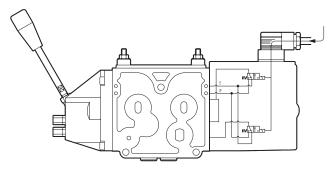
The MHOF electrohydraulic module moves the spool in relation to an electric signal generated by the joystick or by a switch.

The hydraulic pressure generated by the on-off solenoid valves forces the spool not to stop in any intermediate position between the neutral position and the maximum stroke

MHOFX

Example with module MHOFX and manual control HCM

Standard connector


Voltage	Code
12 Vdc	MHOFX041E7025
24 Vdc	MHOFX041E7030
	12 Vdc

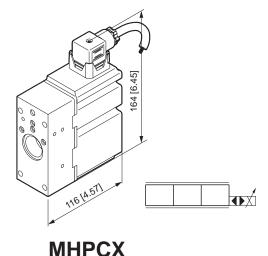
D-Type connector

Voltage	Code
12 Vdc	MHOFX041E7027
24 Vdc	MHOFX041E7028

Cast iron body

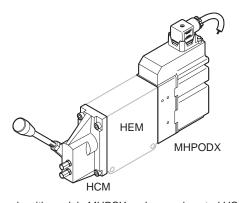
Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		10.8 ÷ 13.2 V	21.6 ÷ 26.4 V
Resistance at 20 °C [68 °F]		9.2 Ω	34.8 Ω
Rated absorbed power		16 W	
Heat insulation Class H, 180 °C [3		°C [356 °F]	
Duty cycle		ED 100%	
Described Con-	From neutral position to max. spool travel	130 ms	
Reaction time From max. spool travel to neutral po		110 ms	
mbient temperature $-35^{\circ} \div 60 {\circ} \text{C} [-31 \div +140 {\circ} \text{F}]$		31 ÷ +140 °F]	
Connector		DIN 43650	/ ISO 4400
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Enclosure to IEC 529		IP 67	

ATEX marking	C € €x	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € €x>	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db


ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHPCX ATEX controls for HEM working sections

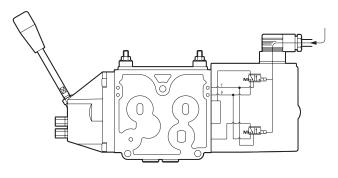


MHPCX electrohydraulic PROPORTIONAL module

MHPCX proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. The MHPCX module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults.

This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control only.



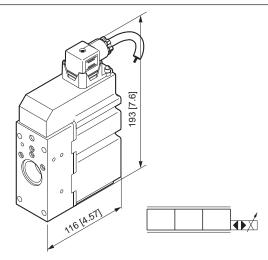
Example with module MHPCX and manual control HCM

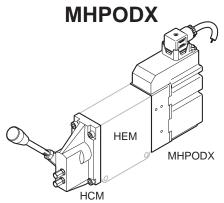
Voltage	Code
12 Vdc	MHPCX041E7014
24 Vdc	MHPCX041E7013

12 Vdc	MHPCX041E7014
24 Vdc	MHPCX041E7013
Cast iron body	

Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		10.8 ÷ 13.2 V	21.6 ÷ 26.4 V
Resistance at 20 °C [68 °F]		9.2 Ω	34.8 Ω
Rated absorbed power		16 W	
Heat insulation		Class H, 180	°C [356 °F]
Duty cycle ED 100%		00%	
Paratian time	From neutral position to max. spool travel	130 ms	
Reaction time From max. spool travel to neutral position		110 ms	
Ambient temperature		-35 ÷ +60 °C [-31 ÷ +140 °F]	
Connector		DIN 43650 / ISO 4400	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Enclosure to IEC 529		IP 67	

ATEX marking	C € €∞	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € €x>	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db


ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.

MHPODX ATEX controls for HEM working sections

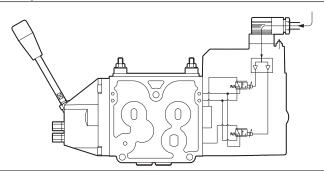
Example with module MHPODX and manual control HCM

MHPODX electrohydraulic PROPORTIONAL module

MHPOD is a open loop electrohydraulic activation unit, whose design is based on digital technology.

MHPOD has been specially developed to meet the harsh operating requirements of today's mobile machine market. MHPOD electrical open loop proportional actuation operates the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where a simple proportional control is required, and where hysteresis and reaction time are not critical.

MHPOD does not have the inductive position transceiver (LVDT) and any electronic circuit for faults monitoring. This means that any forces that override the pilot pressure spool forces may change the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.


MHPOD is defined by:

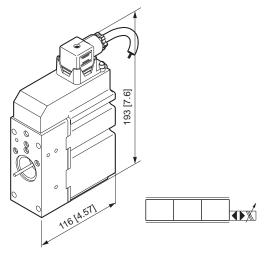
- Capacity to handle three different kinds of input signal control (see chart below).
- The required signal control is to be stated in the order phase
- Integrated PWM (Pulse Width Modulator)
- Good flow regulation
- Simple built-up.

		Input signal control			
	Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
		(A) joystick	(B) PLC	(C) PLC	
	12 Vdc	MHPODX41E8077	MHPODX41E8082	MHPODX41E8086	
	24 Vdc	MHPODX41E8075	MHPODX41E8084	MHPODX41E8088	

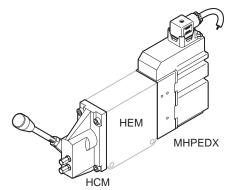
Cast iron body

Rated voltage	12 V ± 10%	24 V ± 10%	
Max. power consumption	61	W	
	Ratiometric 0.25x	Ratiometric 0.25xUDC ÷0.75xUDC	
Analog control input (Lla) to change from:	0 ÷ 10 V (available	signal 2.5 ÷ 7.5 V)	
Analog control input (Us) to choose from:	0 ÷ 20 mA (available	e signal 5 ÷ 15 mA)	
	3.5 V (available	signal 2 ÷ 5 V)	
Analog input impedance, ratiometric version, 0.25xUDC ÷0.75xUDC	12	kΩ	
Analog input impedance 0 ÷ 10 V version	10	kΩ	
Analog input impedance 0 ÷ 20 mA	500	Ω	
Spool positioning sensor	LVI	DT	
PWM outputs with current feedback	2	2	
PWM frequency	80 ÷ 2	50 Hz	
Max. current consumption	600 mA	330 mA	
Error / Fault Message output (pin 3)	Max. Loa	id 50 mA	
Working parameters setting	By software and	l serial interface	
Main electrical connection	3 pins Coni	nector +PE	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG]	
	L = 5-5.1 mt [L = 5-5.1 mt [197-201 inch]	
Enclosure	IPO	67	
Ambient working temperature	-	-35 ÷ +60 °C [-31 ÷ +140 °F]	
EMC requirements	EN61000-6-2,	EN61000-6-4	

ATEX marking	C € €⊗	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € €x	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db


ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.



MHPEDX ATEX controls for HEM working sections

MHPEDX

Example with module MHPEDX and manual control HCM

MHPEDX electrohydraulic PROPORTIONAL module

MHPEDX is a closed loop electrohydraulic activation unit, whose design is based on digital technology.

MHPEDX has been specially developed to meet the harsh operating requirements of today's mobile machine market.

MHPEDX electrical closed loop proportional actuation operates safely and precisely the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where precise metering control, low hysteresis, fault monitoring, and fast system reaction are paramount. The input signal, by means of the PCB and the two reducing proportional solenoid valves, is converted into a low pilot pressure which inturn moves the HPV's spool.

The inductive transducer position (LVDT) ensures that the spool is being moved in the correct position, otherwise, in the event of uncontrolled spool positioning, the feed-back signal will detect it as an error and it will fast react operator independent (fault monitoring system, see diagrams in the following pages)

MHPEDX is defined by:

- Capacity to handle three different kinds of input signal control (see chart below). The required signal control is to be stated in the order phase.
- Inductive transducer position, LVDT (Linear Variable Differential Transformer)
- Integrated PWM (Pulse Width Modulator)
- Fault monitoring, transistor output for signal source
- Excellent regulation
- · Low hysteresis
- Short reaction time

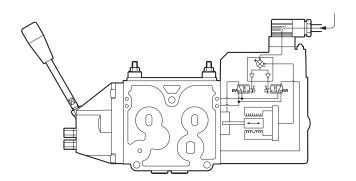
Active version

	Input signal control		
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPEDX41E8011	MHPEDX41E8018	MHPEDX41E8026
24 Vdc	MHPEDX41E8010	MHPEDX41E8020	MHPEDX41E8028

Passive version

	Input signal control		
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPEDX41E8009	MHPEDX41E8022	MHPEDX41E8030
24 Vdc	MHPEDX41E8007	MHPEDX41E8024	MHPEDX41E8032

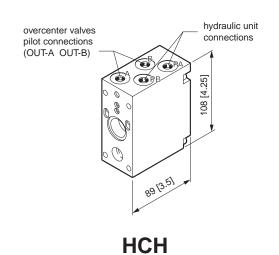
Cast iron body

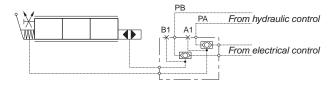


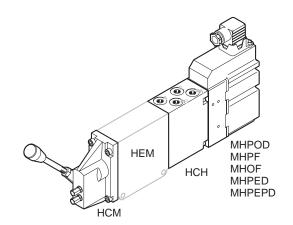
MHPEDX ATEX controls for HEM working sections

Field 20

Rated voltage	12 V ± 10%	24 V ± 10%	
Max. power consumption	6 W		
	Ratiometric 0.25xUDC ÷0.75xUDC		
Anales control innert (He) to alcohol from	0 ÷ 10 V (available	signal 2.5 ÷ 7.5 V)	
Analog control input (Us) to choose from:	0 ÷ 20 mA (availab	le signal 5 ÷ 15 mA)	
	3.5 V (available	e signal 2 ÷ 5 V)	
Analog input impedance, ratiometric version, 0.25xUDC ÷0.75xUDC	12	kΩ	
Analog input impedance 0 ÷ 10 V version	10	kΩ	
Analog input impedance 0 ÷ 20 mA	50	0 Ω	
Spool positioning sensor	LV	LVDT	
PWM outputs with current feedback	2		
PWM frequency	80 ÷ 2	250 Hz	
Max. current consumption	600 mA	330 mA	
Error / Fault Message output (pin 3)	Max. Loa	ad 50 mA	
Working parameters setting	By software and	d serial interface	
Main electrical connection	3 pins Con	nector +PE	
Connection cable	ction cable FL4G11Y - 3 x 1.5 mm² [3 x 1.5 m		
Enclosure	IP	67	
Ambient working temperature	-35 ÷ +60 °C	-35 ÷ +60 °C [-31 ÷ +140 °F]	
EMC requirements	EN61000-6-2	, EN61000-6-4	




ATEX marking	C € € ∞	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € € ∞	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db

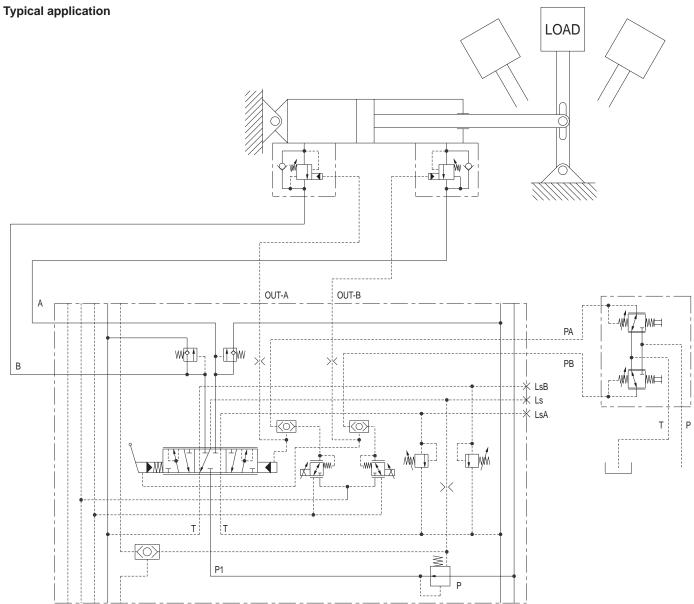

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

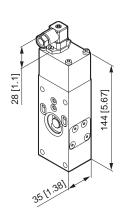
For the wiring diagram of module, please refer to Instruction manual.

DANA

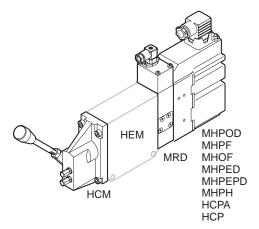
Example with module HCH, manual control HCM and MHPOD module

HCH module to get hydraulic and electrical remote control HCH module is a small manifold that can be matched with all the HPV 41 proportional directional valves' elements, and with all the HPV electrohydraulic controls. The use of the HCH module, besides and in conjunction with electrohydraulic proportional, radio and on-off controls, also allows the hydraulic proportional control to be reached.


This new device features two supplementary work ports which can be used to pilot the overcenter valves through the same low pressure HPV spool. With this solution the control of the overcenter valves turns out to be much more precise, since the pilot pressure acting on them is never influenced by variations in pressure owing to moving loads.


Max. pilot pressure 36 bar [522 psi].

It is essential to use overcenter valves with high pilot ratio (15:1 \div 20:1)


	Code (Aluminum)		
Туре	Connections 1/4 BSPP	Connections 7/16" - 20 UNF - 2B	
For MHPOD. MHPF, MHOF modules (open ring version)	HCH0004104225	HCH0004104226	
For MHPED. MHPEPD modules (closed ring version)	HCH0004104227	HCH0004104228	

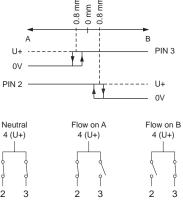
HCH hydraulic remote controls for **HEM** working sections

MRD

Example with module MRD, manual control HCM and MHPOD module

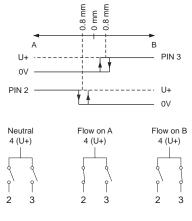
MRD electrical spool movement device

The main purpose of this module is to give an indication of the spool's movement, by mean of an on-off signal. Suitable for all those applications where, to satisfy the safety demands, the spool travel has to be remotely monitored or integrated with the whole machine electrical system.

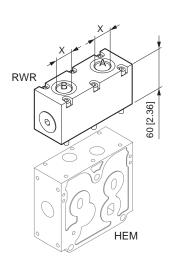

Spool direction indicator output Hirshmann connector according to DIN 40050.

Voltave	12 VDC - 24 VDC (min. 10 VDC - max. 30 VDC)	
Maximum current	Resistive load 5A Inductive load: 3A	
Switch position	± 0.8 mm (+0.2 / 0.3 mm)	
Protection degree	IP40	

Not suitable for ATEX modules.


Туре	Code	
Normally closed	MRD0004104243	
Normally open	MRD0004104245	

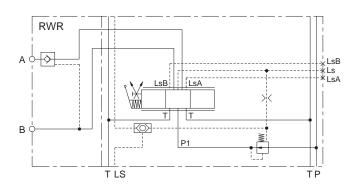
Normally closed



PIN No.	Neutral position	B port	A port
2	U+	0V	U+
3	U+	U+	0V
4	Common		

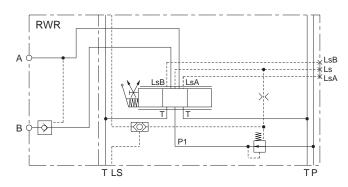
Normally open

PIN No.	Neutral position	B port	A port
2	0V	0V	U+
3	0V	U+	0V
4	Common		

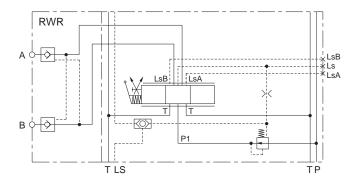


RWR double pilot operated check valve module

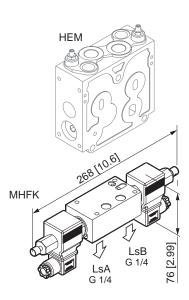
Developed for applications where integrated pilot operated check valves in the work ports are required to limit the port leakage down to zero. Suitable for load locking applications.


Cast iron body.

Suitable on prearranged elements only, HEM0004102400 - HEM0004102401.


Check valve on A port

Code		
(X) Ports	(X) Ports	
1/2 BSPP	7/8" - 14 UNF - 2B	
RWR0004102506	RWR0004102507	


Check valve on B port

Code		
(X) Ports 1/2 BSPP	(X) Ports 7/8" - 14 UNF - 2B	
RWR0004102508	RWR0004102509	

Check valve on A and B ports

Code		
(X) Ports (X) Ports 1/2 BSPP 7/8" UNF - 2B		
RWR0004102510	RWR0004102511	

With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page B-86.

Active on LsA	Voltage	Code
T LsA Ls LsB	14 VDC	MHFK004106430

28 VDC

Thread BSPP G 1/4

Active on LsA + LsB	Voltage	Code
T LsA Ls LsB	14 VDC	MHFK004106434
FET WITES	28 VDC	MHFK004106442

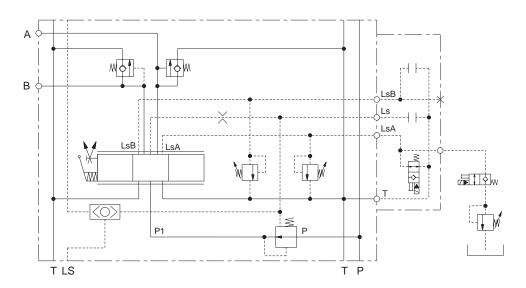
Thread BSPP G 1/4

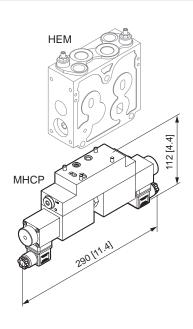
MHFK electrical Ls A/B unloading module

Developed for those applications where the max. working pressure can be selected according to an on-off electric signal. Normally open valves. Aluminum body.

Technical featues

Max. operating pressure	370 bar [5366 psi]	
Max. flow	30 l/min [7.9 US gpm]	
Max. Leakage (0-5 drops/min)	0-0,25 cm³/min	
Max. excitation frequency	2 Hz	
Duty cycle	100% ED	
Hydraulic fluids	Mineral Oil DIN 51524	
Oil viscosity	10 ÷ 500 mm²/s (cSt]	
Oil temperature	-25 ÷ +75 °C [-13 ÷ +167 °F]	
Ambient temperature	-25 ÷ +60 °C [-13 ÷ +140 °F]	
Max. contamination level class with filter	ISO 4406:1999 class 21/19/16	
Cartridge filter	280µm	
Degree of enclosure (depending on connector)	IP 65	
Weight (with coil)	0.350 kg [0.77 lb]	
Cartridge tightening torque	25 ÷ 30 Nm [18.4 ÷ 22 lbf·ft]	
Coil ring nut tightening torque	7 Nm [5.2 lbf-ft]	


Active on LsB	Voltage	Code
T LsA Ls LsB	14 VDC	MHFK004106432
wilder	28 VDC	MHFK004106440


Thread BSPP G 1/4

MHFK004106438

Active on Ls	Voltage	Code
T LsA Ls LsB	14 VDC	MHFK004106436
	28 VDC	MHFK004106444

Thread BSPP G 1/4

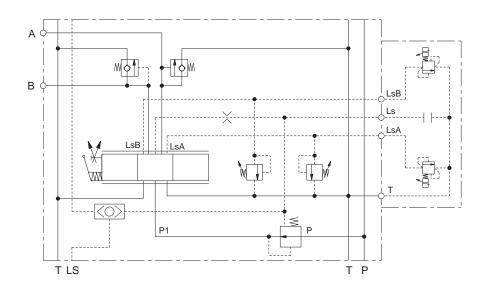
Electrohydraulic proportional module for remote A / B ports working pressure control

MHCP is a electric proportional module that allows the working pressure to be remotely operated by means of a current signal MHPF is designed to ensure system pressure to be infinitely adjust in accordance upon the electrical command valve. When the working pressure exceed the setting pressure value, the A – B ports flow is being cut-off.

When MHCP is not energized, both pressure and flow will be maintain close to zero.

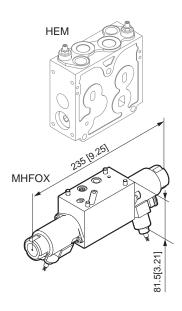
MHCP is always to be used with pressure compensated working sections.

Cast iron body.


With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page B-86.

Active on LsA	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP004106020

Active on LsB	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP004106040


Active on LsA + LsB	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP004106060

Active on Ls	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP004106275

MHFOX ATEX module for HEM working sections

MHFOX electrical LsA/B signal unloading module Atex version

LsA / LsB pilot signal unloading solenoid valve. If the Atex on/off solenoids are not energized, there is no flow on A/B work ports, while the pressure in the open centre circuits will be equal to the P \rightarrow T unloading pressure value on the inlet section, plus the counterpressure acting on T line. In closed centre circuits (under the same operating conditions) the pressure will be equal to the stand-by pump pressure. Normally open valves. Cast iron body.

With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page B-86.

Active on LsA + LsB	Voltage	Code
	12 VDC	MHFOX04106050
Ls Ls T	24 VDC	MHFOX04106060

Technical featues

Nominal voltage	12 VDC	24 VDC	
Coil resistance, R20	9 Ω ± 6%	35.8 Ω ± 6%	
Min. current	700 mA	350 mA	
Max. current	1850 mA	930 mA	
Limit power	14.3 W	14.4 W	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Connection cable		mm² [3 x 15 AWG] 197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manuf	acturer manual	
Short-circuit protection	With fuse - See coil	manufacturer manual	
Duty cycle	10	0%	
Input pressure	Max. 400 ba	Max. 400 bar [5800 psi]	
Switching pressure	Max 200 ba	Max 200 bar [2900 psi]	
Operating Limits		400 bar at max. flow 7 l/min [2900 psi at max. flow 1.85 US gpm]	
Flow P \rightarrow T at $\Delta p = 2$ bar [19 psi]	> 6.5 l/min [1	> 6.5 l/min [1.72 UD gpm]	
Leakage P \rightarrow T (Oil Temp. 50°C / Input press. 400 bar [5800 psi])	< 20 ml/min [0	< 20 ml/min [0.002 UD gpm]	
Fluid temperature	-20 ÷ +80 °C	[-4 ÷ +176 °F]	
Ground connection	Up to 4 mm	n² - 11 AWG	
Protection class (DIN VDE 0580)		l	
Fluids	Hydraulic oil to D	IN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67 /	IP67 / IP69K	
Shock-resistance to EN 50014	4	J	

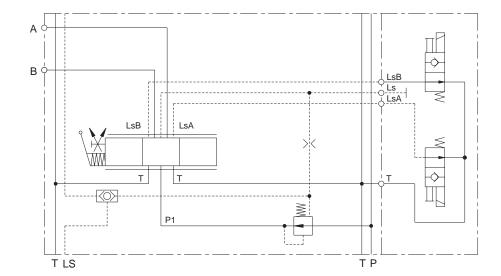
ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

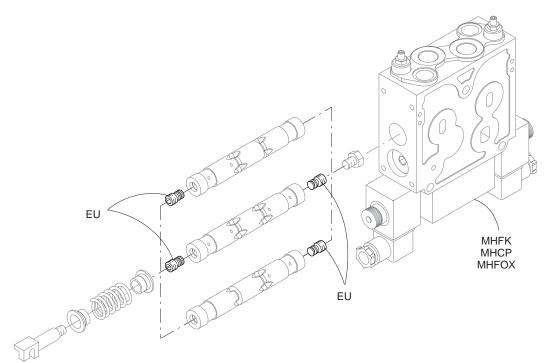
For the wiring diagram of module, please refer to Instruction manual.

MHFOX ATEX modules for HEM working sections

These modules, fitted on the proportional valve with MHOX modules, are subject to the complete certification of the valve; in this case the label will refer to the complete valve: MHOX - HFM.

When the modules are individually supplied, a label is attached to the module with the following labelling:


This labelling is printed on the label of modules, in a visible position.

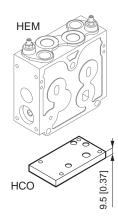

The final customer, when buying this module individually, is in charge of the assembly and coupling of such component with others ATEX components of different classes, groups and temperatures.

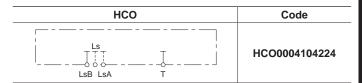
ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

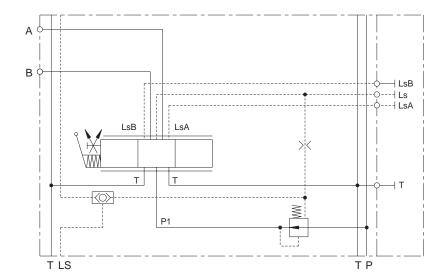
For the wiring diagram of module, please refer to Instruction manual.

Modules, EU flow restrictors for HPV 41 spools, for LsA/B electrical unloading modules

When the working sections (HEM) are equipped with the MHFK-MHCP-MHFOX electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS).

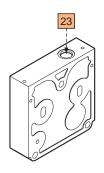

The code number has to be indicated under the spool code field in the order form.


Any kind of spool are always prearranged for EU modules.


Description	Code
Active on LsA or LsB only	HEAU004104700
Active on LsA + LsB and Ls	HEAU004104701

HCO module - bottom plate to close the MHFK, MHCP facilities

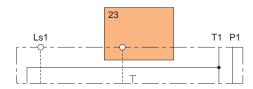
Aluminum body.

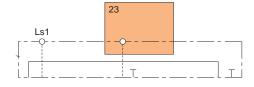



HSC end sections

Available versions:

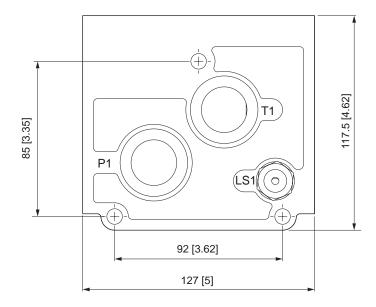
- With no ports
- With Ls1, P1, T1 ports With Ls1 port

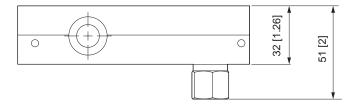

Made in cast iron.


With no ports

	Code	
BSPP UN - UNF		
HSC0004105005		

With Ls1, P1, T1 ports

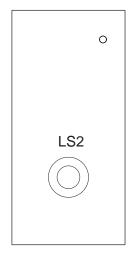

	Code
Ports	Ports
P1, T1 (3/4" BSPP)	P1, T1 (1 1/16"-12UNF-2B)
Ls1 (1/4" BSPP)	Ls1 (7/16"-12UNF-2B)
HSC0004105010	HSC0004105015

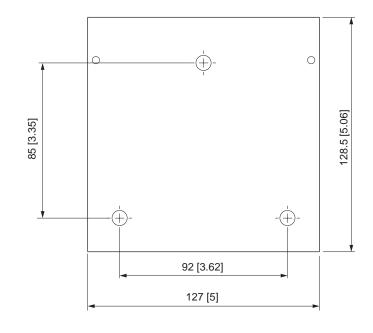


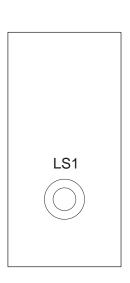
With Ls1 port

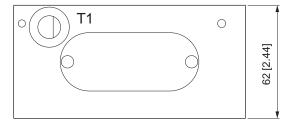
	Code
Ports	Ports
Ls1 (1/4" BSPP)	Ls1 (7/16"-12UNF-2B)
HSC0004105011	HSC0004105016

HSC end section overall dimensions

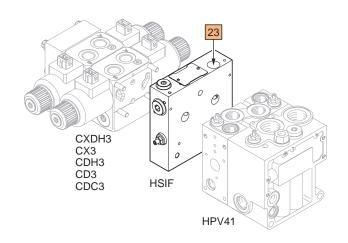

HPFS mid end section


HPFS mid end section allows two inlet sections HSE in one HPV. Cast iron body.




Code	
Ports	Ports
T1 (1/4" BSPP)	T1 (7/16"-20UNF-2B)
HPFS004106121	HPFS004106122

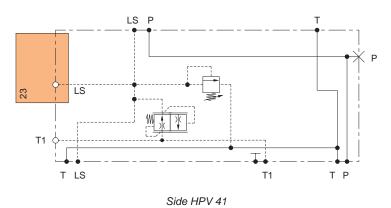
HPFS mid end section overall dimensions


The HSIF interface allows an hydrauli connection between the elements of HPV41proportional valves with the elements of CXDH3 / CX3 proportional valves or CDH3 / CD3 / CDC3 on/

This type of combination is highly appreciated in case of high flow differences between the controlled actuators.

The HSIF module must be inserted into the proportional valve configuration between the last HPV41 working section and the first CXDH3 / CX3 / CDH3 / CD3 / CDC3 working section. Up to 8 elements of HPV41 and 8 elements of CXDH3 / CX3 / CDH3 / CD3 / CDC3 can be installed.

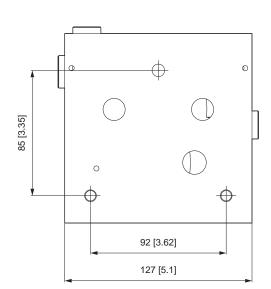
The HSIF interface replaces the inlet module for CXDH3 / CX3 / CDH3 / CD3 / CDC3.

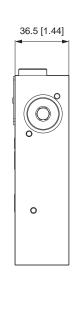

NOTE: You have to indicate in composition module the plug or the cartridge (see page B-93).

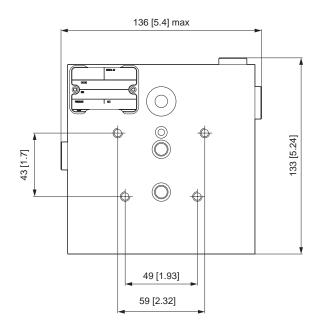
Max. operating pressure	300 bar [4351 psi]
Max. flow	80 l/1' [21 US gpm]
Weight (with coil)	3.8 kg [8.4 lb]

Description	Code
Cast iron HSIF interface	HSIF004105033

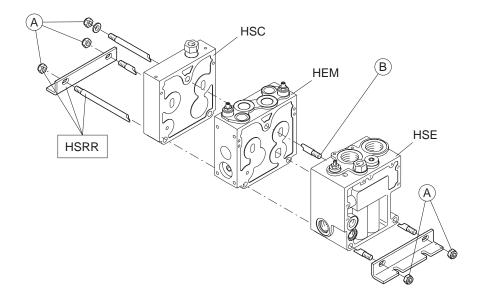
Side CXDH3 / CX3 / CDH3 / CD3 / CDC3




23 Plug or cartridge page B-93

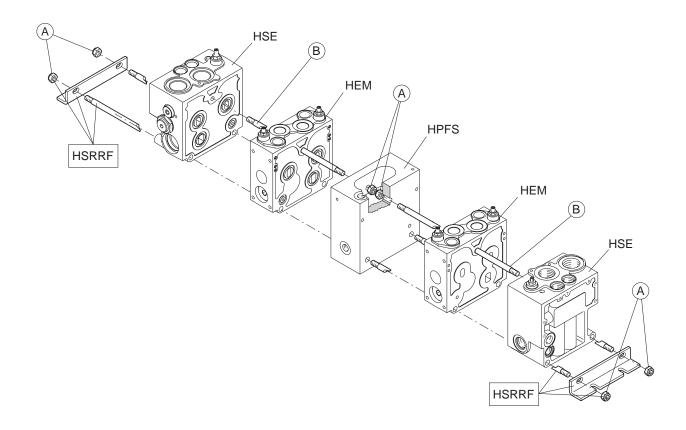

Bankable valves CXDH3 / CX3 / CDH3 / CD3 / CDC3 see catalogue code DOC00046)

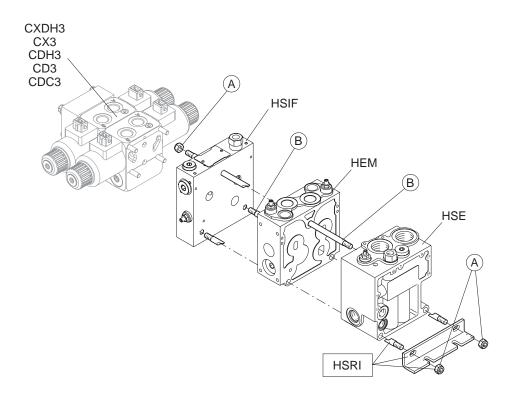
HSIF interface overall dimensions





Accessories for HSC end section and HSIF interface


Co	ode	Description	Cumbal / Field	Draw
BSPP	UN - UNF	Description	Symbol / Field	Draw
HESC00	04103010	HESC Internal drain plug for HSC module, for mechanical or hydraulic controls	23	
CSRV004101203 1/4" BSPP	CSRV004101204 7/16"-20UNF-2B	CSRV External drain cartridge for HSC module, for electrical activations (to be connected to drain line)	23	×

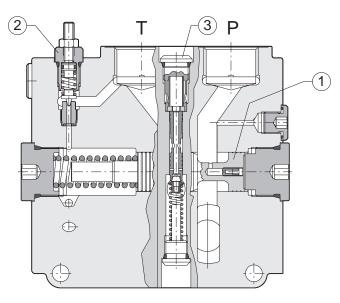

Code
HSRR004105551
HSRR004105552
HSRR004105553
HSRR004105554
HSRR004105555
HSRR004105556
HSRR004105557
HSRR004105558
HSRR004105559
HSRR004105560

No. of working sections (HEM)	Code
1	HSRI004105561
2	HSRI004105562
3	HSRI004105563
4	HSRI004105564
5	HSRI004105565
6	HSRI004105566
7	HSRI004105567
8	HSRI004105568
9	HSRI004105569
10	HSRI004105570

No. of working sections (HEM)	Code
1	HSRRF04105651
2	HSRRF04105652
3	HSRRF04105653
4	HSRRF04105654
5	HSRRF04105655
6	HSRRF04105656
7	HSRRF04105657
8	HSRRF04105658

No. of working sections (HEM)	Code
1	HSRI004105701
2	HSRI004105702
3	HSRI004105703
4	HSRI004105704
5	HSRI004105705
6	HSRI004105706

Spare parts seals kits


For sections and controls		Code							
		RKRC0723000	RKRC0730000	RKRC1751000	RKRC1752000	RKRC1754000	RKRC1757000	2005502	2005506
Rear cover	HCF		•						
Hydraukic remote control	нсн			•					
Electrical	нск	•							
Mechanical control	HCM				•				
Friction	HCN					•			
Rear cover	НСР					•			
Rear cover	НСРА		•						
Spool lock device	HCPD					•			
Kick-out device	HCPK							•	
Working section	HEM						•		
Intermediate inlet section	HFLS						•		
Intermediate end section	HPFS								
End section	HSC								
Inlet section	HSE						•		
Bankables interface	HSIF						•		
Electrical	MHOF			•					
Electrical	MHPED			•					
Electrical	MHPEPD			•					
Electrical activation	МНРН			•					
Electrical	MHPOD			•					
Electrical	MSPF	•							
Double pilot operated check valve	RWR								•

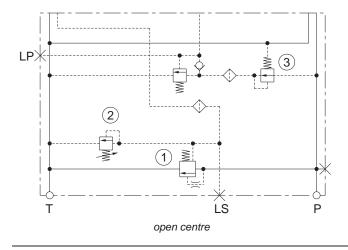
See composition form page B-21.

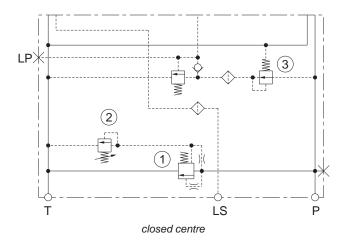
Inlet section Open Centre and Closed Centre

Standard HSE inlet section

The inlet sections are availables in two versions:

- open centre for use with fixed displacement pumps
- closed centre for use with load-sensing pumps


In the **open centre** versions, when the spool is not working, the flow/ pressure regulator pos. 1 unloads to T the entire pump flow (see characteristic curves).

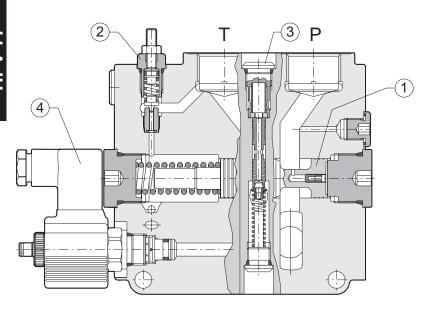

Otherwise, when the spool is working, it will feed the controlled element or elements, adapting instantaneously to the actual flow required by the ports and unloading any excess flow at the highest pressure of that moment to the tank.

By changing two internal pilot lines, the section is converted into a closed centre version. In the closed centre versions, the regulator pos. 1 only maintains the pressure regulator function, becoming the first stage of the main pressure relief valve pos. 2, which must be calibrated to about 30 bar more than the maximum work pressure.

Both versions can be supplied with the pressure reduction valve pos. 3 where originates a low pressure line (22 bar [319 psi]) that feeds the MHPED electrohydraulic modules or also the same hydraulic manipulators. Obviously, if the valve is only equipped with manual control, the pressure reduction valve is not required.

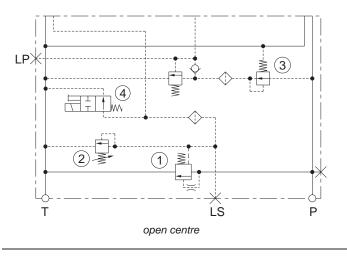
1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
Lp	Low pressure port, 22 bar [319 psi]

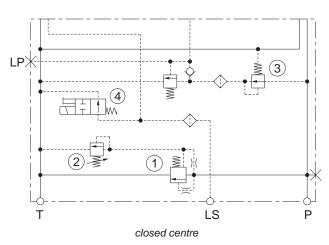
Inlet section Open Centre and Closed Centre



All versions can be supplied with an Ls signal unloading solenoid valve pos. 4. The solenoid valve can be normally open or normally closed. If it is activated during the work phases it immediately unloads the load sensing signal and subsequently stops all movements of the actuators.

In the open centre versions, the pump unloading pressure value is equal to the sum of the counterpressure acting on the T line plus the pressure required to open the flow/pressure regulator pos. 1 to connect P to T (often from 8 to 15 bar - 116 to 218 psi).

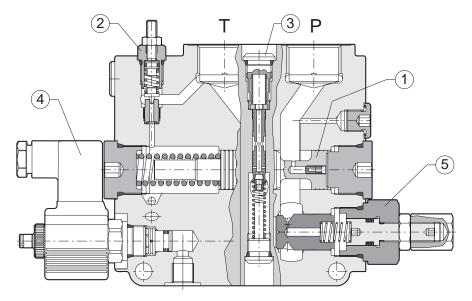

In the closed centre versions, unloading the LS signal lowers the pressure in P at a value equal to the stand-by pressure at which the pump is regulated.


Using the solenoid LS unloading valve on the inlet sections in the open and closed centre versions, we urge grate care in this method, because all functions requiring a lower working pressure, might be operated.

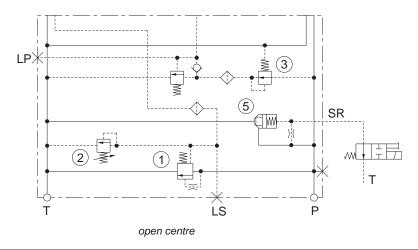
1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
4	Solenoid Ls unloading valve
Lp	Low pressure port, 22 bar [219 psi]

Standard HSE inlet section with solenoid Ls unloading valve (CRP04HP)

C-3


Inlet section Open Centre and Closed Centre

In the open and closed centre versions, it is possible to mount a **remote-controlled cartridge logic element** (pos. 5) for rapid pump unloading, thus by-passing the flow/pressure regulator (pos. 1).


In this configuration, the pump unloading pressure value is equal to the sum of the counterpressure acting on the T line, plus the pressure required to open the HSER valve (0.6 bar - $8.7 \, \mathrm{psi}$) to connect P with T.

With this solution the Δp for pump unloading is much lower than what would be created instead using the Ls signal unloading solenoid valve (see characteristic curves).

1	3 way flow regulator
2	Pilot pressure relief valve
3	Pressure reduction valve
5	Cartridge logic element, HSER
Lp	Low pressure port, 22 bar [319 psi]

Standard HSE inlet section with pump unloading valve function (HSER)

HPV77_EN/02

Open center systems

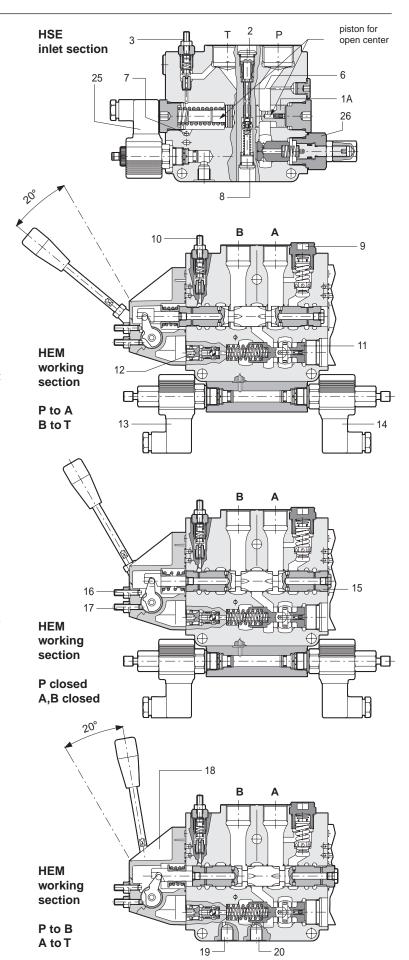
With the spools 15 in the central position, the Ls line, the chamber on the spring side of the flow/pressure regulator (1A) and the chamber on the spring side of the pressure compensator (11) are connected with the exhaust core (T), allowing the pump flow to be conveyed to the tank through the flow/ pressure regulator (1A).

The pump flow, the spring load of the flow/pressure regulator (1A) and the counterpressure acting on the exhaust line (T), determine the pump free circulation pressure (See characteristic curves).

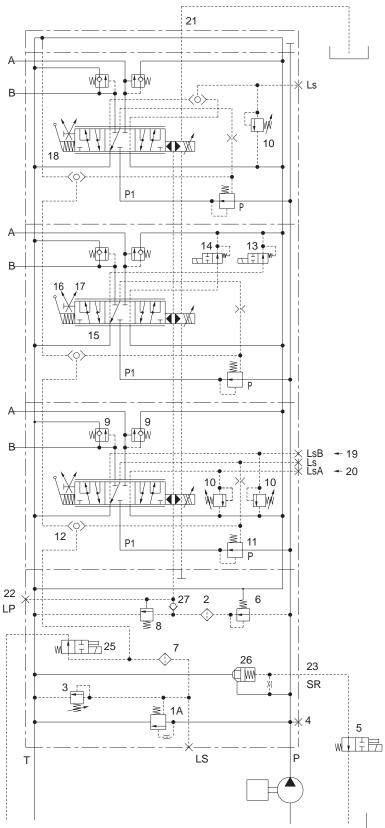
When the spool (15) is activated, the port selected is placed in communication with line P1 and the work pressure through line Ls is sent to the flow/pressure regulator (1A).

The flow obtained will only depend on the crossing area of the spool and the relative Δp that will be created along the spool adjustment range.

If two or more spools operating at different pressure values are activated at the same time, the pressure compensators (11) will keep the pressure drop constant (Δp) and thus the flow on the spools (15) will be constant within the maximum pump flow range.


On the other hand, if two or more spools of elements without pressure compensators are activated simultaneously, the flow on the spools will not be constant but will vary according to the work pressures.

The Load Sensing pressure relief valves (10), using a small pilot line flow, precisely limit the pressure at ports A/B without wasting energy, unlike the anti-shock valve which also when unloading the entire flow of the spools, are very wasteful.


The on-off solenoid valves (13-14) which cut off the LsA and LsB pilot lines, if activated, instantaneously cancel the flow on the relative port.

The pressure reduction valve (6) supplies a low pressure line (22 bar [319 psi]) which internally feeds the MHPE electrohydraulic modules and, externally, the hydraulic manipulators through the port 22.

The max. work pressures of ports A/B of each element can be remote controlled using the LsA and LsB pilot line ports.

Open center systems

- 1A Flow/pressure regulator
- 2 Low pressure line filter
- 3 Main pressure relief valve
- 4 Pump pressure gauge port
- 5 Pump unloading valve
- 6 Pressure reduction valve
- 7 Load sensing line filter
- 8 Low pressure line relief valve
- 9 Shock and suction valve
- 10 Ls pressure relief valve
- 11 Pressure compensator
- 12 Shuttle valve
- 13 LsB signal unloading solenoid valve
- 14 LsA signal unloading solenoid valve
- 15 Spool
- 16 A port flow fine adjustment register
- 17 B port flow fine adjustment register
- 18 Cover for manual control kinematic motion
- 19 LsB pressure pilot line port
- 20 LsA pressure pilot line port
- 21 Drain port
- 22 Low pressure pilot line port
- 23 Pilot line, pump unloading valve
- 25 Ls signal unloading solenoid valve
- 26 Pump unloading valve
- 27 Unidirectional valve

Closed center systems

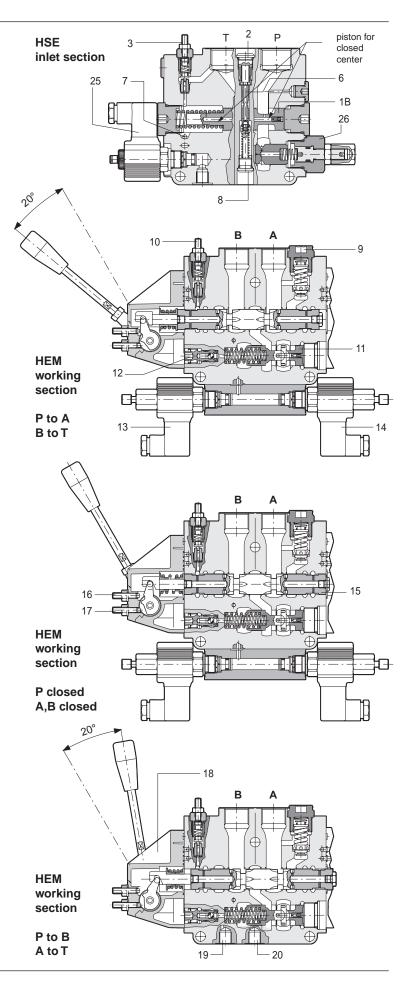
With the spools (15) in central position, the Ls line, the chamber on the spring side of the pressure compensators (11) and the pump flow/pressure regulator (24) are connected with the return line (T), allowing the pump to shift to the stand-by position.

When the spool (15) is activated, the port selected is placed in communication with line P1 and the work pressure through line Ls is sent to the pump flow/pressure regulator (23).

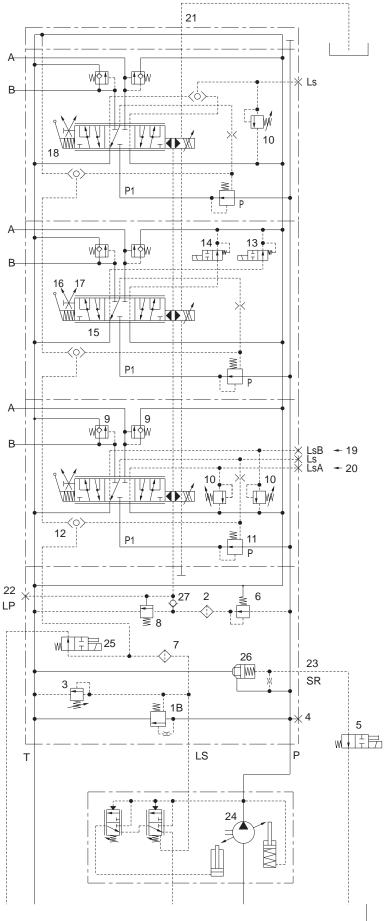
The flow obtained will only depend on the crossing area uncovered by the spool stroke and on the resulting Δp .

In this way the pump flow will adjust instantaneously to the actual flow required at the ports while keeping the differential pressure constant between the pump and the Ls signal.

The second stage of the pilot line pressure (3) must be set at 20-30 bar [290-435 psi] more than the maximum setting of the pump pressure/flow regulator (23). If two or more spools operating at different pressure values are activated at the same time, the pressure compensators (11) will keep the pressure drop constant (Δp) and thus the flow at the spools (15) will be constant within the maximum pump flow range.


On the other hand, if two or more spools of elements without pressure compensators are activated simultaneously, the flow on the spools will not be constant but will vary according to the work pressures.

The Load Sensing pressure relief valves (10), activated by a small pilot flow, precisely limit the pressure at ports A/B with no energy dissipation, unlike the anti-shock valves which, also when unloading the entire flow of the spools, are very dissipative.


The on-off solenoid valves (13-14) which cut off the LsA and LsB pilot lines, if activated, instantaneously cancel the flow at the relative port.

From the pressure reduction valve (6) starts a low pressure line (22 bar [319 psi]) which internally feeds the MHPE electrohydraulic modules and, externally, the hydraulic manipulators through port 22.

The max. work pressures of A/B ports of each element can be remote controlled using the LsA and LsB pilot line ports.

Closed center systems

- 1B Pressure regulator first stage
- 2 Low pressure line filter
- 3 Main pressure relief valve
- 4 Pump pressure gauge port
- 5 Pump unloading valve
- 6 Pressure reduction valve
- 7 Load sensing line filter
- 8 Low pressure line relief valve
- 9 Shock and suction valve
- 10 Ls pressure relief valve
- 11 Pressure compensator
- 12 Shuttle valve
- 13 LsB signal unloading solenoid valve
- 14 LsA signal unloading solenoid valve
- 15 Spool
- 16 A port flow fine adjustment register
- 17 B port flow fine adjustment register
- 18 Cover for manual control kinematic motion
- 19 LsB pressure pilot line port
- 20 LsA pressure pilot line port
- 21 Drain port
- 22 Low pressure pilot line port
- 23 Pilot line, pump unloading valve
- 24 Pump flow/pressure regulator
- 25 Ls signal unloading solenoid valve
- 26 Pump unloading valve
- 27 Unidirectional valve

General features

The HPV proportional valves are proportional directional valves with two functional characteristics:

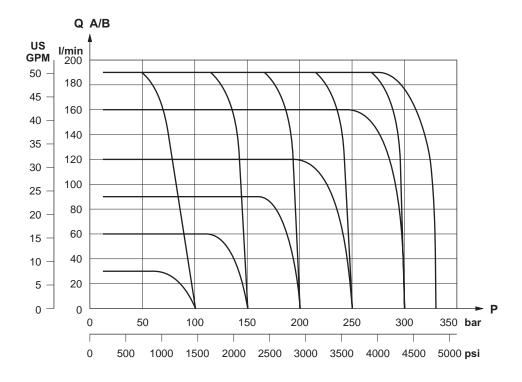
- Directional regulation.
- Flow regulation insensitive to the variation of the load applied to the actuator.

They can be remotely controlled and represent the most advanced technology in the world of applied hydraulics.

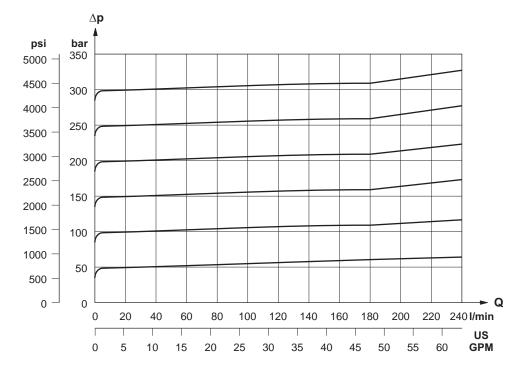
Proportional distributors differ in "open center" and "closed center":

- Proportional open center distributors are used with fixed displacement pumps.
- The closed center proportional valves are used with variable displacement pumps with load sensing control.

Hydraulic features

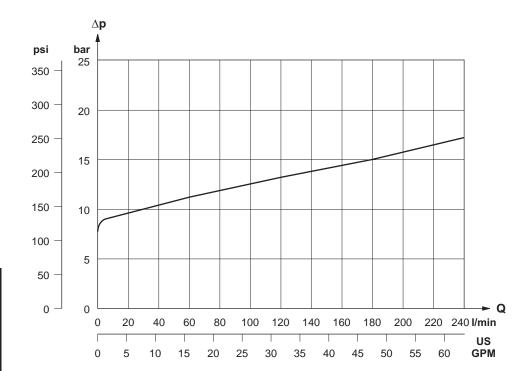

The hydraulic features reported below were measured using a mineral based hydraulic oil according to DIN 51524 or ISO 6743/4 with a viscosity of 25 mm²/s [130 SUS] at a temperature of 50 °C [122 °F]

	HSE inlet section	n, P port	250 l/min	66 US gpm	
	Mid inlet section	n, HFLS HPV77-HPV77	390 l/min	103 US gpm	
Rated flow	Mid inlet section	n, HFLS HPV77-HPV41	340 l/min	90 US gpm	
	A, B ports with p	oressure compensator	190 l/min	50 US gpm	
	A, B ports witho	ut pressure compensator	220 l/min	58 US gpm	
	Connection	Pressure relief valve setting	400 bar	5800 psi	
	P / P port	Working pressure	370 bar	5370 psi	
Many and in a second	Ports A, B		370 bar	5370 psi	
Max. working pressure	Connection Y		to	tank	
	O a service of the se	Static	25 bar	363 psi	
	Connection T	Dynamic	35 bar	508 psi	
Max. pilot pressure oil supply		18 ÷ 36 bar	260 ÷ 520 psi		
	Recommended		-30 ÷ 60 °C	-22 ÷ +140 °F	
Oil temperature	Min.		-25 °C	-13 °F	
	Max.		+80 °C	+176 °F	
Ambient temperature			-30 ÷ 60 °C	-22 ÷ +140 °F	
	Recommended		12 ÷ 80 mm²/s (cSt)		
Viscosiy	Min.		4 mm²/s (cSt)		
	Max.		460 mm²/s (cSt)		
Filtering	Max. contamina	tion: class 9 according to NAS	1638 (20/18/15 acc	ording to ISO 4406)	
0	Spool stroke		± 8 mm	± 0.315 in	
Stroke	Proportional		± 6.5 mm	± 0.256 in	
Dead band			± 1.5 mm	± 0.059 in	
Nominal internal leakage at 180 bar	4 D T	Without anti-shock valves	28 cm³/min	1.71 in³/min	
(2611 psi)	$A, B \rightarrow T$	With anti-shock valves	34 cm³/min	2.07 in ³ /min	

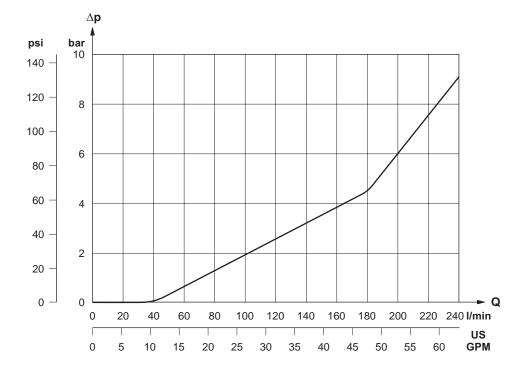

HPV 77 internal (easy replacement) filters, mesh 100 $\mu m.$

Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4. HPV 77 can also be used with phosphorous esters (HFDR), water-glycol /HFC) or water-oil (HFB) mixes, subject to our Technical Dept. approval.

Hydraulic control - MHPH module							
Pilot pressure	Start	4.5 bar	65 psi				
	End stroke	15 bar	218 psi				
Max. pilot pressure		30 bar	436 psi				

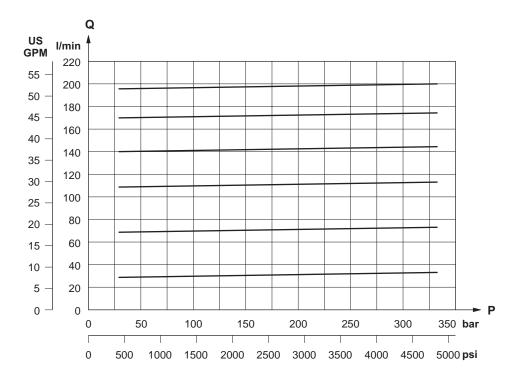


Flow characteristics at A / B ports with pressure limitation on the same (section with pressure compensator)

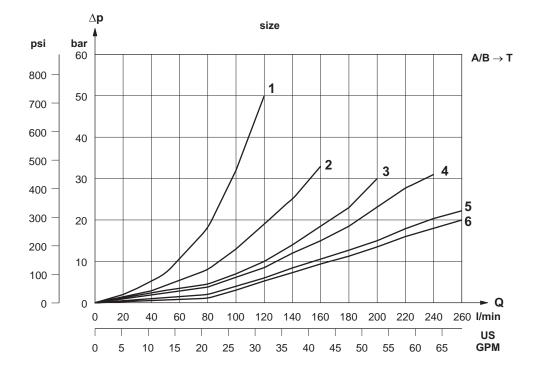


Characteristics of main pressure relief valve

Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 $^{\circ}\text{C}$ [122 $^{\circ}\text{F}]$

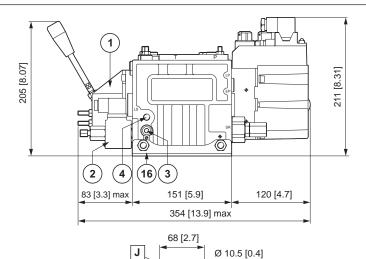


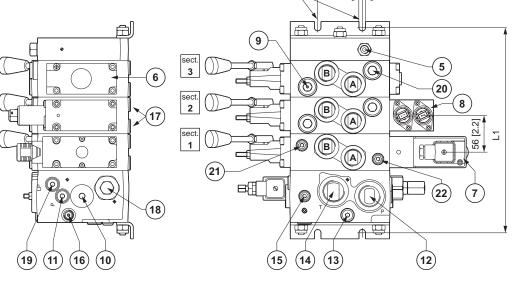
Pressure drop on inlet section, open centre type, with spools in neutral position

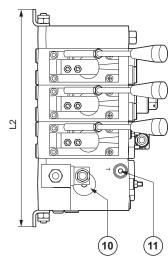


Pressure drop on inlet section with pump unloading valve and spools in neutral position (for open centre inlet sections only)

Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 °C [122 °F]


Characteristics of baric compensation: flow independent from load




 ΔP figures with spool on complete deadlock and a or B in T

Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 °C [122 °F]

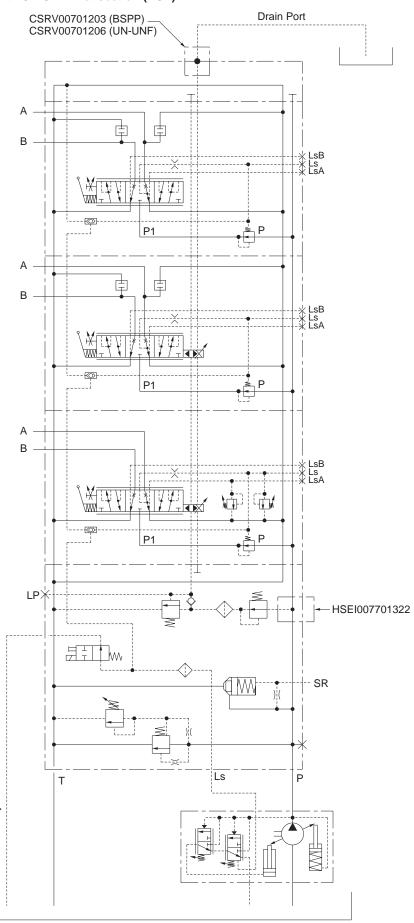
HPV 77 overall dimensions with SINGLE inlet section (HSE)

mm [inch]

A/B Ports, G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12)

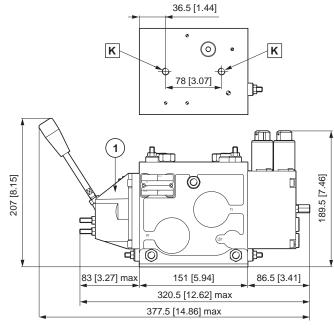
- Fixing means
- Manual control, HCM
- 2 LS signal unloading solenoid valve
- 3 LS signal filter cartridge
- LS port, G 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- Return line port for electrohydraulic modules, G 1/4" BSPP or 7/16" - 20UNF - 2B (SAE 4)
- 6 Manual control plate, HCP
- Odule for ON-OFF electrohydraulic control, MHOF
- Module for current electrohydraulic control, MHPF 8
- Port B anti-shock and anti-cavitation valve
- Flow regulator plug 10
- P, T pressure ports 11
- Pump side port, G 1" BSPP or 1 5/16" 12UN 2B (SAE 16) 12
- Low pressure line filter cartridge
- Return line port, G 1" BSPP o 1 5/16" 12UN 2B (SAE 16) 14
- Main pressure relief valve 15
- Pilot line external feed port, 1 G 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- LSA LSB pressure remote control port, G 1/4" BSPP or 7/16" -20UNF - 2B (SAE 4
- HSER mechanical adjuster 18
- Hydraulic manipulator feed port, G 1/4" BSPP or 7/16" 20UNF -2B (SAE 4)
- Port A anti-shock and anti-cavitation valve
- LSB pressure relief valve 21
- LSA pressure relief valve

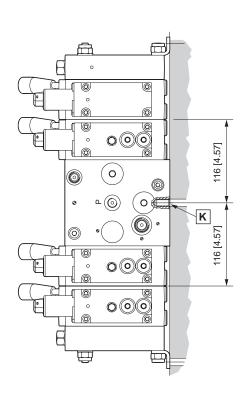
Working Sections	L1 mm [inch]	L2 mm [inch]		
1	201 [7.91]	219 [8.62]		
2	257 [10.12]	275 [10.83]		
3	313 [12.32]	331 [13.03]		
4	369 [14.53]	387 [15.24]		
5	425 [16.73]	443 [17.44]		
6	481 [18.94]	499 [19.65]		
7	537 [21.14]	555 [21.85]		
8	593 [23.35]	611 [24.06]		
9	649 [25.55]	667 [26.26]		
10	705 [27.76]	723 [28.46]		

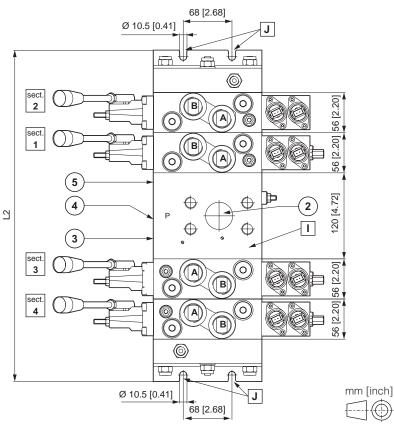

Fixing instructions

The distributor must be fixed by means (J) of the slots in the feet. We decline all responsibility in the case of malfunctioning or oil leakage caused by the wrong fixing of the distributor.

Note:


See the order form, page C-28.

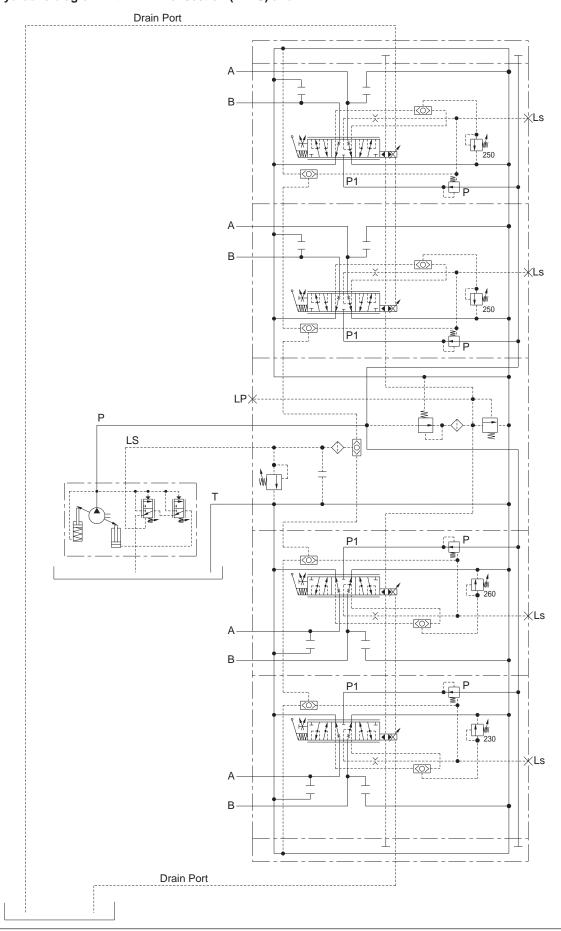

HPV 77 hydraulic diagram with SINGLE inlet section (HSE)



HPV77 overall dimensions with MID inlet section (HFLS) and HPV77

Working Sections	L1 mm [inch]	L2 mm [inch]		
2	332 [13.07]	350 [13.78]		
3	388 [15.28]	406 [15.98]		
4	444 [17.48]	462 [18.19]		
5	500 [19.68]	518 [20.39]		
6	556 [21.89]	574 [22.60]		
7	612 [24.09]	630 [24.80]		
8	668 [26.30]	686 [27.01]		

Ports, G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12)

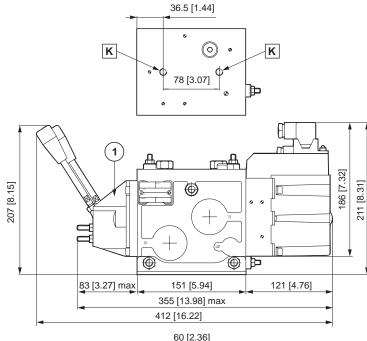

- Mid inlet section HFLS С
- Fixing means
- Fixing holes M10 Κ
- Manual control, HCM
- Pump side port, 1" 1/2 SAE Flange 6000 psi LS port, G 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)
- 4
- Return line port, 1" 1/2 SAE Flange 3000 psi LP port, G 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)

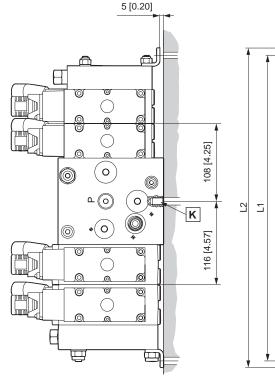
Fixing instructions

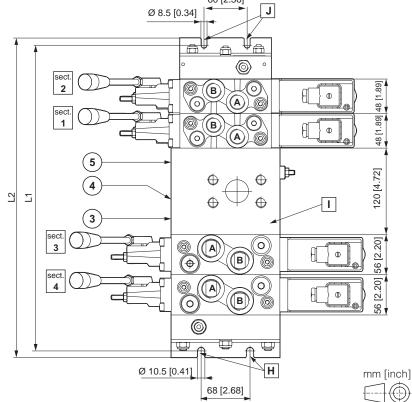
The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M10-6H (K) in the mid inlet section HFLS (I). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

On the working sections no. 3, 4 (as in the above example), the A - B port positions are reversed (see also the order form, page C-29).

HPV 77 hydraulic diagram with MID inlet section (HFLS) and HPV77

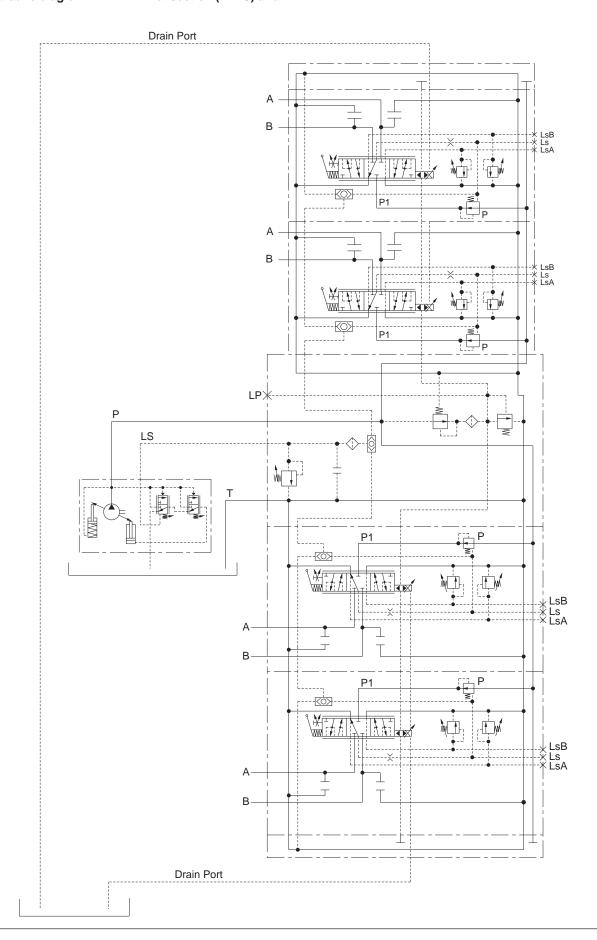



HPV77 overall dimensions with MID inlet section (HFLS) and HPV41


L	_		Working Sections HPV41										
mm [inch]		1	2	3	4	5	6	7					
	1	340 [13.39]	388 [15.28]	436 [17.17]	484 [19.06]	532 [20.94]	580 [22.83]	628 [24.72]					
HPV77	2	396 [15.59]	444 [17.48]	492 [19.37]	540 [21.26]	588 [23.15]	636 [25.04]	684 [26.93]					
	3	452 [17.8]	500 [19.68]	548 [21.57]	596 [23.46]	644 [25.35]	692 [27.24]	740 [29.13]					
Sections	4	508 [20]	556 [21.89]	604 [23.78]	652 [25.67]	700 [27.56]	748 [29.45]	796 [31.34]					
	5	564 [22.2]	612 [24.09]	660 [25.98]	708 [27.87]	756 [29.76]	804 [31.65]	852 [33.54]					
Working	6	620 [24.41]	668 [26.3]	716 [28.19]	764 [30.08]	812 [31.97]	860 [33.86]	908 [35.75]					
	7	676 [26.61]	724 [28.5]	772 [30.39]	820 [32.28]	868 [34.17]	916 [36.06]	964 [37.95]					

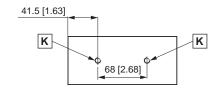
L1= (L2-0.75 inches)

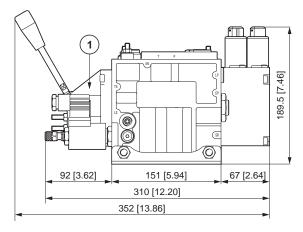
A/B Side HPV77: Ports, G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12) Side HPV41: Ports, G 1/2 BSPP or 7/8" - 14 UNF - 2B (SAE 10)

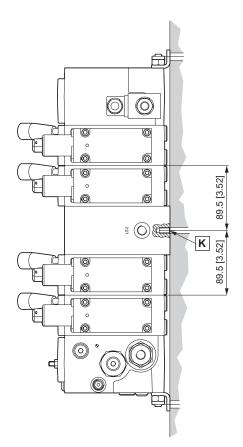

- Mid inlet section HFLS
- Fixing means
- Fixing holes M10
- Manual control, HCM
- 2 Pump side port, 1" 1/4 SAE Flange 6000 psi
- 3 LS port, G 1/4" BSPP or 7/16" - 20UNF - 2B (SAE 4)
- Return line port, 1" 1/4 SAE Flange 3000 psi LP port, G 1/4" BSPP or 7/16" 20UNF 2B (SAE 4)

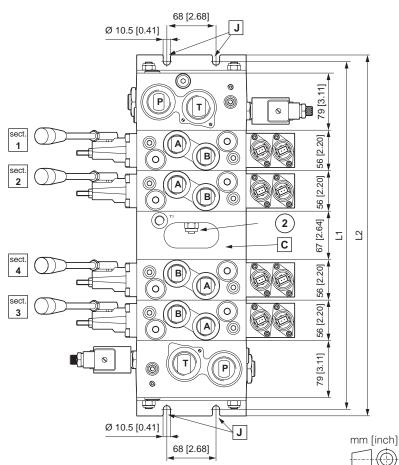
Fixing instructions

The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M10-6H (K) in the mid inlet section HFLS (I). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.


On the working sections no. 3, 4 (as in the above example), the A - B port positions are reversed (see also the order form, page C-29).

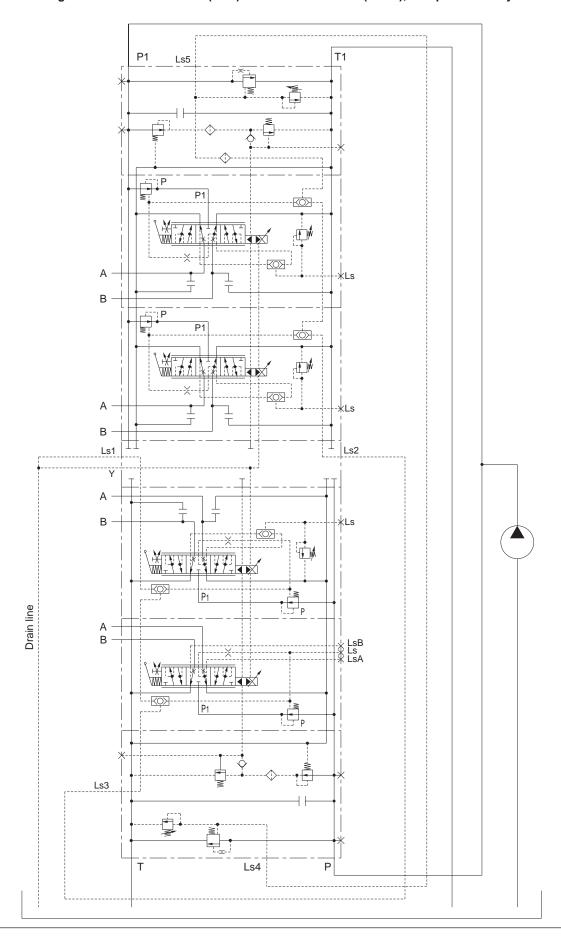

HPV 77 hydraulic diagram with MID inlet section (HFLS) and HPV41




HPV 77 overall dimensions with 2 inlet sections (HSE) and mid end section (HPFS)

Working Sections	L1 mm [inch]	L2 mm [inch]
2	369 [14.53]	387 [15.24]
3	425 [16.73]	443 [17.44]
4	481 [18.94]	499 [19.65]
5	537 [21.14]	555 [21.85]
6	593 [23.35]	611 [24.06]
7	649 [25.55]	667 [26.26]
8	705 [27.76]	723 [28.46]

- A/B Ports, G 3/4 BSPP or 1 1/16" 12 UN 2B (SAE 12)
- C Mid inlet section HPFS
- J Fixing means
- K Fixing holes M10
- P Pump side port, G 1" BSPP or 1 5/16" 12UN 2B (SAE 16)
- T Return line port, G 1" BSPP or 1 5/16" 12UN 2B (SAE 16)
- Manual control, HCM

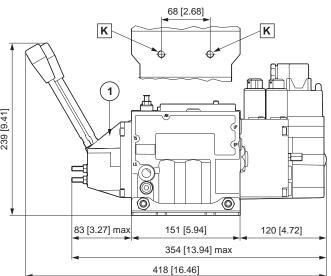

Fixing instructions

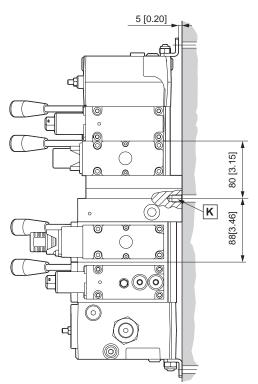
The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M10-6H (K) in the mid end section HPFS (C). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

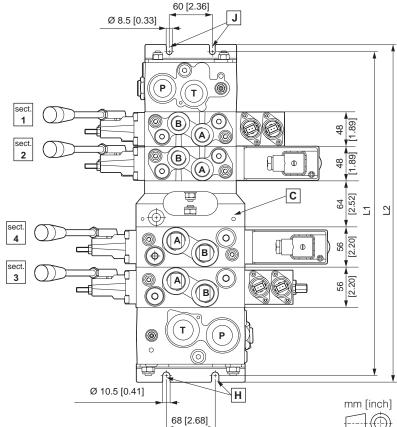
Note:

On the working sections no. 1, 2 (as in the above example), the $\it A$ - $\it B$ port positions are reversed (see also the order form, page C-30).

HPV 77 hydraulic duagram with 2 inlet sections (HSE) and mid end section (HPFS), for open centre system




HPV 77 overall dimensions with MID END section (HPFS) and HPV 41 distributor


L	_	Working Sections HPV41										
mm [inch]		1	2	3	4	5	6	7				
	1	367 [14.45]	415 [16.34]	463 [18.23]	511 [20.12]	559 [22.01]	607 [23.9]	655 [25.79]				
HPV77	2	423 [16.65]	471 [18.54]	519 [20.43]	567 [22.32]	615 [24.21]	663 [26.1]	711 [27.99]				
	3	479 [18.86]	527 [20.75]	575 [22.64]	623 [24.53]	671 [26.42]	719 [28.31]	767 [30.20]				
Sections	4	535 [21.06]	583 [22.95]	631 [24.84]	679 [26.73]	727 [28.62]	775 [30.51]	823 [32.40]				
	5	591 [23.27]	639 [25.16]	687 [27.05]	735 [28.94]	783 [30.83]	831 [32.72]	879 [34.61]				
Working	6	647 [25.47]	695 [27.36]	743 [29.25]	791 [31.14]	839 [33.03]	887 [34.92]	935 [36.81]				
	7	703 [27.68]	751 [29.57]	799 [31.46]	847 [33.35]	895 [35.24]	943 [37.13]	991 [39.02]				

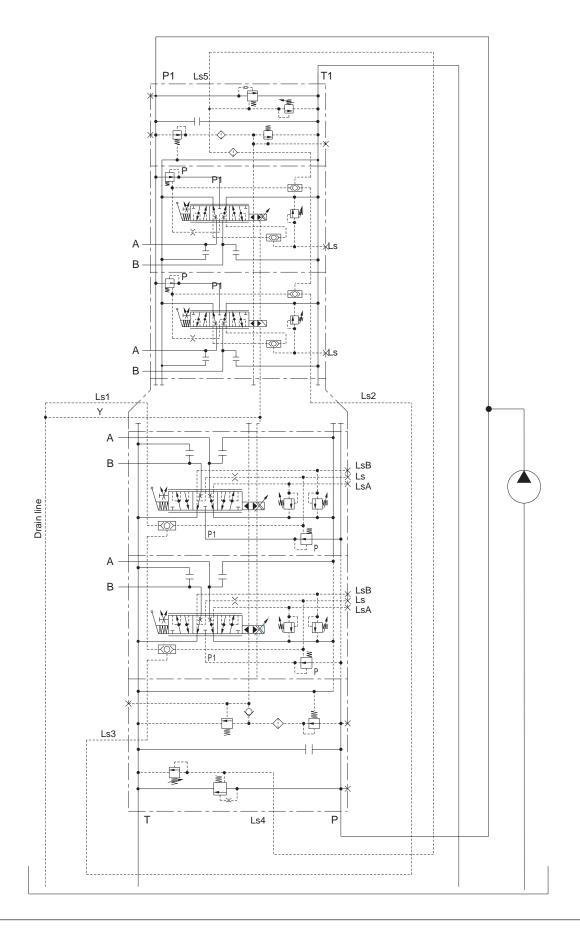
L1= (L2-0.75 inches)

A/B side HPV77: Ports, G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12) side HPV41: Ports, G 1/2 BSPP or 7/8" - 14 UNF - 2B (SAE 10)

P/T pump and return connections

side HPV77: G 1" BSPP or 1 5/16" - 12UN - 2B (SAE 16) side HPV41: G 3/4" BSPP or 1 1/16" - 12UN - 2B (SAE 12)

- C Mid inlet section HPFS
- J Fixing means
- K Fixing holes M10
- Manual control, HCM

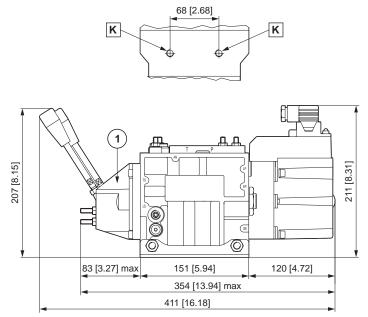

Fixing instructions

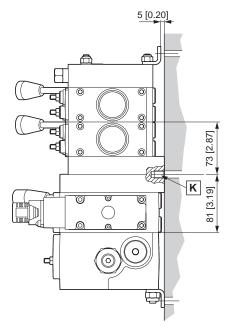
The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M10-6H (K) in the mid end section HPFS (C). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

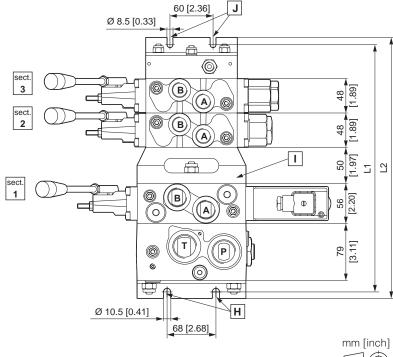
Note:

On the working sections no. 1, 2 (as in the above example), the A - B port positions are reversed (see also the order form, page C-30).

HPV 77 hydraulic diagram with MID END section (HPFS) and HPV 41 distributor



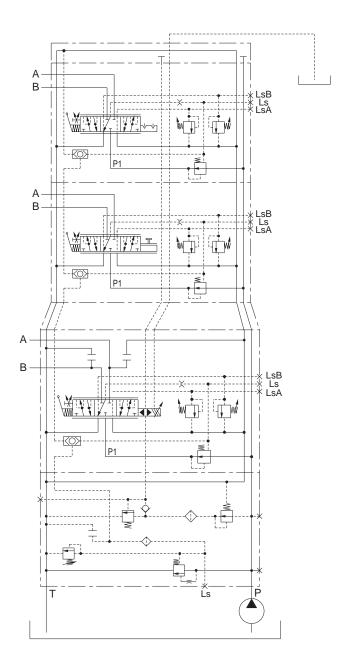

HPV 77 overall dimensions with INTERFACE (HSIF) for HPV 41 distributor


L		Working Sections HPV41										
mm [inch]		1	2	3	4	5	6	7				
	1	315 [12.40]	363 [14.29]	411 [16.18]	459 [18.07]	507 [19.96]	555 [21.85]	603 [23.74]				
2 Z		371 [14.61]	419 [16.50]	467 [18.39]	515 [20.28]	563 [22.17]	611 [24.06]	659 [25.94]				
3 HF		427 [16.81]	475 [18.70]	523 [20.59]	571 [22.48]	619 [24.37]	667 [26.26]	715 [28.15]				
Sections	4	483 [19.02]	531 [20.91]	579 [22.80]	627 [24.68]	675 [26.57]	723 [28.46]	771 [30.35]				
	5	539 [21.22]	587 [23.11]	635 [25.00]	683 [26.89]	731 [28.78]	779 [30.67]	827 [32.56]				
Working 9		595 [23.43]	643 [25.31]	691 [27.20]	739 [29.09]	787 [30.98]	835 [32.87]	883 [34.76]				
	7	651 [25.63]	699 [27.52]	747 [29.41]	795 [31.30]	843 [33.19]	891 [35.08]	939 [36.97]				

L1= (L2-0.75 inches)

A/B side HPV77: Ports, G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12) side HPV41: Ports, G 1/2 BSPP or 7/8" - 14 UNF - 2B (SAE 10)

- I Interface HSIF
- J Fixing means
- K Fixing holes M10
- P Pump side port, G 1" BSPP or 1 5/16" 12UN 2B (SAE 16)
- Return line port, G 1" BSPP or 1 5/16" 12UN 2B (SAE 16)
- 1 Manual control, HCM

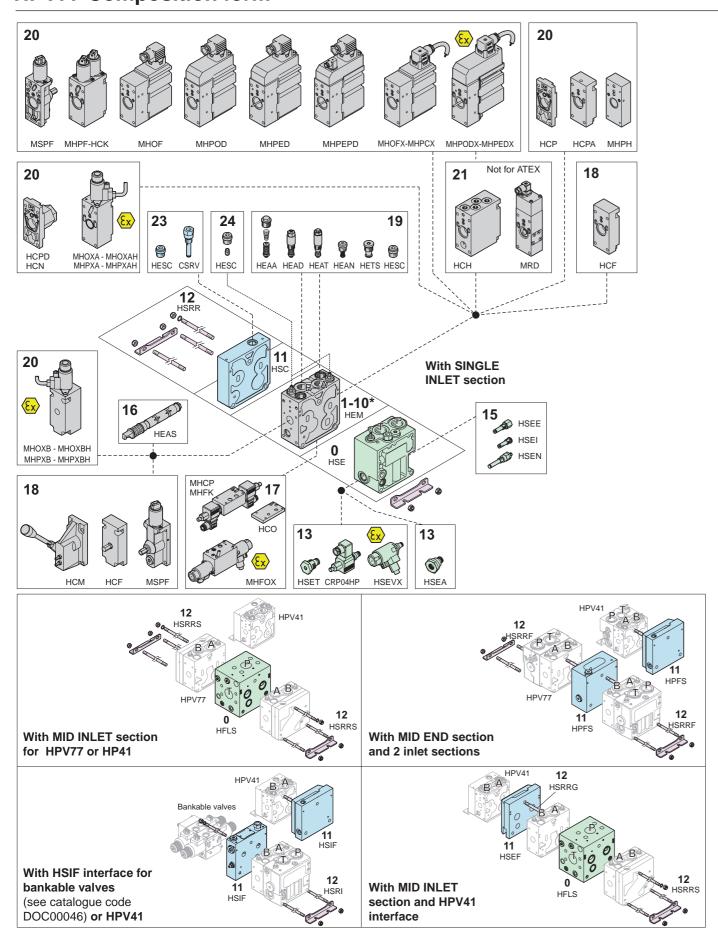

Fixing instructions

The distributor must be fixed by means of the slots (J) in the feet and by means of the two holes M8-6H (K) in the HSIF interface (I). We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

Note


See the order form, page C-28.

HPV 77 hydraulic diagram with INTERFACE (HSIF) for HPV 41 distributor



HPV77 Composition form HPV77 Composition form

HPV77 Composition form

^{*} Working sections HEM (1-10) are reversibles, actuators (18-20-21) can be assembled on side X or Y of element.

FIELD 0 - INLET SECTIONS	
HSE - Inlet section HFLS - Intermediate inlet section HPV77 + HPV77	
HFLS - Intermediate inlet section HPV/7 + HPV/7HFLS - Intermediate inlet section HPV77 + HPV41	
FIELD 1 to 10 - WORKING SECTIONS HEM - Working section	C-4:
FIELD 11 - END SECTIONS HSC - End section	
HPFS - Intermediate end section HPV77 + HPV77	
HPFS - Intermediate end section HPV77 + HPV41	C-9
HSIF - Interface between HPV77 and CXDH3 / CX3 / CDH3 / CD3 / CD0	3 C-9
HSIF - Interface between HPV77 and HPV41	
HSEF - Interface between HPV77 and HPV41 intermediate inlet HFLS	
FIELD 12 - STAY BOLTS KITS	
HSRR - Stay bolts kit for single inlet HSE	
HSRRS - Stay bolts kit for mid inlet HFLS	
HSRRF - Stay bolts kit for mid end section HPFS	
HSRI - Stay bolts kit for HSIF interfaca	
FIELD 13 - FACILITIES FOR SOLENOID LS UNLOADING VALVES	
HSET - Plug	
CRP04HP - Electrical valve	
HSEA - Cartridge	
HSEVX - ATEX electrical valve	
FIELD 15 - PILOT OIL SUPPLY HSEE, HSEI, HSEN - Cartridges	
FIELD 16 - SPOOLS	
HEAS - Main spools	
FIELD 17 - ELECTRICAL UNLOADING LSA-B MODULE	
MHFK, MHCP - Unloading modules	
MHFOX - ATEX unloading module	
FIELD 18 - MECHANICAL ACTUATORS HCM Mechanical control	
HCF Rear cover	
MSPF - Current electrohydraulic proportional module	
FIELD 19 - SHOCK AND SUCTION VALVE	0.5
HEAA, HEAD, HEAT, HEAN, HETS, HESC - Valves and plugs FIELD 20 - MECHANICAL, HYDRAULIC AND ELECTRICAL ACTUATORS	
HCN - Friction	C-5(
HCP - Rear cover	
HCPA - Adjustabler rear cover	
HCPD - Spool lock device	C-5
MHPH - Hydraulic activation	C-5
MHPF - Electrohydraulic proportional module	
HCK - electrohydraulic proportional modulewith pilot oil connections	
MHOF - On/Off electrohydraulic module	
MHPOD - Open loop electrohydraulic proportional module	
MHPED - Closed loop electrohydraulic proportional module	
MHOX, MHOX-H - On/Off electrohydraulic modules ATEX	
MHPX, MHPX-H - Proportional electrohydraulic modules ATEX	
MHOFX - On/Off electrohydraulic ATEX module	
MHPCX - Proportional electrohydraulic ATEX module	
MHPODX - Open loop electrohydraulic proportional ATEX module	C-76
MHPEDX - Closed loop electrohydraulic proportiona ATEX module	
FIELD 21 - REMOTE CONTROL	
HCH - Hydraulic and electrical remote control	
MRD - Electrical spool movement device	C-8
FIELD 23 - ACCESSORIES FOR HSC AND HSIF ELEMENTS CSRV module - electrical activations external drain	0.00
FIELD 24 - PLUGS KIT Kit for closing pressure relief valve cavity	
SPARE PARTS KIT	

This order form is the only one ensuring that the product will be defined and ordered correctly without any possible mistakes. It is divided into sectors of pertinence, from 0 to 24, within which the code of the required module must be inserted.

It is also necessary to indicate:

- the setting in bar of the pressure relief valve (sector 0, inlet section);
- when requested, the setting in bar of the LsA/LsB pressure relief valves (sectors 1 to 10, HEM spool elements);

Dana suggests to indicate the pump type and the flow that feeds the proportional valve, so it is possible to test it in working conditions.

The valve is always assembled as indicated in the module assembly selection table (see page C-25), i.e. the HCM module for the manual control inserted in sector of pertinence 18, and the rear modules HCP, HCPD, MHPH, MHPE, MHPO, MHOF etc. inserted into sectors of pertinence 20, 21.

If the opposite assembly is required, just select from menu the desired assembly mode: Right / Left HPV feed, HPV feed with HFLS / HPFS module.

Combination table controls

Controls	НСМ	HCF	MSPF	MHOXB	МНОХВН	МНРХВ	МНРХВН
HCPD HCN	•	_	_	_	_	_	_
MHOXA	•	_	_	•	_	_	_
MHOXAH	•	_	_	_	•	_	_
MHPXA	•	_	_	_	_	•	_
MHPXAH	•	_	_	_	_	_	•
MSPF	•	•	•	_	_	_	_
MHPF-HCK	•	_	_	_	_	_	_
MHOF	•	_	_	_	_	_	_
MHPOD	•	_	_	_	_	_	_
MHPED	•	_	_	_	_	_	_
MHPEPD	•	_	_	_	_	_	_
MHOFX MHPCX	•	_	_	_	_	_	_
MHPODX MHPEDX	•	_	_	_	_	_	_
HCP	•	_	_	_	_	_	_
HCPA	•	_	_	_	_	_	_
MHPH	•	•	_	_	_	_	_
HCF	_	_	•	•	•	•	•

• = combinable — = not combinable

ATEX controls. For the ATEX versions you need to use the cast iron controls.

Order form

With SINGLE inlet section (HSE)

Controlled function	B Port	Field		11 12		23		A Port		Controlled function
	18			bar		16			18	
	19	40	LsA	υαι		10			19	
	20	10	LsA LsB			17			20	
	21			22 bor		16			21 18	
	19		LsA	bar		10			19	
	20	9	LsB			17			20	
	21			22					21	
	18 19		LsA	bar		16			18 19	
	20	8	LsB			17			20	
	21			22					21	
	18		LaA	bar		16			18	
	19 20	7	LsA LsB			17			19 20	
	21		LSD	22		11/			21	
	18			bar		16			18	
	19	6	LsA LsB			17			19	
	20 21		LSB	22		17			20	
	18			bar		16			18	
	19	5	LsA						19	
	20 21		LsB	22		17			20 21	
	18			bar		16			18	
	19	4	LsA	Dai					19	
	20	4	LsB			17			20	
	21 18			22 bar		16			21 18	
	19		LsA	Dai		10			19	
	20	3	LsA LsB			17			20	
	21			22		40			21	
	18 19		LoA	bar		16			18 19	
	20	2	LsA LsB			17			20	
	21			22					21	
	18		1 . 4	bar		16			18	
	19 20	1	LsA LsB			17			19 20	
	21		LSD	22		11			21	
ote		_	Р			13		Note		
		0	hor			14 15				
			bar			15				
Right HPV feet	d (Standard)						MAIN INFO	DRIMATION		
Left HPV feed					7		Pump type	○ Fixed displ. ○ LS	control (Constant pressure
				1	/		Pump flow, I/1'	000 liter / min		
							Type of threads	OUNF OB	SPP	
										O Not associated
							Reference tension	○12 V ○24		Not required
							Electric devices	○ Standard ○ Al	ex PWM	O ATEX Tens
ustomer:										
em description:										
	ata.									
ompilation form d										
ur valve internal co										
ustomer reference										
ompilation form m	nodification index									
rder No.:					Order quantity				-	
rder Date:					Net price EUR					
iudi Dald.						D05	ND (0.10)			
					- I PRICE LIST 2018 - v	ers. KSF	P(GAS)			
elivery date: rder ack. N°.:					PRICE LIST 2018 - v Quotazione n°:	ers. BSP	P(GAS)			

NOTE: For working sections numbering, see page C-12.

Order form

With MID inlet section (HFLS)

Controlled function	B Port	Field		11 12	23		A Port		Controlled function
	18		ļ	bar	16	6		18 19	
	19 20	6	LsA LsB		17	7		19 20	
	21		LSD	22				20 21	
	18		L	bar	16	6		18	
	19	5	LsA		4-	7		19	
	20 21	-	LsB	22	17	′		20 21	
	18			bar	16	6		18	
	19	4	LsA LsB					19	
	20 21		LSB	22	17	/		20	
	18			bar	16	3		18	
	18 19	3	LsA LsB					18 19	
	20 21	_ 0	LsB	22	17	7		20 21	
	18			bar	16	3		18	
	19	2	LsA LsB	Dai				19	
	20		LsB	00	17	7		20	
	21			22 bar	16	3		21	
	19	4	LsA	Dul				18 19	
	20 21	1	LsB	00	17	7	1	20	
			P	22	13	2	+	21	
HFLS	A	0	F		14	1	В		HFLS
III LO	Port	U	bar		15		Port		TILLS
	18			bar	16	3		18 19	
	19	7	LsA					19	
	20 21		LsB	22	17	′		20	
	18			bar	16	6		18	
	19 20	8	LsA					18 19	
	20 21		LsB	22	17	7		20 21	
	18			bar	16	3		18	
	19 20	9	LsA LsB	Dai				19 20	
	20	9	LsB	00	17	7		20	
	21			22 bar	16	3		21 18	
	18 19 20	40	LsA	Dai		,		19	
	20	10	LsA LsB		17	7		19 20	
	21		-	22	10			21	
	18 19		LsA	bar	16)		18 19	
	20	11	LsA LsB		17	7		20	
	21		_	22	4/	,		21	
	18 19		ΙsΔ	bar	16)		18 19	
	20	12	LsA LsB		17	7		20	
	21			22				21	
ote			-	11 12	23	3	Note		
				12					
HPV feed with	HFLS module					MAIN INF	ORMATION		
HPV feed with HF			J	V	7			ntrol	O Constant
						Pump type	Fixed displ. OLS co	IIIfOI	O Constant pressure
						Pump flow, I/1'	000 liter / min		7
						Type of threads	O UNF O BSPP		<u> </u>
						Reference tension	○12 V ○24 V		O Not required
						Electric devices	○ Standard	WM	O ATEX Tens
uotomo:									
ustomer:									
em description:									
ompilation form da									
ur valve internal co									
ustomer reference	code								
ompilation form m	odification index								
rder No.:					Order quantity				
-					Net price EUR		1		
rder Date:							1		
rder Date:						RSPP (GAS)			
rder Date: elivery date: rder ack. N°.:					PRICE LIST 2018 - vers. I	BSPP (GAS)			

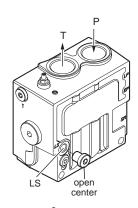
NOTE: For working sections numbering, see page C-14.

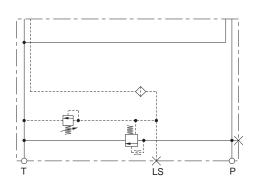
Order form

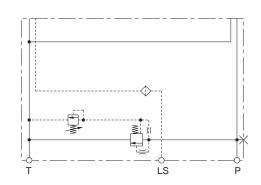
With 2 inlet sections (HSE) and mid end section (HPFS)

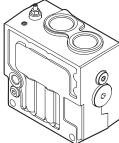
Controlled	А					13		В		Controlled
function	Port	0		12		14 15		Port		function
	18			bar		16			18	
	19	1	LsA LsB			17			19	
	20 21	_	LSD	22		17			20	
	18			bar		16			18	
	19	2	LsA			17			19	
	20 21		LsB	22		17			20 21	
	18			bar		16			18	
	19	3	LsA			17			19	
	20 21	-	LsB	22		17			20 21	
	18			bar		16			18	
	19	4	LsA LsB			47			19	
	20 21	— ՝	LSB	22	+	17			20	
	18			bar		16			18	
	19	5	LsA						19	
	20 21	_	LsB	22		17			20	
	18			bar	+	16			18	
	19	6	LsA LsB						19	
	20 21	_ "	LsB	22		17			20	
				22		+		_	41	
HPFS	B	Field		11				A		HPFS
	Port							Port		·
	18		1 . 4	bar		16			18	
	19 20	12	LsA LsB		_	17			19	
	21		LSD	22					21	
	18		Ī	bar		16			18	
	19 20	11	LsA LsB			17			19 20	
	21		LSD	22		17			21	
	18			bar		16			18	
	19	10	LsA			17			19	
	20 21	- 1	LsB	22		17			20	
	18			bar		16			18	
	19	9	LsA			47			19	
	20 21	-	LsB	22	_	17			20 21	
	18			bar		16			18	
	I 19	8	LsA						1 19 1	
	20 21		LsB	22		17			20 21	
	18			bar		16			18	
	19	7	LsA LsB						19	
	20 21	_ ′	LsB	22		17			20	
Note	41					13		Note	<u> </u>	
		0				14]		
			<u> </u>	12	1	15		<u> </u>		
HPV feed with					•		MAIN INFO	RMATION		
HPV feed with HF	LS module			V			Pump type	O Fixed displ. O LS of	ontrol	O Constant pressure
							Pump flow, I/1'	000 liter / min		- 1
								OUNF OBSPI		1
							Type of threads			
							Reference tension	○12 V ○24 V		O Not required
							Electric devices	○ Standard	PWM	O ATEX Tens
Customer:										
Item description:					1					
Compilation form da	ato:				1					
Our valve internal co					1					
Customer reference										
Compilation form m	odification index							T		
Order No.:					Order quantity					
Order Date:					Net price EUR					
Delivery date:			-		PRICE LIST 2018 - v	vers. BSF	PP (GAS)			
Order ack. N°.:					Quotazione n° :					
	T	ammanitian f	orm oho	II not ha door		nommond	dation. We decline any res	enoneihilitioe		

NOTE: For working sections numbering, see page C-20.


Features

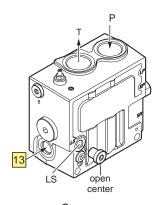

• Hydraulic features: see page C-8.

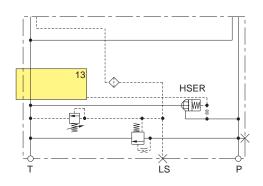

Connections: P, T: G 1" BSPP or 1 5/16" - 12UN - 2B.
 Connessione Ls: 1/4" BSPP or 7/16" - 20UNF-2B.

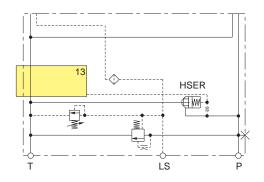

Cast iron body.

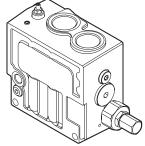
HSE for purely mechanically activated valves

Open center circuit for fixed displacement pumps

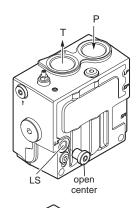

Code							
BSPP UN - UNF							
HSE0007701205	HSE0007701210						

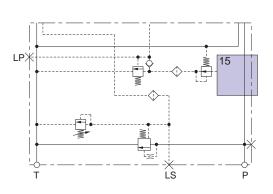

Closed center circuit for load sensing pumps

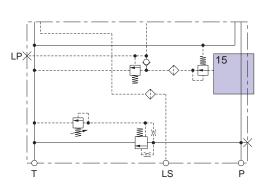

Code						
BSPP	UN - UNF					
HSE0007701255	HSE0007701260					

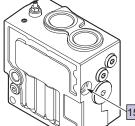

DANA

For purely mechanically activated valves. HSER pump unloading valve. Prearranged for CRP04HP, HSET, HSEA.


Open center circuit for fixed displacement pumps


Code						
BSPP UN - UNF						
HSE0007701213	HSE0007701214					

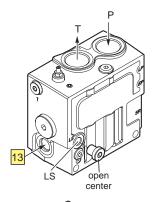

Closed center circuit for load sensing pumps

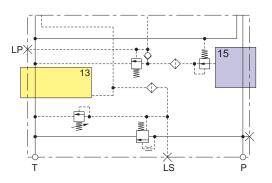

Code						
BSPP UN - UNF						
HSE0007701223	HSE0007701224					

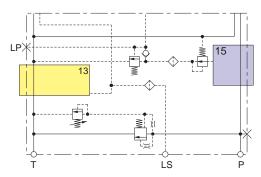
For electrically activated valves. With pilot oil supply Lp.

Open center circuit for fixed displacement pumps

Code			LP(*)	
BSPP	UN - UNF	bar	psi	
HSE0007701225	HSE0007701230	22	319	
HSE0007701286	HSE0007701288	30	435	
HSE0007701287	HSE0007701289	36	522	


Closed center circuit for load sensing pumps

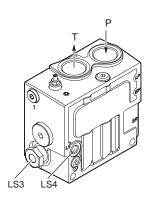

Code			LP(*)	
BSPP	UN - UNF	bar	psi	
HSE0007701265	HSE0007701270	22	319	
HSE0007701306	HSE0007701330	30	435	
HSE0007701307	HSE0007701331	36	522	

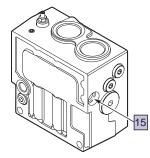

13 15 Seats, see accessories tables from page C-40.

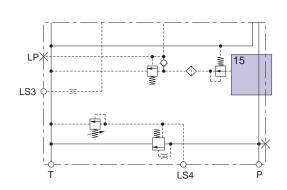
(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

For electrically activated valves. With pilot oil supply. Prearranged for valves CRP04HP, HSET, HSEA

Open center circuit for fixed displacement pumps


	15

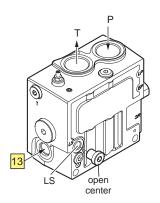

Code		LP(*)				
BSPP	UN - UNF	bar	psi			
HSE0007701235	HSE0007701240	22	319			
HSE0007701290	HSE0007701296	30	435			
HSE0007701291	HSE0007701297	36	522			

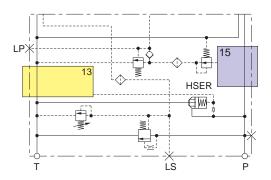

Closed center circuit for load sensing pumps

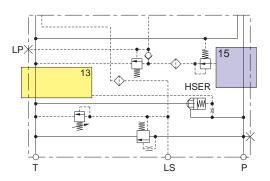
Code			LP(*)	
BSPP	UN - UNF	bar	psi	
HSE0007701275	HSE0007701280	22	319	
HSE0007701332	HSE0007701334	30	435	
HSE0007701333	HSE0007701335	36	522	

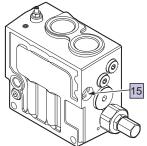
For electrically activated valves. With pilot oil supply. For system with 2 inlet sections supplied by 1 pump only.

Open center circuit for fixed displacement pumps

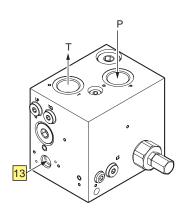

Code LP(*)				
	ue	LP(*)		
BSPP	UN - UNF	bar	psi	
HSE0007701237	*	22	319	
HSE0007701294	*	30	435	
HSE0007701295	*	36	522	

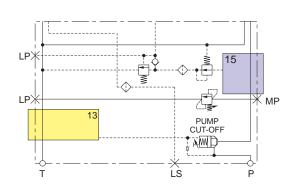

^{*} available on request


13 Seats, see accessories tables from page C-40.


(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

For electrically activated valves. With pilot oil supply. HSER pump unloading valve. Prearranged for CRP04HP, HSET, HSEA.

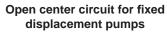

Open center circuit for fixed displacement pumps

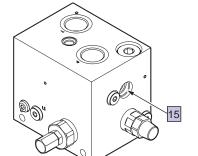

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0007701204	HSE0007701206	22	319
HSE0007701282	HSE0007701284	30	435
HSE0007701283	HSE0007701285	36	522

Closed center circuit for load sensing pumps

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HSE0007701264	HSE0007701266	22	319
HSE0007701303	HSE0007701308	30	435
HSE0007701304	HSE0007701309	36	522

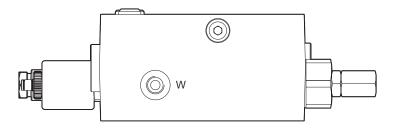
Constant pressure inlet section. For electrically activated valves. Prearranged for HSEVX and CUT-OFF pump. ATEX version.

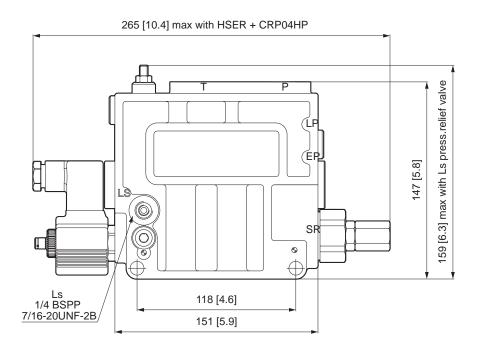


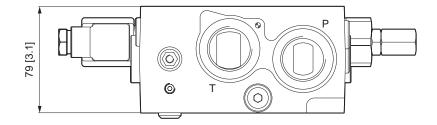


13 : can be assembled only with the electrical valves ATEX type HSEVX.

Stay bolts kit, please contact our sales department.

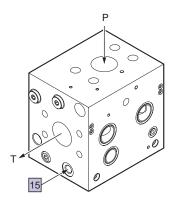



Code	LP(*)		
BSPP	bar	psi	
HSE0007701400	22	319	

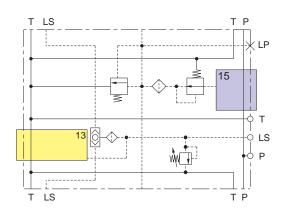

13 15 Seats, see accessories tables from page C-40.

(*) LP = Pilot pressure oil supply. If not specified 22 bar [319 psi]

HSE inlet module overall dimensions



Features

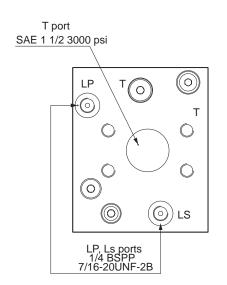

- Max. flow. Q = 390 I/min [103 US GPM]
- Max. pressure = 400 bar [5800 psi]
- Pilot pressure Pmax = 22 bar [319 psi]
- CRP04HP (electrical Ls unloading valve) prearranged
- Connections

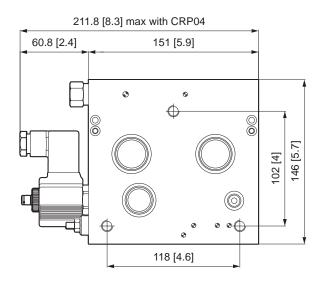
P = 1 1/2" SAE Flange 6000 psi T = 1 1/2" SAE Flange 3000 psi LS. LP = 1/4" BSPP

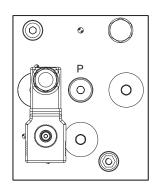
Other hydraulic features: see page C-8.

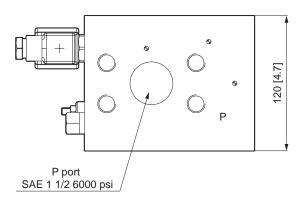
Closed center circuit for load sensing pumps

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HFLS007701271	*	22	319
HFLS007701340	*	30	435
HFLS007701341	*	36	522

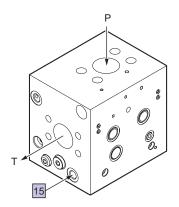

^{*} available on request

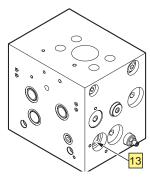

13 15 Seats, see accessories tables page C-40.

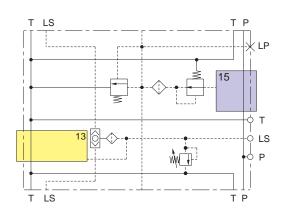

(*) LP = Pilot pressure oil supply



HFLS inlet module overall dimensions

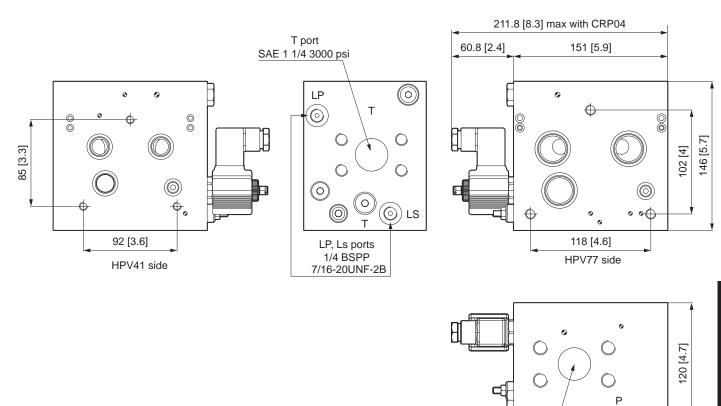



Features


- Max. flow. Q = 340 l/min [89.8 US GPM]
- Max. pressure = 400 bar [5800 psi]
- Pilot pressure Pmax = 22 bar [319 psi]
- CRP04HP (electrical Ls unloading valve) prearranged
- Connections

P = 1 1/4" SAE Flange 6000 psi T = 1 1/4" SAE Flange 3000 psi LS. LP = 1/4" BSPP or 7/16"-20UNF-2B

• Other hydraulic features: see page C-8.


Closed center circuit for load sensing pumps

Code		LP(*)	
BSPP	UN - UNF	bar	psi
HFLS007701200	HFLS007701201	22	319

13 15 Seats, see accessories tables page C-40.

(*) LP = Pilot pressure oil supply

HFLS inlet module overall dimensions

P port SAE 1 1/4 6000 psi

Field 13 - Facilities for solenoid Ls unloading valve

Code	Description	Ls unloading valve	HSER pilot	Draw
Code	Description	Symbo	Symbol / Field	
HSET007701305	HSET Plug	13	W 13	
CRP04HPNAAE4P71 14 Vdc	CRP04HP	13 w 0 27h	W- 13	
CRP04HPNAAEVP71 28 Vdc	Electrical valve normally open	W.L.Y.R.Z.JJ		
CRP04HPNCAE4P01 14 Vdc	CRP04HP	13	W:	
CRP04HPNCAEVP01 28 Vdc	Electrical valve normally closed	W. T. T. S.Z. JJ		9
HSEVX0NA12000 12 Vdc	HSEVX (*) Electrical valve normally open	_	W: 13	(E-
HSEVX0NA24000 24 Vdc	ATEX		CUT-OFF	
HSEVX0NC12000 12 Vdc	HSEVX (*) Electrical valve normally closed	_	W 13	
HSEVX0NC24000 24 Vdc	ATEX		CUT-OFF	
HSEA007701301 (connection X G 1/4)	HSEA Screw-in cartridge, Ls pilot	 	13	
HSEA007701303 (connection X 7/16 20 UNF)	pressure for HSE inlet sections, with Ø 0.8 mm [0.03 inch] orifice	<u> </u>		
HSEA007701302 (connection X G 1/4)	HSEA	13		
HSEA007701304 (connection X 7/16 20 UNF)	Screw-in cartridge, Ls pilot pressure for HSE inlet sections			

W Drain port

^(*) The eletrical valves ATEX type XSEVX can be assembled only with the inlect section code HFLS007701200, page C-34.

1) CRP04HP valve features

versions.

Pilot-operated, electrically controlled 2-way / 2-position Ls unloading directional valve. For high pressures. When energized (N.C.) or deenergized (N.O.), it enables a connection between the Ls signal and tank port and every machine's function will be cut-off except the ones whose pressure is lower than the remaining Δp (see page C-1). Tapered poppet made up in tempered and ground steel. Available in normally open (NA) or normally closed (NC)

- NA, free flow from 2 to 1 with de-energized coil.
- NC, free flow from 2 to 1 with energized coil or from 1 to 2 with de-energized coil.

The valves work with DC coils whereas RAC coils with a connector with incorporated rectifier must be used for AC applications.

Sleeve made up in galvanised steel.

Further details of the CRP04 valve, see Dana catalog code DOC00044.

Max. operating pressure	370 bar
	[5366 psi] 30 l/min
Max. flow	
	[7.93 US gpm] 0 ÷ 0,25 cm³/min
Max. Leakage (0-5 drops/min)	•
	[0.015 inch ³ /min]
Max. excitation frequency	2 Hz
Duty cycle	100% ED
Hydraulic fluids	Mineral oil
Oil viscosity	10 ÷ 500 mm²/s (cSt)
0.11 (1.000.000.000.000.000.000.000.000.000.0	-25 ÷ +75 °C
Oil temperature	[-13 ÷ +167 °F]
A seeled on the seed on the seed of the se	-25 ÷ +60 °C
Ambient temperature	[-13 ÷ +140 °F]
	ISO 4406:1999
Max. contamination level class with filter	class 21/19/16
O	000
Cartridge filter	280 µm
Degree of enclosure	IP 65
(depending on connector)	55
Weight (with coil)	0,350 kg
	[0.77 lb]
Cartridge tightening torque	25 ÷ 30 Nm
Cartriage tigritering torque	[18.4 ÷ 22.2 lbf.ft]
Coil ring nut tightening torque	7 Nm
	[5.2 lbf.ft]

2) HSEVX - ATEX valve features

In combination with the MHPX and MHOX electro-hydraulic modules another safety solenoid valve, HSEVX, can be inserted in the inlet sections.

The HSEVX solenoid valve can be configured normally open or normally closed. When deactivated (NO) or active (NC), it provides the immediate discharging of the signal with the consequent close down of all actuator movements (venting condition of the entire hydraulic system). HSEVX solenoid valve can be inserted into those inlet sections that are prearranged with the proper cavity: for further informations please refer to our Technical Dept.

The conformity certification of the solenoids of HSEVX will be provided separately, according to the ATEX 2014/34/UE Directive.

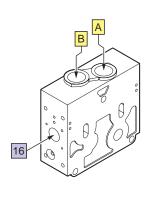
When the modules are individually supplied, a label is attached to the module with the following labelling:

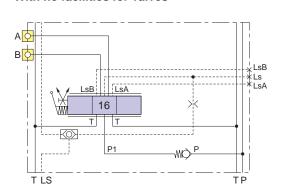
ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

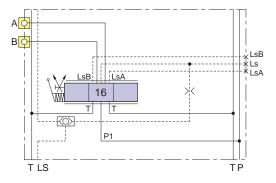
For the wiring diagram of module, please refer to Instruction manual.

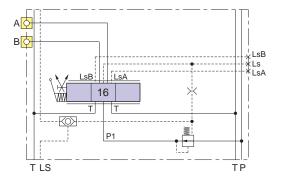
Nominal voltage	12 VDC	24 VDC
Coil resistance, R20	$9 \Omega \pm 6\%$	$35.8~\Omega \pm 6\%$
Min. current	700 mA	350 mA
Max. current	1850 mA	930 mA
Limit power	14.3 W	14.4 W
Ambient temperature	[-4 ÷ +	+50 °C -122 °F]
Connection cable	[3 x 15	3 x 1.5 mm ² 5 AWG] [197-201 inch]
Integrated diode to limit switch-off overvoltage	See coil manufa	
Short-circuit protection	With fuse - See manual	coil manufacturer
Duty cycle	10	00%
Input pressure	Max. 400 b	ar [5800 psi]
Switching pressure	Max 200 b	ar [2900 psi]
Operating Limits		ax. flow 7 l/min flow 1.85 US gpm]
Flow P \rightarrow T at $\Delta p = 2$ bar [29 psi]	> 6.5 l/min [1.71 US gpm]
Leakage P →T (Oil Temp. 50°C [122 °F] / Input press. 400 bar [5800 psi])		ml/min 5 US gpm
Fluid temperature	-20 ÷	+80 °C -176 °F]
Ground connection	Up to 4 mr	m² [11 AWG]
Protection class (DIN VDE 0580)		I
Fluids	,	to DIN 51524. F-oil
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	/ IP69K
Shock-resistance to EN 50014	4 J	
ATEX directive	See page A-3	
ATEX marking	See p	age A-4

Accessories for inlet sections


Field 15 - Facilities for pump unloading


Co	ode	Description	Symbol / Field	Draw
BSPP	UN - UNF	Description	Symbol / Field	Diaw
HSEE007701320 (connection X G 1/4)	HSEE007701321 (connection X 7/16 UNF)	HSEE External pilot oil supply cartridge	15	
HSEI00	7701322	HSEI Internal pilot oil supply cartridge	15	
HSEN007701326		HSEN Internal pilot oil supply and cut-off cartridge	15 }	




- Features
- Other hydraulic features: see page C-8.
- Connections: A,B: 3/4" BSPP or 11/16" 12UN-2B
- · Cast iron body.

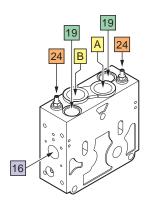
With no facilities for valves

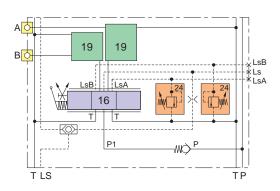
Without pressure compensator With load drop check valve

Code		
BSPP	UN - UNF	
HEM0007702276	HEM0007702281	

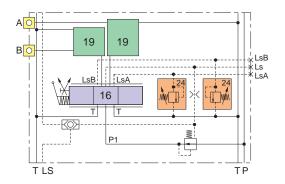
Without pressure compensator

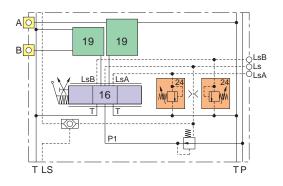
Code	
BSPP	UN - UNF
HEM0007702275	HEM0007702280


With pressure compensator


Code	
BSPP	UN - UNF
HEM0007702335	HEM0007702340

16 Spool page C-49


A/B Alternatively closing plug HETS004103002 page C-53


With adjustable LsA LsB pressure relief valves. Prearranged for shock-suction valves

A		 -
B 0 19	19	
ill st		LsB ************************************
LsB 1	6 T	*LsA
	P1	
T LS		

Without pressure compensator With load drop check valve

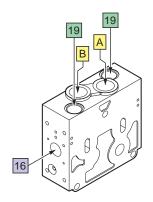
Code		
BSPP	UN - UNF	
HEM0007702256	HEM0007702261	

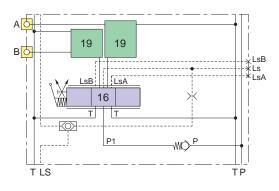
Without pressure compensator

Code	
BSPP	UN - UNF
HEM0007702255	HEM0007702260

With pressure compensator

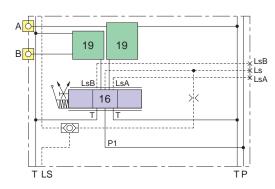
Code		
BSPP	UN - UNF	
HEM0007702315	HEM0007702320	

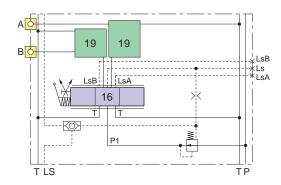

With pressure compensator


Code	
BSPP	UN - UNF
HEM0007702305	HEM0007702310

Prearranged for: shock-suction valves electrical LsA - LsB signal unloading modules (MHFO, MHFK modules)

- 16 Spool page C-49
- 19 Seats for valve HEAA HEAD HEAT HEAN or plug HETS page C-51
- 24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC007703007 page C-53
- A/B + 19 Alternatively plugs kit HESC007703012 page C-53
- A/B + 19 + 24 Alternatively plugs kit HESC007703013 page C-53


Prearranged for shock-suction valves

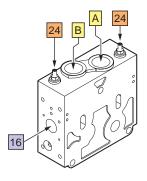

Without pressure compensator With load drop check valve

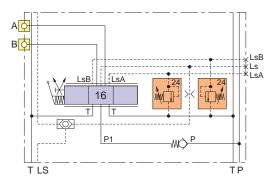
Code			
BSPP UN - UNF			
HEM0007702266	HEM0007702271		

Without pressure compensator

Code			
BSPP UN - UNF			
HEM0007702265	HEM0007702270		

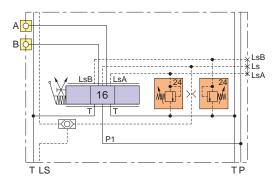
With pressure compensator

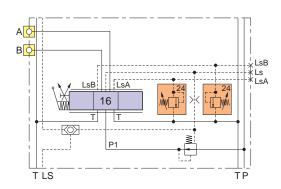

Code			
BSPP UN - UNF			
HEM0007702325	HEM0007702330		


16 Spool page C-49

19 Seats for valve HEAA - HEAD - HEAT - HEAN or plug HETS page C-51

A/B + 19 Alternatively plugs kit HESC004103008 page C-53

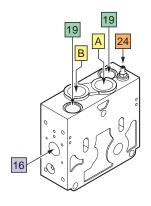

With adjustable LsA LsB pressure relief valves

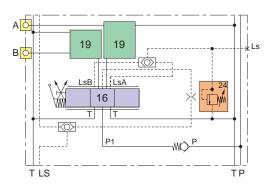

Without pressure compensator With load drop check valve

Code			
BSPP UN - UNF			
HEM0007702286	HEM0007702291		

Without pressure compensator

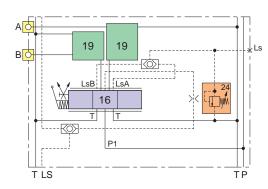
Code			
BSPP UN - UNF			
HEM0007702285	HEM0007702290		

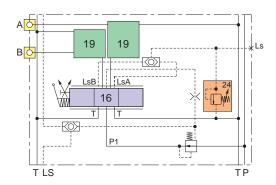



With pressure compensator

Code			
BSPP UN - UNF			
HEM0007702345	HEM0007702350		

- 16 Spool page C-49
- 24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC004103007 page C-53
- A/B Alternatively closing plug HETS007701303 page C-53

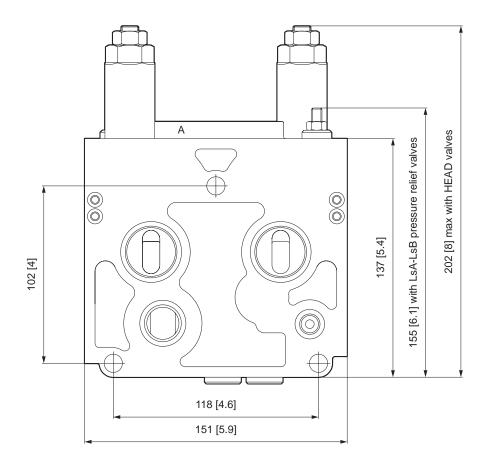

With single adjustable Ls pressure relief valve. Prearranged for shock-suction valves

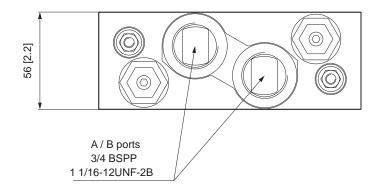

Without pressure compensator With load drop check valve

Code			
BSPP UN - UNF			
HEM0007702296	HEM0007702301		

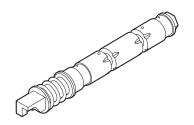
Without pressure compensator

Code		
BSPP	UN - UNF	
HEM0007702295	HEM0007702300	




With pressure compensator

Code			
BSPP UN - UNF			
HEM0007702355	HEM0007702360		


- 16 Spool page C-49
- 19 Seats for valve HEAA HEAD HEAT HEAN or plug HETS page C-51
- 24 Pressure relief valves LsA e LsB, alternatively kit for closing seat HESC007703007 page C-53
- A/B + 19 Alternatively plugs kit HESC007703012 page C-53
- A/B + 19 + 24 Alternatively plugs kit HESC007703013 page C-53

HEM module overall dimensions

Main spool for flow control, double acting

		Symbol and ordering code			
		В А	В А	ВА	B A
Size	Max. pressure compensated oil flow				
	l/min	TPT	TPT	TPT	TPT
	[US gpm)	4-way. 3-position	4-way. 3-position	4-way. 3-position	4-way. 3-position
		A. B closed	$A. B \rightarrow T$	$B \rightarrow T$; A closed	$A \rightarrow T$; B closed
1	100 [26.4]	HEAS007704305	HEAS007704335	HEAS007704365	HEAS007704395
2	115 [30.4]	HEAS007704310	HEAS007704340	HEAS007704370	HEAS007704400
3	135 [35.7]	HEAS007704315	HEAS007704345	HEAS007704375	HEAS007704405
4	155 [40.9]	HEAS007704320	HEAS007704350	HEAS007704380	HEAS007704410
5	175 [46.2]	HEAS007704325	HEAS007704355	HEAS007704385	HEAS007704415
6	190 [50.2]	HEAS007704330	HEAS007704360	HEAS007704390	HEAS007704420

Main spool for flow control, double acting, asymmetric flow

		Symbol and ordering code			
Max. pressure	compensated	B A	B A	ВА	ВА
oil f I/min [U	low	T.P.T.	T.P.T.	T.P.T.	TPT
Α	В	4-way. 3-position A. B closed	4-way. 3-position A. B \rightarrow T	4-way. 3-position B → T; A closed	4-way. 3-position A → T; B closed
45 [11.9]	220 [58.1]	_	HEAS007704192 (*)	_	_
60 [15.9]	155 [40.9]	_	HEAS007704180 (*)	_	_
100 [26.4]	220 [58.1]	_	HEAS007704186 (*)	_	_
115 [30.4]	200 [52.8]	HEAS007704164 (*)	_	_	_
135 [35.7]	190 [50.2]	HEAS007704170 (*)	_	_	_

Main spool for flow control, single acting

		Symbol and o	Symbol and ordering code		
Size	Max. pressure compensated oil flow I/min [US gpm)	B A T P T 3-way, 3-position	T P T 3-way, 3-position		
		$P \to A$	$P \rightarrow B$		
1	100 [26.4]	HEAS007704425 (*)	HEAS007704455 (*)		
2	115 [30.4]	HEAS007704430 (*)	HEAS007704460 (*)		
3	135 [35.7]	HEAS007704435 (*)	HEAS007704465 (*)		
4	155 [40.9]	HEAS007704440 (*)	HEAS007704470 (*)		
5	175 [46.2]	HEAS007704445 (*)	HEAS007704475 (*)		
6	190 [50.2]	HEAS007704450 (*)	HEAS007704480 (*)		

(*) Special spool, available upon request

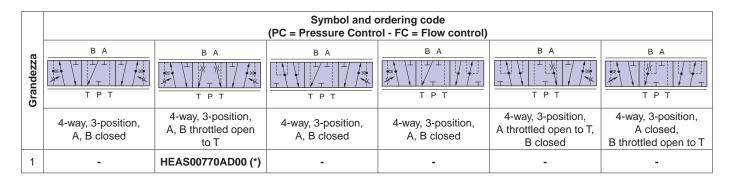
Main spool for flow control, double acting, with 4th floating position

		Symbol and o	ordering code
Size	Max. pressure compensated oil flow I/min	B A T P T	B A T P T
	[US gpm)	3-way, 4-position floating position on A port	3-way, 4-position floating position on B port
1	100 [26.4]	HEAS007704485 (*)	HEAS007704515 (*)
2	115 [30.4]	HEAS007704490 (*)	HEAS007704520 (*)
3	135 [35.7]	HEAS007704495 (*)	HEAS007704525 (*)
4	155 [40.9]	HEAS007704500 (*)	HEAS007704530 (*)
5	175 [46.2]	HEAS007704505 (*)	HEAS007704535 (*)
6	190 [50.2]	HEAS007704510 (*)	HEAS007704540 (*)

Main spool for pressure control

When using a proportional directional valve, where the overcenter valves are present, instability problems can happen to the whole system, in the form of a rise and fall of pressure. A new series of spools will suit these kinds of problems.

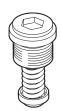
This system of control is called Pressure Control, and has been devised to make the overcenter valves pilot pressure more stable.


Generally, the Pressure Control function is requested for only one port (A or B), while the other port maintains the normal flow control function.

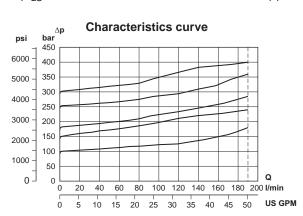
The problem manifests almost always during the re-entry of the rod, under the force of the positive load, where the only pressure requested is that which is necessary to pilot the overcenter valves, to lower and control the load.

The Pressure Control spools must always be used with compensating elements and with pilot load sensing relief valves for A/B ports.

Using the Pressure Control solution allows a higher degree of stability to the system and the control of the function, however, we advise its use exclusively in severe cases, since:


- The valve loses own compensation, becoming "load dependent": namely, its performance varies at the variation of the working pressure;
- The pump pressure could be considerably higher than that necessary to move the load (the Δp through the spool is no more constant and controllable).

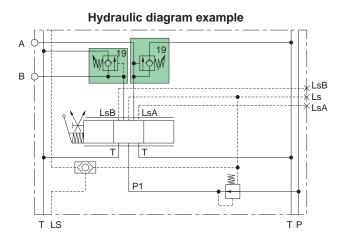
Typical spool oil flow tolerances


	Oil flow at max. spool travel		
Size	min I/min [US gpm]	max I/min [US gpm]	
1	97 [25.6]	105 [27.7]	
2	108 [28.5]	115 [30.4]	
3	158 [41.7]	138 [36.5]	
4	150 [39.6]	160 [42.3]	
5	170 [44.9]	176 [46.5]	
6	185 [48.9]	191 [50.5]	

(*) Special spool, available upon request

HEAA

Hydraulic diagram example A B LSB LSA T LS T P

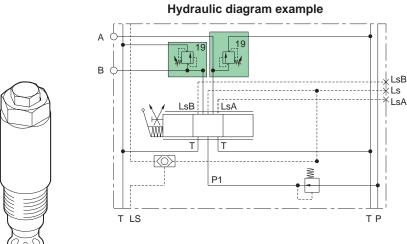

Not adjustable shock and suction valve for A – B ports,

HEAA is designed to absorb shock effects only.

Don't use it as a pressure relief valve.

5
)
5
5
)
5
5
)
)
)
)
)
)
)
)

	psi	$^{\Delta}$	р С	harac	teristi	cs cu	irve		
	4000 -	300 250							
Ē	3000 -	200							
Pressure	2000 -	150							
_	1000 -	100 50							
	0 -	0	0 1	10 2	20 3	30	40 5	50 60	Q 0 I/min
		(0	5	;	10)	15	US GP

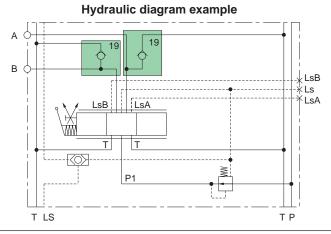

Adjustable shock and suction valve for A-B ports.

HEAD is designed to absorb shock effects only.

Don't use it as a pressure relief valve.

Range setting bar [psi]	Code (*)
20 ÷ 90 [5,3 ÷ 23,8]	HEAD007708996
91 ÷140 [24 ÷ 37]	HEAD007708998
141 ÷ 270 [37,2 ÷ 71,3]	HEAD007709000
271 ÷ 350 [71,6 ÷ 92,5]	HEAD007709001

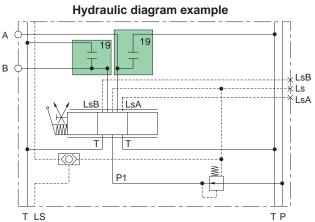
 $(^{\star})$ In the order form indicate the lines A and/or B on which the valves are to be mounted


$\mathop{\mathsf{bar}}^{\Delta \mathsf{p}}$ Characteristics curve psi 450 6000 400 350 5000 Pressure 2 > 1 4000 3000 2000 1000 0 -120 160 I/min 0 10 15 30 40 US GPM 20 25

Adjustable shock valve for A – B ports

Don't use it as a pressure relief valve.

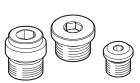
Range setting bar [psi]	Code (*)
20 ÷ 90 [5,3 ÷ 23,8]	HEAT007708996
91 ÷140 [24 ÷ 37]	HEAT007708998
141 ÷ 270 [37,2 ÷ 71,3]	HEAT007709000
271 ÷ 350 [71,6 ÷ 92,5]	HEAT007709001



Suction valve

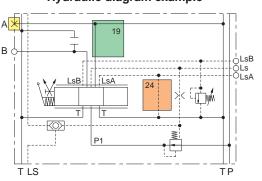
Code (*)	
HEAN007703011	

HETS



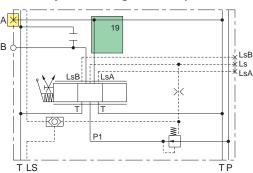
Replacing plug

Code (*) HETS007703010


(*) In the order form indicate the lines A and/or B on which the valves are to be mounted

Hydraulic diagram example

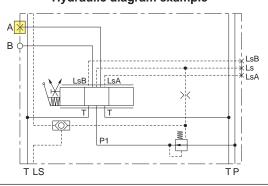
HESC


Kit for connecting the non-active port to tank, when using a single acting spool - to be fitted with HEM modules with LsA-LsB + shock and suction valves cavities (lines A or B)

Code (*)	
HESC007703013	

Hydraulic diagram example

HESC

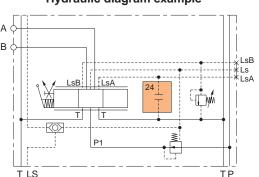

Plug for connecting the non-active port to tank, when using a single acting spool (A or B)

Code (*)	
HESC007703012	

Hydraulic diagram example

HETS

Plug for closing A or B port

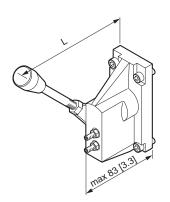

Code (*)
HETS007701303

Hydraulic diagram example

HESC

Kit for closing Ls pressure relief valve cavity LsA and/or LsB

Code (*) HESC007703007


Protection cap for Ls pressure relief valve regulation screw for HEM (working sections) and HSE (inlet sections). Code number and quantity (related to no. of Ls valve mounted) must be indicated under the HEM..... or HSE..... field of the order form.

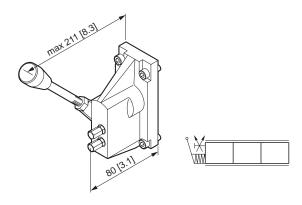
Code (*) KIT0007703995

The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for

marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.

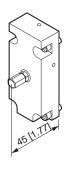
HCM

Mechanical control


Control positions: see page A-4.

L	Code	Code	
mm [inch]	(Aluminum)	(Cast iron)	
211 [8.3]	HCM0007704590	HCM0007704589	
261 [10.3]	HCM000770C000	*	

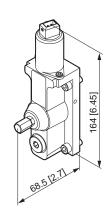
^{*} available on request


Flow adjustement protective nuts kit for HCM mechanical control

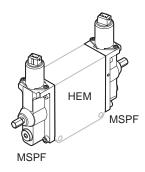
Mechanical control, with flow adjustement nuts protection Control positions: see page A-4.

Code	Code	
(Aluminum)	(Cast iron)	
HCM0007704690	HCM0007704689	

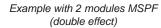
HCM

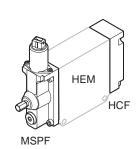

Rear cover flow adjustement for:

- MHPF electrical module
- MHPH module with stroke adjustment
- ATEX modules.


Code	Code
(Aluminum)	(Cast iron)
HCF0007704587	HCF0007704584

HCF





MSPF

Example with 1 module MSPF and rear cover HCF (single effect in B)

MSPF electrohydraulic proportional module

MSPF is one of the series of PWM open loop electrical activation units.

MSPF can be controlled either in proportional or in on-off mode. With electrical proportional actuation, the main spool position is adjusted by the pilot pressure, so that it corresponds to an electrical signal (PWM) coming from a remote control unit. With electrical on-off actuation, the main spool is moved from neutral to maximum stroke when one of the two pressure reducing solenoid valves is energized.

MSPF is recommended where there is a requirement for medium resolution proportional control and where hysteresis is not critical.

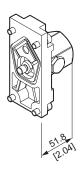
MSPF is being supplied without manual spool control, thus allowing both smaller overall dimensions and cost effective compared to MHPF, HCK modules.

The MSPF module has the following main features:

- · On-off and proportional mode;
- Quick reaction time;
- · Electro-proportional pressure reducing valves;
- PWM control of low-frequency solenoid valves;
- Low hysteresis and good sensitivity;
- · Mechanical flow adjustment;
- Pilot pressure ports;
- Possibility of operating in double acting or single acting with HCF module (see page C-54).

Voltoge	Code (Aluminum)	
Voltage	BSPP	UN - UNF
12 Vdc	MSPF007707070	*
24 Vdc	MSPF007707071	*

^{*} available on request

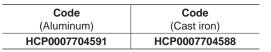

Rated voltage		12 Vdc	24 Vdc	
Supply voltage		11 to 15 V	22 to 30 V	
Max. ripple		8 %	8 %	
Max. current		1500 mA ± 10	750 mA ± 10	
Power consumption		18 W at 22 °C [71.6 °	F] coil temperature	
Start spool travel		600 mA	280 mA	
End spool travel		1170 mA	530 mA	
R ₂₀		4.72 Ω ± 5 %	20.8 Ω ± 5 %	
Heat insulation		Class H, 180	Class H, 180 °C [356 °F]	
	Recommended	-30 ÷ +60 °C [-2	-30 ÷ +60 °C [-22 ÷ +140 °F]	
Oil temperature	Min	-30 °C [-	22 °F]	
	Max	+90 °C [+	194 °F]	
Dither adjustment		75 Hz		
Inductance		8.5 mH 70 mH		
Current variation		100 mA/s 50 mA/s		
Duty avala 9/ ED on off anarating		14 V = 100	28 V = 100	
Duty cycle % ED on-off operating		15 V = 50	30 V = 50	
Plug connector		2-pole AMP Junior Power Timer		
Reaction time from neutral position	Reaction time from neutral position to end spool stroke (constant voltage) 120 ms		ms	
Reaction time from end spool stroke to neutral position (constant voltage)		90 ms		
Grade of enclosure to IEC 529, with female connector IP 65		55		

Electrical connections for MSPF-MHPF-HCK working sections, see page: E-2

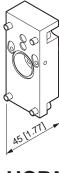
The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for

marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.

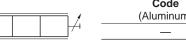
Friction control


Code	Code
(Aluminum)	(Cast iron)
HCN0007704628	HCN0007704627

HCN

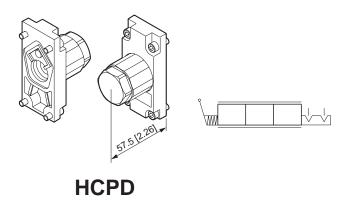


Rear cover



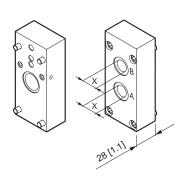
HCP

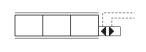
Rear cover with stroke adjustment



Code	Code
(Aluminum)	(Cast iron)
_	HCPA007704580

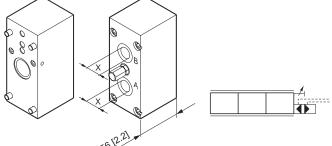
HCPK-HCPD-MHPH controls for HEM working sections


The control modules can be made up in aluminum or cast iron. For standard applications aluminum is used normally, for


marine or mining applications we advise the choice of cast iron. For the ATEX versions you need to use the cast iron controls.

Mechanical spool lock device, manual release

Control	Code (Aluminum)	Code (Cast iron)	
$P \rightarrow A lock$ $P \rightarrow B free$	HCPD007704592	HCPD007704547	
$P \rightarrow B$ lock $P \rightarrow A$ free	HCPD007704593	HCPD007704548	
$P \rightarrow A lock$ $P \rightarrow B lock$	HCPD007704594	HCPD007704549	
$P \rightarrow A$ float $P \rightarrow B$ free	HCPD007704585	HCPD007704545	
$P \rightarrow B$ float $P \rightarrow A$ free	HCPD007704586	HCPD007704546	

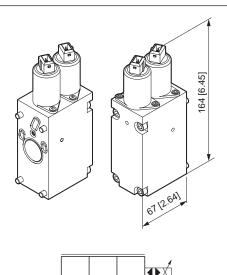


Hydraulic activation

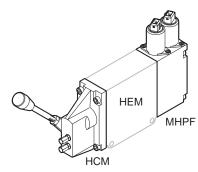
- Start pilot pressure: 4.5 bar [65 psi] End stroke pressure: 15 bar [218 psi]
- Max. pilot pressure: 30 bar [435 psi]

Thread	Code (Aluminum)	Code (Cast iron)	
(X) 1/4 BSPP	MHPH007704601	MHPH007704621	
(X) 7/16" - 20 UNF	MHPH007704602	MHPH007704622	

MHPH


MHPH

Hydraulic activation with stroke adjustment


- Start pilot pressure: 4.5 bar [65 psi]
- End stroke pressure: 15 bar [218 psi]
- Max. pilot pressure: 30 bar [435 psi]

Thread	Code	Code
IIIIeau	(Aluminum)	(Cast iron)
(X) 7/16" - 20 UNF	MHPH007704612	MHPH007704614

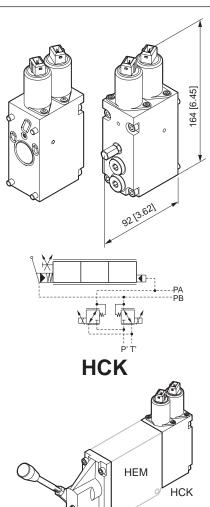
MHPF

Example with module MHPF and manual control HCM

MHPF electrohydraulic PROPORTIONAL module

MHPF proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. The MHPF module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults.


This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control, only.

MHPF module has the following main features:

- It can be operated with on-off signals also
- · Short response time
- Electro-proportional pressure reduction valves
- PWM electric control of low-frequency solenoid valves
- Any adjustment to limit the flow or to create work ramps will be made directly on the remote control
- Very low hysteresis and excellent sensitivity

Voltage	Code (Aluminum)	Code (Cast iron)
12 Vdc	MHPF007707088	MHPF007707090
24 Vdc	MHPF007707089	MHPF007707091

Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		11 to 15 V	22 to 30 V
Max. ripple		8 %	, 0
Max. current		1500 mA ± 10	750 mA ± 10
Power consumption		18 W at 22 °C [71.6 °F] coil temperature	
Start spool travel		630 mA	280 mA
End spool travel		1170 mA	610 mA
R ₂₀		4.72 Ω ± 5 %	20.8 Ω ± 5 %
Heat insulation		Class H, 180 °C [356 °F]	
	Recommended	-30 ÷ +60 °C [-22 ÷ +140 °F]	
Oil temperature	Min	-30 °C [-22 °F]	
	Max	+90 °C [+194 °F]	
Dither adjustment		75 Hz	
Inductance		8.5 mH 70 mH	
Current variation		100 mA/s	50 mA/s
Duty cycle % ED on-off operat	ing	14 V = 100	28 V = 100
Duty cycle % ED on-on operat	ing	15 V = 50	30 V = 50
Plug connector		2-pole AMP Junio	or Power Timer
Reaction time from neutral position to end spool stroke (constant voltage)		120 r	ms
Reaction time from end spool stroke to neutral position (constant voltage)		90 m	ns
Grade of enclosure to IEC 529, with female connector		IP 6	5

Example with module HCK and manual control HCM

HCM

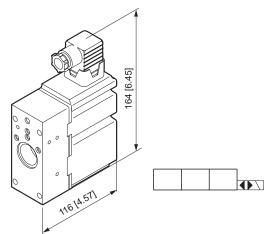
HCK electrohydraulic PROPORTIONAL module with pilot oil connections

HCK proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. HCK module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults. This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control, only.

Thanks to the 2 additional pilot oil supply connections, HCK is recommended where there is a requirement for a single output control to be used to achieve 2 simultaneously or sequence spool movements, or to change the displacement onto hydraulic motors, making the use of HPV even more flexible.

HCK module has the following main features:

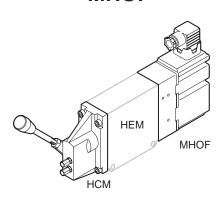

- It can be operated with on-off signals also
- Short response time
- Electro-proportional pressure reduction valves
- PWM electric control of low-frequency solenoid valves
- Any adjustment to limit the flow or to create work ramps can be made directly on the remote control
- · Very low hysteresis and excellent sensitivity

Voltage	Code (Aluminum)	Code (Cast iron)
12 Vdc	_	HCK0007708100
24 Vdc	_	HCK0007708101

Rated voltage		12 Vdc	24 Vdc	
Power supply voltage range		11 to 15 V	22 to 30 V	
Max. ripple		8	8 %	
Max. current		1500 mA ± 10	750 mA ± 10	
Power consumption		18 W at 22 °C [71.6	18 W at 22 °C [71.6 °F] coil temperature	
Start spool travel		560 mA	280 mA	
End spool travel		1080 mA	520 mA	
R ₂₀		$4.72 \Omega \pm 5 \%$	$20.8~\Omega \pm 5~\%$	
Max. pressure pilot oil supply		30 bar	[435 psi]	
Heat insulation		Class H, 18	0 °C [356 °F]	
	Recommended	-30 ÷ +60 °C [[-22 ÷ +140 °F]	
Oil temperature	Min	-30 °C	[-22 °F]	
	Max	+90 °C [[+194 °F]	
Dither adjustment		75	Hz	
Inductance		8.5 mH	70 mH	
Current variation		100 mA/s	50 mA/s	
Duty avala % ED an off aparat	ing	14 V = 100	28 V = 100	
Duty cycle % ED on-on operat	Duty cycle % ED on-off operating		30 V = 50	
Plug connector		2-pole AMP Jur	nior Power Timer	
Reaction time from neutral position to end spool stroke (constant voltage)		120) ms	
Reaction time from end spool stroke to neutral position (constant voltage)		90	ms	
Grade of enclosure to IEC 529, with female connector		IP	IP 65	

Electrical connections for MSPF-MHPF-HCK working sections, see page: E-2

MHOF electrohydraulic ON-OFF module

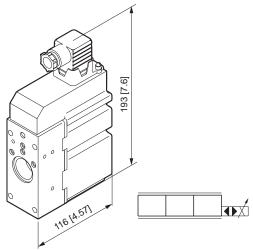

The MHOF electrohydraulic module moves the spool in relation to an electric signal generated by the joystick or by a switch.

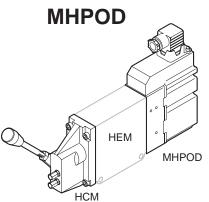
The hydraulic pressure generated by the on-off solenoid valves forces the spool not to stop in any intermediate position between the neutral position and the maximum stroke.

Voltage	Code(Aluminum)	
12 Vdc	MHOF007707068	
24 Vdc	MHOF007707070	

Aluminum body

MHOF




Example with module MHOF and manual control HCM

Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		11 to 15 V	21 to 28 V
Resistance at 20 °C [68 °F]		9.1 Ω	36.2 Ω
Current consumption		1480 mA	750 mA
Rated absorbed power		16	W
Heat insulation		Class H, 180 °C [356 °F]	
Duty cycle		ED 1	00%
Reaction time	From neutral position to max. spool travel	130 ms	
Reaction time	From max. spool travel to neutral position	110 ms	
Max. operating temperature		80° C [176 °F]	
Ambient temperature		-30 ÷ +60 °C [-22 ÷ +140 °F]	
Connector		Standard (IP 65) according to DIN 43650 / ISO 4400	
Enclosure to IEC 529		IP 65	

Electrical connections for MHOF controls, see page: E-3

Example with module MHPOD and manual control HCM

MHPOD electrohydraulic PROPORTIONAL module

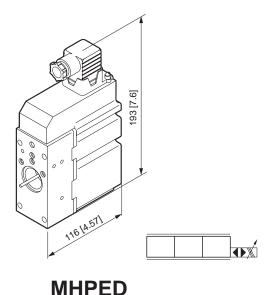
MHPOD is a open loop electrohydraulic activation unit, whose design is based on digital technology.

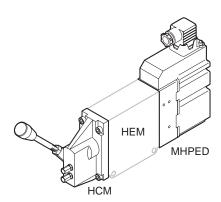
MHPOD has been specially developed to meet the harsh operating requirements of today's mobile machine market. MHPOD electrical open loop proportional actuation operates the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where a simple proportional control is required, and where hysteresis and reaction time are not critical.

MHPOD does not have the inductive position transceiver (LVDT) and any electronic circuit for faults monitoring. This means that any forces that override the pilot pressure spool forces may change the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

MHPOD is defined by:

- Capacity to handle three different kinds of input signal control (see chart below).
- The required signal control is to be stated in the order phase
- Integrated PWM (Pulse Width Modulator)
- Good flow regulation
- · Simple built-up.


_		Input signal control			
	Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
		(A) joystick	(B) PLC	(C) PLC	
_	12 Vdc	MHPOD07708077	MHPOD07708082	MHPOD07708086	
	24 Vdc	MHPOD07708075	MHPOD07708084	MHPOD07708088	


Aluminum body

Rated voltage		12 Vdc	24 Vdc	
Power sup	Power supply voltage range		11 ÷ 15 V	20 ÷ 28 V
Max. ripple	е		5 %	
Current su	apply		520 mA	260 mA
Current co	onsumption (neutral position	, constant voltage)	36 mA	46 mA
Power cor	nsumption		6 V	V
Heat insul	ation		Class H 180	°C [256 °F]
Docation t	time (constant voltage)	From neutral position to max. spool travel	110 ÷ 1	40 ms
Reaction t	ume (constant voltage)	From max. spool travel to neutral position	70 ÷ 9	0 ms
Poaction t	time (neutral switch)	From neutral position to max. spool travel	130 ÷ 1	70 ms
neaction t	ame (neutral switch)	From max. spool travel to neutral position	70 ÷ 90 ms	
Connector		Standard (IP 65) according to DIN 43650 / ISO 4400		
Enclosure	to IEC 529		IP 6	65
	Lament along all and tool	Neutral position	0.5 x UDC	
(A)	Input signal control	Control range	0.25 x UDC to 0.75 x UDC	
joystick	Max. current signal control		0.5 mA 1 mA	
	Input impedance in relation to 0.5 x UDC		12 kΩ	
		Voltage	0 ÷ 10 VDC	
(D)	Input signal control	Neutral position	5 VDC	
(B) PLC		Control range	0.25 x 10 VDC to 0.75 x 10 VDC	
	Current signal control		0.5 mA	
	Input impedance in relation	n to 0 ÷ 10 VDC	20 kΩ	
		Current	0 ÷ 20) mA
(C)	Input signal control	Neutral position	10 mA	
PLC		Control range	0.25 x 20 mA to	0.75 x 20 mA
	Input impedance in relation	n to 0 ÷ 20 mA	0.5 kΩ	

Electrical connections for MHPOD controls, see page: E-4

Example with module MHPED and manual control HCM

Thanks to the developments in digital electronics, it has been possible to integrate in the MHPED modules, besides all the algorithms needed for the spool movement control, also a wide range of advanced circuits above all conceived for the safety

and handling of complete systems.

The use of the module in the **passive or active version** allows the electrohydraulic system to be obtained with different safety degrees, for the choice of which it is essential to know the required functions exactly.

Once this condition has been fullfilled, and work is going on in the area stated above, with the four examples described in the following pages, we can always give you the best solution.

The diagrams represents just a few possibilities, advised by experience, of how the assesment of degree of protection system ought always to be made.

This does not mean that considering the enormity of the subject and need for ever-increasing flexibility and performance of the industrial machinery with tighter and tighter safety rules, custom-built solutions can not be taken into account.

MHPED electrohydraulic PROPORTIONAL module

MHPED is a closed loop electrohydraulic activation unit, whose design is based on digital technology.

MHPED has been specially developed to meet the harsh operating requirements of today's mobile machine market.

MHPED electrical closed loop proportional actuation operates safely and precisely the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where precise metering control, low hysteresis, fault monitoring, and fast system reaction are paramount.

The input signal, by means of the PCB and the two reducing proportional solenoid valves, is converted into a low pilot pressure which inturn moves the HPV's spool.

The inductive transducer position (LVDT) ensures that the spool is being moved in the correct position, otherwise, in the event of uncontrolled spool positioning, the feed-back signal will detect it as an error and it will fast react operator independent (fault monitoring system, see diagrams in the following pages).

MHPED is defined by:

- Capacity to handle three different kinds of input signal control (see chart below).
 The required signal control is to be stated in the order
- Inductive transducer position, LVDT (Linear Variable Differential Transformer)
- Integrated PWM (Pulse Width Modulator)
- · Fault monitoring, transistor output for signal source
- Excellent regulation
- Low hysteresis
- · Short reaction time

Active version

	Input signal control			
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
	(A) joystick	(B) PLC	(C) PLC	
12 Vdc	MHPED07708011	MHPED07708018	MHPED07708026	
24 Vdc	MHPED07708010	MHPED07708020	MHPED07708028	

Passive version

	Input signal control			
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
	(A) joystick	(B) PLC	(C) PLC	
12 Vdc	MHPED07708009	MHPED07708022	MHPED07708030	
24 Vdc	MHPED07708007	MHPED07708024	MHPED07708032	

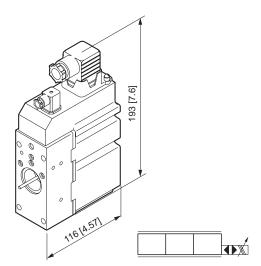
Aluminum body

Electrical connections for MHPED controls, see page: E-5

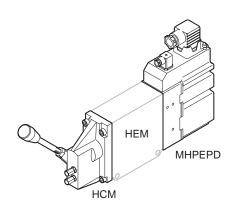
MHPED voltage controls for HEM working sections

Rated volt	ane		12 Vdc	24 Vdc
Power supply voltage range			11 ÷ 15 V	20 ÷ 28 V
Max. ripple	,, , ,		5 %	
	e spool current consumption		520 mA	260 mA
	onsumption (neutral position, con	stant voltage)	36 mA	46 mA
Power cor		otan voltago)	6 V	
Heat insul	<u> </u>		Class H 180	•
Fault mon	itoring system	Max. current on safety output (pin no. 3, page D-5)	50 m	-
	0 ,	Reaction time at fault	550 ı	ms
Danstin 4	time (a material continue)	From neutral position to max. spool travel	110 ÷ 14	40 ms
Reaction t	time (constant voltage)	From max. spool travel to neutral position	70 ÷ 90 ms	
Danetian t	tion of the control of the late	From neutral position to max. spool travel	130 ÷ 17	70 ms
Reaction time (neutral switch) From max. spool travel to neutral position		70 ÷ 90 ms		
Connecto	r		Standard according to DIN 4	
Enclosure	to IEC 529		IP 6	
	Leaved along the sectoral	Neutral position	0.5 x UDC	
(A)	Input signal control	Control range	0.25 x UDC ÷ 0.75 x UDC	
joystick	Max. current signal control		0.5 mA	1 mA
	Input impedance in relation to (0.5 x UDC	12 kΩ	
		Voltage	0 ÷ 10 VDC	
(D)	Input signal control	Neutral position	5 VDC	
(B) PLC		Control range	0.25 x 10 VDC ÷	0.75 x 10 VDC
FLC	Current signal contro		0.5 mA	
Input impedance in relation to 0 ÷ 10 VDC) ÷ 10 VDC	20 kΩ	
		Current	0 ÷ 20	mA
(C)	Input signal control	Neutral position	10 mA	
PLĆ		Control range	0.25 x 20 mA ÷ 0.75 x 20 mA	
	Input impedance in relation to 0) ÷ 20 mA	0.5 kΩ	

MHPED (active version) modules behaviour in relation to the signal control


UDC	Signal control	Ground	Safety output (pin no. 3)	Effect
24 V	12 V (50% of UDC)	Connected	No output	Spool held electrically in neutral position
24 V	6 V (25% of UDC)	Connected	No output	Full flow $P \rightarrow A$
24 V	18 V (75% of UDC)	Connected	No output	Full flow $P \rightarrow B$
24 V	20.4 V (85% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	21.6 V (90% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	24 V (100% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	0 V (0% of UDC) selected	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	0 V (0% of UDC) interrupted	Connected	Output	Spool stays in neutral position (red light comes on)
24 V	1 V (4% of UDC)	Connected	Output	Spool stays in neutral position (red light comes on)
0 V	15.6 V (65% of UDC)	Connected	No output	Spool stays in neutral position (no light)
24 V	15.6 V (65% of UDC)	Disconnected	No output	Spool stays in neutral position (no light)

With the same data, given in percentages, the behaviour of the module is equal to the 12 VDC, $0 \div 20$ mA and $0 \div 10$ V also.


No. of flashes	Cause	
1	LVDT outside of its own position	
2	The demanded spool position doesn't correspond to the input signal	
3	LVDT is broken	
4	Short circuit in the output signal for direction indicator (MHPEPD)	
5	Internal electrical faults	
6	Short circuit in the proportional solenoid valves	
7	Short circuit in the warning output signal (pin no. 3)	
8	Input signal control exceeds min. / max. values (15% ÷ 85% of supply voltage)	

When an error state is detected the lamp of the module starts flashing red, and the number of flashes indicates the probable cause of failure.

MHPEPD

Example with module MHPEPD and manual control HCM

MHPEPD electrohydraulic PROPORTIONAL module

MHPEPD closed loop electrohydraulic proportional activation unit is the most advanced version of the closed loop control modules.

MHPEPD is defined by:

- · Spool direction indicator output;
- Capacity to handle three different kinds of input signal control. The required signal control is to be stated in the order phase;
- Inductive transducer position, LVDT (Linear Variable Differential Transformer);
- Integrated PWM (Pulse Width Modulator);
- Fault monitoring, transistor output for signal source;
- Excellent regulation;
- · Low hysteresis;
- · Short reaction time.

Besides the afore mentioned features, another purpose of the module is to give an indication of the spool's movement, through an on/off output signal in the smaller connector (also when the spool is manually activated).

The diagrams on page E-11 show an example of how the direction output can be handled to activate or deactivate the Ls on/off pilot solenoid valve by means of the two relay (K1 - K2) and two electrical end of strokes.

This is just an example, as the use of MHPEPD is also destined for more demanding surroundings, that is solutions using artificial intelligence which dialogue at the higher level via bus, and which realize a real distributed control system able to carry out "stand-alone" processes.

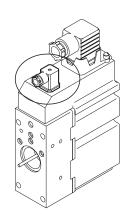
This in turn send to the raised level only that information read as "positive" for the safe handling of machine.

All the electrohydraulics features, performance, and choice of safety degree system, are the same of those already described for the MHPED module.

Active version

	Input signal control			
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
	(A) joystick	(B) PLC	(C) PLC	
	Vers	sione attiva		
12 Vdc	MHPEPD7708048	MHPEPD7708058	MHPEPD7708066	
24 Vdc	MHPEPD7708047	MHPEPD7708060	MHPEPD7708068	

Passive version


	Input signal control			
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
	(A) joystick	(B) PLC	(C) PLC	
12 Vdc	MHPEPD7708046	MHPEPD7708054	MHPEPD7708062	
24 Vdc	MHPEPD7708045	MHPEPD7708056	MHPEPD7708064	

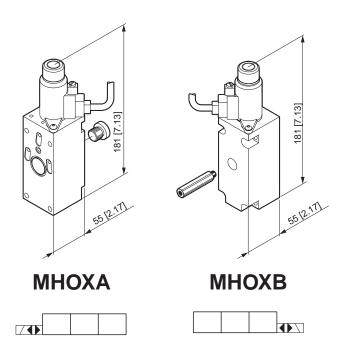
Aluminum body

MHPEPD controls for HEM working sections

Rated volt	age		12 Vdc	24 Vdc
Power sup	ply voltage range		11 ÷ 15 V	20 ÷ 28 V
Max. ripple	Э		5 %	, 0
End stroke	e spool current consumption		520 mA	260 mA
Current co	ensumption (neutral position, co	onstant voltage)	36 mA	46 mA
Power con	sumption		6 W	<i>l</i>
Heat insul	ation		Class H 180 °	°C [356 °F]
Fault moni	toring system	Max. current on safety output (pin no. 3)	50 m	nA
i auit ilioili		Reaction time at fault	550 r	ns
Max. curre	ent output signal for indication a	actuating direction	50 m	nA
Reaction t	ime (constant voltage)	From neutral position to max. spool travel	110 ÷ 14	40 ms
	inic (constant voltage)	From max. spool travel to neutral position	70 ÷ 90 ms	
Peaction t	ime (neutral switch)	From neutral position to max. spool travel	130 ÷ 170 ms	
ixeaction t	ine (neutral switch)	From max. spool travel to neutral position	70 ÷ 90 ms	
Connectors		Standard (IP 65) according to DIN 43650 / ISO 4400		
			Spool direction indicator output (IP 65) ccording to DIN 40050	
Enclosure	to IEC 529		IP 6	5
		Neutral position	0.5 x L	JDC
(A)	Input signal control	Control range	0.25 x UDC ÷	0.75 x UDC
joystick	Max. current signal control	, ,	0.5 mA	1 mA
	Input impedance in relation to	0.5 x UDC	12 kΩ	
		Voltage	0 ÷ 10 ′	VDC
(5)	Input signal control	Neutral position	5 VDC	
(B) PLC		Control range	0.25 x 10 VDC ÷ 0.75 x 10 VDC	
	Current signal contro		0.5 n	nA
	Input impedance in relation to	0 ÷ 10 VDC	20 kΩ	
		Current	0 ÷ 20	mA
(C)	Input signal control	Neutral position	10 mA	
PLC	Control range		0.25 x 20 mA ÷ 0.75 x 20 mA	

Spool direction signals

Input impedance in relation to 0 ÷ 20 mA


mm inches	0.5 0.02	0	0.5 0.02	mm inches
"A" PORT		1		"B" PORT
ON ———				OFF
			- 1	
OFF —				ON

PIN	Center position	Movement to A port	Movement to B port
1	free	free	free
2	no output	Udc (+)	no output
3	no output	no output	Udc (+)
To get the manual control this pin must be feeded with the supply voltage. To get the remote control the supply voltage must be taken off from this pin.			

MHOXA/MHOXB ATEX controls for HEM working sections

MHOX electro-hydraulic ON/OFF operated

The MHOXA and MHOXB modules are electro-hydraulics ON/ OFF devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of an electric signal.

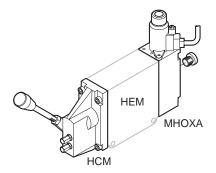
Single acting for A or B ports:

MHOXA: the distribution spool in the HEM element is moved onto port B by a manual HCM command and onto port A by the side MHOXA module.

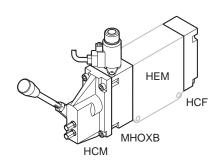
MHOXB: the distribution spool in the HEM element is moved onto port A by a manual HCM command and onto port B by the side MHOXB module

Double acting for A and B ports:

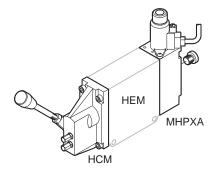
The MHOXA and MHOXB modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.


HCM/HCF cast iron modules must be used.

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.

Valtage	Code	
Voltage	Port A	Port B
12 Vdc	MHOXA07707192	MHOXB07707194
24 Vdc	MHOXA07707193	MHOXB07707195


Cast iron body

Example with module MHOXA, single acting for A port

Example with module MHOXA, single acting for A port

Example with moduli MHOXA-MHOXB, double acting for A and B ports

MHOXA/MHOHB ATEX controls for HEM working sections

Field 20

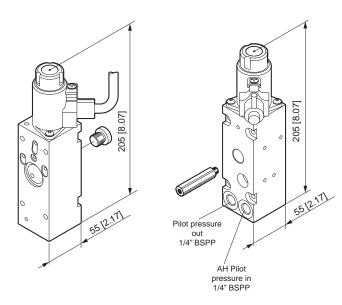
Nominal voltage	12 Vdc	24 Vdc	
Coil resistance, R20	9 Ω ± 6 %	35.8 Ω ± 6 %	
Min. current	700 mA	350 mA	
Rated current	1330 mA	670 mA	
Max. current	1850 mA	930 mA	
Limit power	14.3 W	14.4 W	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Connection cable	I	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil	With fuse - See coil manufacturer manual	
Duty cycle	10	100%	
Input pressure	Max. 50 b	Max. 50 bar [725 psi]	
Switching pressure	>23 bar	>23 bar [334 psi]	
Fluid temperature	-20 ÷ +80 °C	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Ground connection	Up to 4 mi	Up to 4 mm ² - 11 AWG	
Protection class (DIN VDE 0580)		ı	
Fluids	Hydraulic oil to [Hydraulic oil to DIN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	IP67 / IP69K	
Shock-resistance to EN 50014	4	4 J	

Hydraulic features

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

HEM module hydraulic data

Max pressure (static - input)	350 bar [5076 psi]
Max flow	130 l/min [34.3 US gpm]


ATEX modules marking

MHOX on complete proportional valve with or without HSEVX valve	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar	
MHOX individually supplied	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C	
Solenoids mounted on MHOX modules	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C	;

MHOXAH/MHOXBH ATEX controls for HEM working sections

MHOXAH

MHOXBH

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHOXAH - MHOXBH electro-hydraulic ON/OFF operated and hydraulic activation

The MHOXAH and MHOXBH modules are electro-hydraulics ON/OFF devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of both an electric signal and hydraulic control.

Especially designed for those applications where the HPV (distributor) proportional valves must be controlled with a double remote control (electric and hydraulic). The module maintains the same electrical characteristics already described for the MHOXA / MHOXB modules. The value of the pilot pressure of the hydraulic control (coming from hydraulic manipulators) must be included between 3.5 bar and 28 bar [51 and 406 psi].

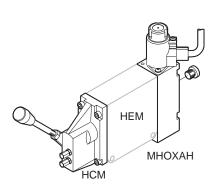
The distribution spool is positioned precisely by the hydraulic pressure generated by the hydraulic manipulator or, alternatively, by the solenoid valve V1 proportionally with an electric signal generated by the remote control. The solenoid valve and the hydraulic manipulator are fed by an internal line P at a pressure ranging between 20 and 35 bar [290 and 507 psi], while the discharges are gathered in line T.

Single acting for A or B ports:

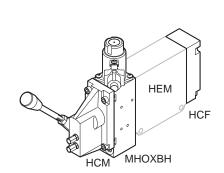
MHOXAH: the distribution spool in the HEM element is moved onto the B port by means of a manual control HCM and onto port A by the side MHOXAH module.

MHOXBH: the distribution spool in the HEM element is moved onto the B port by means of a manual control HCM and onto port B by the side MHOXBH module.

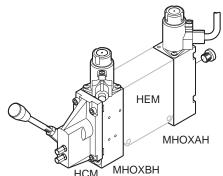
Double acting for A and B ports:


The MHOXAH and MHOXBH modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.

HCM/HCF cast iron modules must be used.


Valtana	Code	
Voltage	Port A Port B	
12 Vdc	MHOXAH7707392	MHOXBH7707394
24 Vdc	MHOXAH7707393	MHOXBH7707395

Cast iron body


Hydraulic command outputs 1/4" BSPP.

Example with module MHOXAH, single acting for A port

Example with module MHOXBH, single acting for A port

Example with moduli MHOXAH-MHOXBH, double acting for A and B ports

MHOXAH/MHOXBH ATEX controls for HEM working sections (Ex)

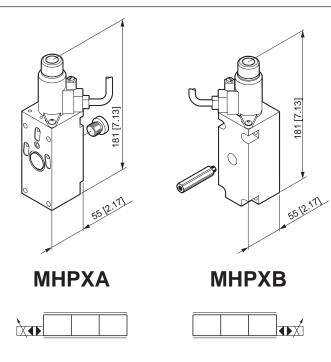
Field 20

Nominal voltage	12 Vdc	24 Vdc	
Coil resistance, R20	9 Ω ± 6 %	35.8 Ω ± 6 %	
Min. current	700 mA	350 mA	
Rated current	1330 mA	670 mA	
Max. current	1850 mA	930 mA	
Limit power	14.3 W	14.4 W	
Ambient temperature	-20 ÷ +50 °C	[-4 ÷ +122 °F]	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manuf	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil	With fuse - See coil manufacturer manual	
Duty cycle	10	100%	
Input pressure	Max. 50 ba	Max. 50 bar [725 psi]	
Switching pressure	>23 bar	>23 bar [334 psi]	
Fluid temperature	-20 ÷ +80 °C [-20 ÷ +80 °C [-68 ÷ +176 °F]	
Ground connection	Up to 4 mm	Up to 4 mm² - 11 AWG	
Protection class (DIN VDE 0580)		· I	
Fluids	Hydraulic oil to D	Hydraulic oil to DIN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67 /	IP67 / IP69K	
Shock-resistance to EN 50014	4	4 J	

Hydraulic features

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

HEM module hydraulic data


Max pressure (static - input)	350 bar [5076 psi]
Max flow	130 l/min [34.3 US gpm]

ATEX modules marking

MHOX on complete proportional valve with or without HSEVX valve	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHOX individually supplied	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHOX modules	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

MHPXA/MHPXB ATEX controls for HEM working sections

MHPXA/MHPXB electro-hydraulic PROPORTIONAL operated

The MHPXA and MHPXB modules are electro-hydraulics proportional devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of an electric signal.

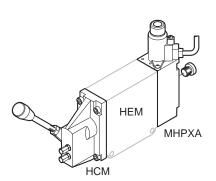
Single acting for A or B ports:

MHPXA: the distribution spool in the HEM element is moved onto port B by a manual HCM command and onto port A by the side MHPXA module.

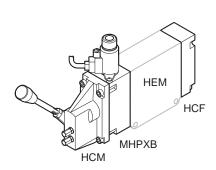
MHPXB: the distribution spool in the HEM element is moved onto port A by a manual HCM command and onto port B by the side MHPXB module .

Double acting for A and B ports:

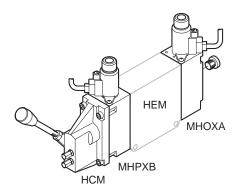
The MHPXA and MHPXB modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.


HCM/HCF cast iron modules must be used.

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.

Valtage	Code	
Voltage	Port A	Port B
12 Vdc	MHPXA07707182	MHPXB07707184
24 Vdc	MHPXA07707183	MHPXB07707185


Cast iron body

Example with module MHPXA, single acting for A port

Example with module MHPXA, single acting for A port

Example with moduli MHPXA-MHPXB, double acting for A and B ports

MHPXA/MHPXB ATEX controls for HEM working sections

Field 20

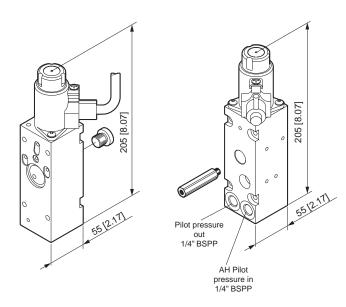
Shock-resistance to EN 50014	4 J	
Grade of enclosure (DIN VDE 0470 / EN 60529)	IP67 / IP69K	
Fluids	Hydraulic oil to DIN 51524.ATF-oil	
Groud connection	Up to 4 mm² - 11 AWG	
Short-circuit protection	With fuse - See coil manufacturer manual	
Integrated diode to limit switch-off overvoltage	See coil manufacturer manual	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Fluid temperature	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Max. pressure (static)	50 bar [725 psi]	
Power supply	PWM 100 Hz	
Pilot pressure	28 bar [406 psi]	
End spool travel	875 mA	500 mA
Start spool flow	510 mA	260 mA
Start spool travel	490 mA	240 mA
Max. power	14.8 W	12.8 W
Max. current regulation range	0 ÷ 1500 mA	0 ÷ 750 mA
Rated current, IN	1360 mA	686 mA
Coil resistance, R20	4.3 Ω	15.3 Ω
Voltage range	11 ÷ 15 Vdc	22 ÷ 28 Vdc
Nominal voltage	12 Vdc	24 Vdc

Hydraulic features

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

HEM module hydraulic data

Max pressure (static - input)	350 bar [5076 psi]
Max flow	130 l/min [34.3 US gpm]


ATEX modules marking

MHPX on complete proportional valve with or without HSEVX valve	C € €⊗	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHPX individually supplied	C € €∞	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHPX modules	C € €⊗	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

DANA (

MHPXAH/MHPXBH ATEX controls for HEM working sections

MHPXAH

MHPXBH

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHPXAH electro-hydraulic PROPORTIONAL operated and hydraulic activation

The MHPXAH and MHPXBH modules are electro-hydraulics proportional devices that allows the primary hydraulic state (HEM) to be monitored at a distance by means of both an electric signal and hydraulic control.

Especially designed for those applications where the HPV (distributor) proportional valves must be controlled with a double remote control (electric and hydraulic). The module maintains the same electrical characteristics already described for the MHPXA / MHPXB modules. The value of the pilot pressure of the hydraulic control (coming from hydraulic manipulators) must be included between 3.5 bar and 28 bar [51 and 406 psi].

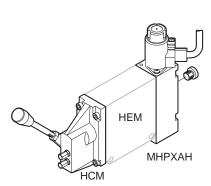
The distribution spool is positioned precisely by the hydraulic pressure generated by the hydraulic manipulator or, alternatively, by the solenoid valve V1 proportionally with an electric signal generated by the remote control. The solenoid valve and the hydraulic manipulator are fed by an internal line P at a pressure ranging between 20 and 35 bar [290 and 507 psi], while the discharges are gathered in line T.

Single acting for A or B ports:

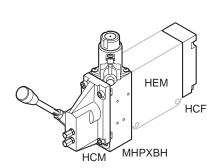
MHPXAH: the distribution spool in the HEM element is moved onto the B port by means of a manual control and onto port A by the side MHPXAH module.

MHPXBH: , the distribution spool in the HEM element is moved onto the A port by means of a manual control and onto port B by the side MHPXBH module.

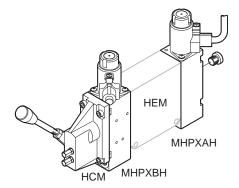
Double acting for A and B ports:


The MHPXAH and MHPXBH modules can be coupled in order to activate both modules by means of the remote control. The operating principle is similar to that of the two separate modules, with the V1 and V2 solenoid valves that, alternatively, can adjust the pilot pressure on the distribution spool.

HCM/HCF cast iron modules must be used.


Valtaria	Code	
Voltage	Port A	Port B
12 Vdc	MHPXAH7707382	MHPXBH7707384
24 Vdc	MHPXAH7707383	MHPXBH7707385

Cast iron body


Hydraulic command outputs 1/4" BSPP.

Example with module MHPXAH, single acting for A port

Example with module MHPXBH, single acting for A port

Example with moduli MHPXAH-MHPXBH, double acting for A and B ports

MHPXAH/MHPXBH ATEX controls for HEM working sections

Field 20

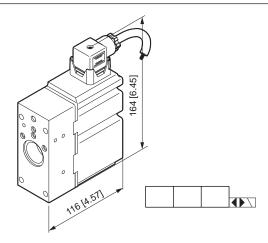
Shock-resistance to EN 50014	4 J	
Grade of enclosure (DIN VDE 0470 / EN 60529)	IP67 / IP69K	
Fluids	Hydraulic oil to DIN 51524.ATF-oil	
Groud connection	Up to 4 mm ² - 11 AWG	
Short-circuit protection	With fuse - See coil manufacturer manual	
Integrated diode to limit switch-off overvoltage	See coil manufacturer manual	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Fluid temperature	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Max. pressure (static)	50 bar [725 psi]	
Power supply	PWM 100 Hz	
Pilot pressure	28 bar [406 pasi]	
End spool travel	875 mA	500 mA
Start spool flow	510 mA	260 mA
Start spool travel	490 mA	240 mA
Max. power	14.8 W	12.8 W
Max. current regulation range	0 ÷ 1500 mA	0 ÷ 750 mA
Rated current, IN	1360 mA	686 mA
Coil resistance, R20	4.3 Ω	15.3 Ω
Voltage range	11 ÷ 15 Vdc	22 ÷ 28 Vdc
Nominal voltage	12 Vdc	24 Vdc

Hydraulic features

Max pilot pressure oil supply	30 bar [435 psi]
Start spool flow	4.5 bar [65 psi]
End spool flow	15 bar [218 psi]

HEM module hydraulic data

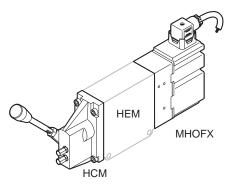
Max pressure (static - input)	350 bar [5076 psi]
Max flow	130 l/min [34.3 US gpm]


ATEX modules marking

MHPX on complete proportional valve with or without HSEVX valve	C € € ⊗	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20° C ÷ +80°C p max HEM = 350 bar
MHOX individually supplied	C € €∞	II GD C T4 / T135°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C
Solenoids mounted on MHPX modules	C € €x	II GEx mb II T4 II D Ex mbD 21 T130°C Tamb = -20°C ÷ +50°C Tfluid = -20°C ÷ +80°C

DANA

MHOFX ATEX controls for HEM working sections



MHOF electrohydraulic ON-OFF module

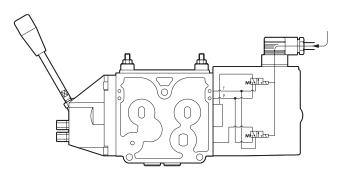
The MHOF electrohydraulic module moves the spool in relation to an electric signal generated by the joystick or by a switch.

The hydraulic pressure generated by the on-off solenoid valves forces the spool not to stop in any intermediate position between the neutral position and the maximum stroke

MHOFX

Example with module MHOFX and manual control HCM

Standard connector


Voltage	Code
12 Vdc	MHOFX077E7060
24 Vdc	MHOFX077E7065

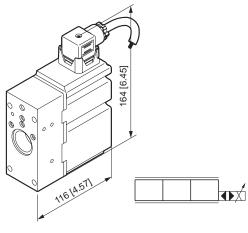
D-Type connector

Voltage	Code
12 Vdc	MHOFX077E7068
24 Vdc	MHOFX077E7070
	12 Vdc

Cast iron body

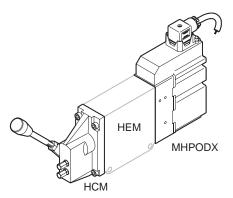
Rated voltage		12 Vdc	24 Vdc
Power supply voltage range		10.8 ÷ 13.2 V	21.6 ÷ 26.4 V
Resistance at 20 °C [68 °F]		9.2 Ω	34.8 Ω
Rated absorbed power		16 W	
Heat insulation		Class H, 180 °C [356 °F]	
Duty cycle		ED 100%	
Reaction time	From neutral position to max. spool travel	130 ms	
	From max. spool travel to neutral position	110 ms	
Ambient temperature		-35° ÷ 60 °C [-31 ÷ +140 °F]	
Connector		DIN 43650 / ISO 4400	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Enclosure to IEC 529		IP 67	

ATEX marking	C € € ⊗	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € € ⊗	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db


ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.

MHPCX ATEX controls for HEM working sections

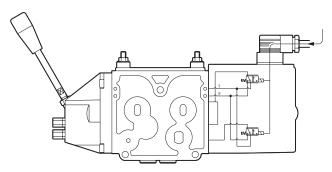

MHPCX electrohydraulic PROPORTIONAL module

MHPCX proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. The MHPCX module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults.

This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control only.

MHPCX


Example with module MHPCX and manual control HCM

Voltage	Code
12 Vdc	MHPCX077E7067
24 Vdc	MHPCX077E7066

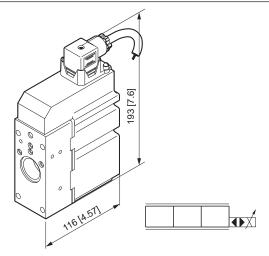
Odst Holl bo	ay	
	12 Vdc	24 Vdc
	10.8 ÷ 13.2 V	21.6 ÷ 26.4 V
	9.2 Ω	34.8 Ω
	16	W
	Class H, 180	0 °C [356 °F]
		000/

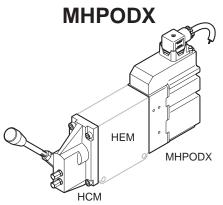
Power supply voltage range		10.8 ÷ 13.2 V	21.6 ÷ 26.4 V
Resistance at 20 °C [68 °F]		9.2 Ω	34.8 Ω
Rated absorbed power		16 W	
Heat insulation		Class H, 180 °C [356 °F]	
Duty cycle		ED 100%	
Reaction time	From neutral position to max. spool travel	130 ms	
Reaction time	From max. spool travel to neutral position	110 ms	
Ambient temperature		-35 ÷ +60 °C [-31 ÷ +140 °F]	
Connector		DIN 43650 / ISO 4400	
Connection cable		FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Enclosure to IEC 529		IP	67

Cast iron hody

ATEX marking	C € € ⊗	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € € ∞	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.


For the wiring diagram of module, please refer to Instruction manual.



Rated voltage

MHPODX ATEX controls for HEM working sections

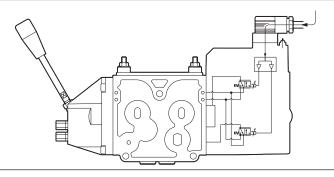
Example with module MHPODX and manual control HCM

MHPODX electrohydraulic PROPORTIONAL module

MHPODX is a open loop electrohydraulic activation unit, whose design is based on digital technology.

MHPODX has been specially developed to meet the harsh operating requirements of today's mobile machine market. MHPODX electrical open loop proportional actuation operates the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where a simple proportional control is required, and where hysteresis and reaction time are not critical.

MHPODX does not have the inductive position transceiver (LVDT) and any electronic circuit for faults monitoring. This means that any forces that override the pilot pressure spool forces may change the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.


MHPODX is defined by:

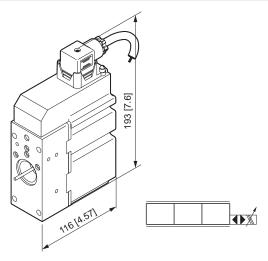
- Capacity to handle three different kinds of input signal control (see chart below).
- The required signal control is to be stated in the order phase
- Integrated PWM (Pulse Width Modulator)
- Good flow regulation
- · Simple built-up.

	Input signal control		
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPODX77E8077	MHPODX77E8082	MHPODX77E8086
24 Vdc	MHPODX77E8075	MHPODX77E8084	MHPODX77E8088

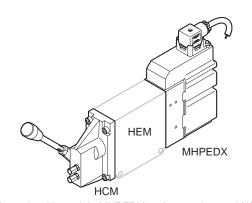
Cast iron body

Rated voltage	12 V ± 10%	24 V ± 10%	
Max. power consumption	6	W	
	Ratiometric 0.25x	Ratiometric 0.25xUDC ÷0.75xUDC	
Analog control input (Lla) to choose from	0 ÷ 10 V (available	0 ÷ 10 V (available signal 2.5 ÷ 7.5 V)	
Analog control input (Us) to choose from:	0 ÷ 20 mA (availabl	e signal 5 ÷ 15 mA)	
	3.5 V (available	signal 2 ÷ 5 V)	
Analog input impedance, ratiometric version, 0.25xUDC ÷0.75xUDC	12	kΩ	
Analog input impedance 0 ÷ 10 V version	10	kΩ	
Analog input impedance 0 ÷ 20 mA	500	Ω	
Spool positioning sensor	LV	DT	
PWM outputs with current feedback		2	
PWM frequency	80 ÷ 2	50 Hz	
Max. current consumption	600 mA	330 mA	
Error / Fault Message output (pin 3)	Max. Loa	nd 50 mA	
Working parameters setting	By software and	serial interface	
Main electrical connection	3 pins Con	3 pins Connector +PE	
Connection cable	FL4G11Y - 3 x 1.5	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG]	
Connection capie	L = 5-5.1 mt [L = 5-5.1 mt [197-201 inch]	
Enclosure	IP	67	
Ambient working temperature	-35 ÷ +60 °C [-31 ÷ +140 °F]	
EMC requirements	EN61000-6-2,	EN61000-6-2, EN61000-6-4	

ATEX marking	C € €∞	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € €∞	Ex mb IIC T4 Gb Ex mb IIIC T135 °C Db


ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

For the wiring diagram of module, please refer to Instruction manual.



MHPEDX ATEX controls for HEM working sections

MHPEDX

Example with module MHPEDX and manual control HCM

MHPEDX electrohydraulic PROPORTIONAL module

MHPEDX is a closed loop electrohydraulic activation unit, whose design is based on digital technology.

MHPEDX has been specially developed to meet the harsh operating requirements of today's mobile machine market.

MHPEDX electrical closed loop proportional actuation operates safely and precisely the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where precise metering control, low hysteresis, fault monitoring, and fast system reaction are paramount. The input signal, by means of the PCB and the two reducing proportional solenoid valves, is converted into a low pilot pressure which inturn moves the HPV's spool.

The inductive transducer position (LVDT) ensures that the spool is being moved in the correct position, otherwise, in the event of uncontrolled spool positioning, the feed-back signal will detect it as an error and it will fast react operator independent (fault monitoring system, see diagrams in the following pages)

MHPEDX is defined by:

- Capacity to handle three different kinds of input signal control (see chart below). The required signal control is to be stated in the order phase.
- Inductive transducer position, LVDT (Linear Variable Differential Transformer)
- Integrated PWM (Pulse Width Modulator)
- Fault monitoring, transistor output for signal source
- Excellent regulation
- Low hysteresis
- Short reaction time

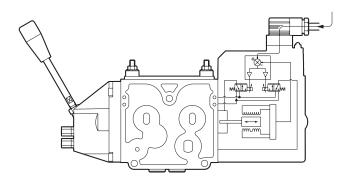
Active version

	Input signal control		
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA
	(A) joystick	(B) PLC	(C) PLC
12 Vdc	MHPEDX77E8011	MHPEDX77E8018	MHPEDX77E8026
24 Vdc	MHPEDX77E8010	MHPEDX77E8020	MHPEDX77E8028

Passive version

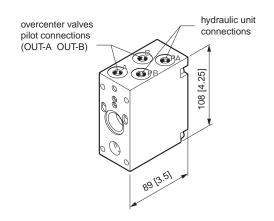
	Input signal control			
Voltage	0.5 x UDC	0 ÷ 10 VDC	0 ÷ 20 mA	
	(A) joystick	(B) PLC	(C) PLC	
12 Vdc	MHPEDX77E8009	MHPEDX77E8022	MHPEDX77E8030	
24 Vdc	MHPEDX77E8007	MHPEDX77E8024	MHPEDX77E8032	

Cast iron body

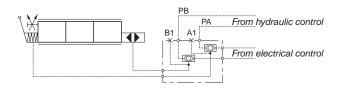

HPV77_EN/02 C-7

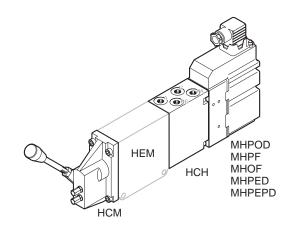
MHPEDX ATEX controls for HEM working sections

Rated voltage	12 V ± 10%	24 V ± 10%	
Max. power consumption	6	W	
	Ratiometric 0.25	kUDC ÷0.75xUDC	
Analog control input (I la) to choose from	0 ÷ 10 V (available	signal 2.5 ÷ 7.5 V)	
Analog control input (Us) to choose from:	0 ÷ 20 mA (availab	le signal 5 ÷ 15 mA)	
	3.5 V (available	e signal 2 ÷ 5 V)	
Analog input impedance, ratiometric version, 0.25xUDC ÷0.75xUDC	12	$k\Omega$	
Analog input impedance 0 ÷ 10 V version	10	$k\Omega$	
Analog input impedance 0 ÷ 20 mA	50	500 Ω	
Spool positioning sensor	LV	LVDT	
PWM outputs with current feedback	2		
PWM frequency	80 ÷ 2	80 ÷ 250 Hz	
Max. current consumption	600 mA	330 mA	
Error / Fault Message output (pin 3)	Max. Lo	Max. Load 50 mA	
Working parameters setting	By software and	By software and serial interface	
Main electrical connection	3 pins Cor	3 pins Connector +PE	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]		
Enclosure	IF	IP67	
Ambient working temperature	-35 ÷ +60 °C ∣	[-31 ÷ +140 °F]	
EMC requirements	EN61000-6-2, EN61000-6-4		


ATEX marking	C € €⊗	II 2G Ex mb IIC T4 Gb II 2D Ex mb IIIC T135 °C Db
IECEx marking	C € ⟨Ex⟩	

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

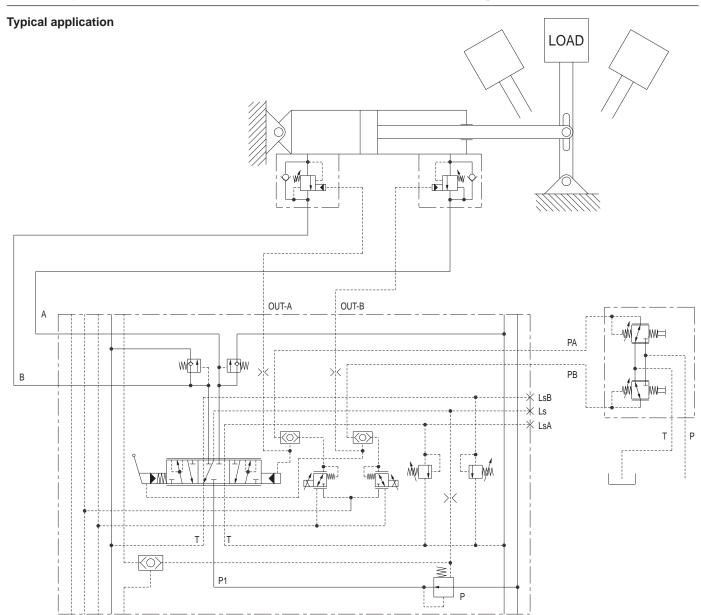

For the wiring diagram of module, please refer to Instruction manual.

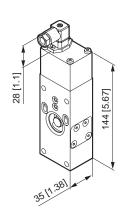


HCH hydraulic remote controls for **HEM** working sections

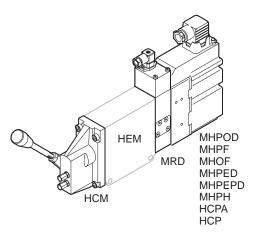
HCH

Example with module HCH, manual control HCM and MHPOD module


HCH module to get hydraulic and electrical remote control HCH module is a small manifold that can be matched with all the HPV 77 proportional directional valves' elements, and with all the HPV electrohydraulic controls. The use of the HCH module, besides and in conjunction with electrohydraulic proportional, radio and on-off controls, also allows the hydraulic proportional control to be reached.


This new device features two supplementary work ports which can be used to pilot the overcenter valves through the same low pressure HPV spool. With this solution the control of the overcenter valves turns out to be much more precise, since the pilot pressure acting on them is never influenced by variations in pressure owing to moving loads.

Max. pilot pressure 36 bar [522 psi].


It is essential to use overcenter valves with high pilot ratio $(15:1 \div 20:1)$

	Code (Aluminum)		
Туре	Connections 1/4 BSPP	Connections 7/16" - 20 UNF - 2B	
For MHPOD. MHPF, MHOF modules (open ring version)	HCH0007704605	HCH0007704606	
For MHPED. MHPEPD modules (closed ring version)	HCH0007704607	HCH0007704608	

MRD

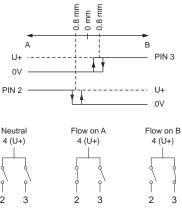
Example with module MRD, manual control HCM and MHPOD module

MRD electrical spool movement device

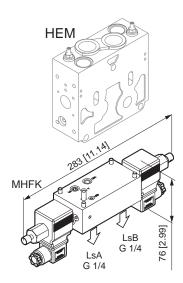

The main purpose of this module is to give an indication of the spool's movement, by mean of an on-off signal. Suitable for all those applications where, the spool travel has to be remotely monitored or integrated with the whole machine electrical system.

Spool direction indicator output Hirshmann connector according to DIN 40050.

Voltave	12 VDC - 24 VDC (min. 10 VDC - max. 30 VDC)
Maximum current	Resistive load 5A Inductive load: 3A
Switch position	\pm 0.8 mm (+0.2 / 0.3 mm)
Protection degree	IP40


Туре	Code
Normally closed	MRD000774263
Normally open	MRD000774265

Normally closed



PIN No.	Neutral position	B port	A port
2	U+	0V	U+
3	U+	U+	0V
4	Common		

Normally open

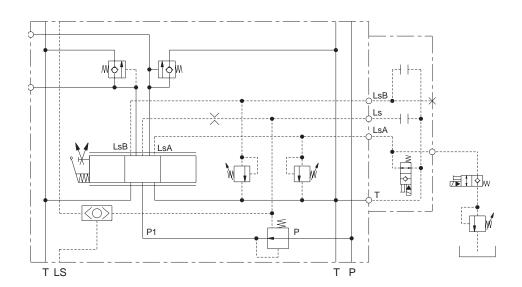
PIN No.	Neutral position	B port	A port
2	0V	0V	U+
3	0V	U+	0V
4	Common		

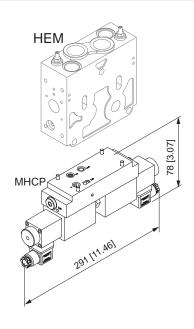
With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page C-86.

MHFK electrical Ls A/B unloading module

Developed for those applications where the max. working pressure can be selected according to an on-off electric signal. Normally open valves. Aluminum body.

Technical featues


Max. operating pressure	370 bar [5366 psi]
Max. flow	30 l/min [7.9 US gpm]
Max. Leakage (0-5 drops/min)	0-0.25 cm³/min
Max. excitation frequency	2 Hz
Duty cycle	100% ED
Hydraulic fluids	Mineral Oil DIN 51524
Oil viscosity	10 ÷ 500 mm²/s (cSt]
Oil temperature	-25 ÷ +75 °C [-13 ÷ +167 °F]
Ambient temperature	-25 ÷ +60 °C [-13 ÷ +140 °F]
Max. contamination level class with filter	ISO 4406:1999 class 21/19/16
Cartridge filter	280µm
Degree of enclosure (depending on connector)	IP 65
Weight (with coil)	0.350 kg [0.77 lb]
Cartridge tightening torque	25 ÷ 30 Nm [18.4 ÷ 22 lbf·ft]
Coil ring nut tightening torque	7 Nm [5.2 lbf-ft]


Active on LsA + LsB	Voltage	Code
T LsA Ls LsB	14 VDC	on request
FEQUIN WIVE	28 VDC	MHFK007706630

Thread BSPP G 1/4

Plugs	Code
T LsA Ls LsB	RCRP20300000

HSET plugs in CRP04HP cavities 1/4" BSPP plugs in LSA, LSB cavities

Electrohydraulic proportional module for remote A / B ports working pressure control

MHCP is a electric proportional module that allows the working pressure to be remotely operated by means of a current signal MHPF is designed to ensure system pressure to be infinitely adjust in accordance upon the electrical command valve. When the working pressure exceed the setting pressure value, the A – B ports flow is being cut-off.

When MHCP is not energized, both pressure and flow will be maintain close to zero.

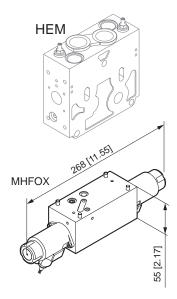
MHCP is always to be used with pressure compensated working sections.

Cast iron body.


With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page C-86.

Active on LsA	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP007706210

Active on LsB	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP007706220


Active on LsA + LsB	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP007706230

Active on Ls	Voltage	Code
T LsA Ls LsB	24 VDC	MHCP007706305

MHFOX ATEX module for HEM working sections

MHFOX electrical LsA/B signal unloading module Atex version

LsA / LsB pilot signal unloading solenoid valve. If the Atex on/off solenoids are not energized, there is no flow on A/B work ports, while the pressure in the open centre circuits will be equal to the P \rightarrow T unloading pressure value on the inlet section, plus the counterpressure acting on T line. In closed centre circuits (under the same operating conditions) the pressure will be equal to the stand-by pump pressure. Normally open valves. Cast iron body.

With the electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS) see page C-86.

Active on LsA + LsB	Voltage	Code
	12 VDC	MHFOX07706225
Ls LsA T	24 VDC	MHFOX07706230

Technical featues

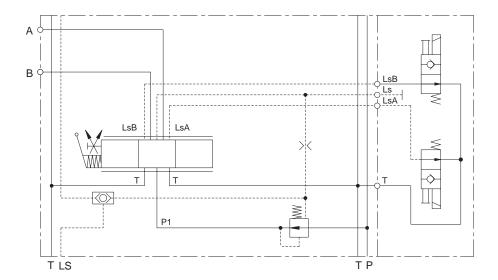
Nominal voltage	12 VDC	24 VDC
Coil resistance, R20	9 Ω ± 6%	$35.8 \Omega \pm 6\%$
Min. current	700 mA	350 mA
Max. current	1850 mA	930 mA
Limit power	14.3 W	14.4 W
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil manufacturer manual	
Duty cycle	100%	
Input pressure	Max. 400 bar [5800 psi]	
Switching pressure	Max 200 bar [2900 psi]	
Operating Limits	400 bar at max. flow 7 l/min [2900 psi at max. flow 1.85 US gpm]	
Flow P \rightarrow T at Δ p =2 bar [19 psi]	> 6.5 l/min [1.72 UD gpm]	
Leakage P \rightarrow T (Oil Temp. 50°C / Input press. 400 bar [5800 psi])	< 20 ml/min [0.002 UD gpm]	
Fluid temperature	-20 ÷ +80 °C [-4 ÷ +176 °F]	
Ground connection	Up to 4 mm ² - 11 AWG	
Protection class (DIN VDE 0580)		
Fluids	Hydraulic oil to DIN 51524.ATF-oil	
Protection ratings (DIN VDE 0470 / EN 60529)	IP67 / IP69K	
Shock-resistance to EN 50014	4	J

ATEX electro-hydraulic modules for HPV features and safety instructions see page A-3.

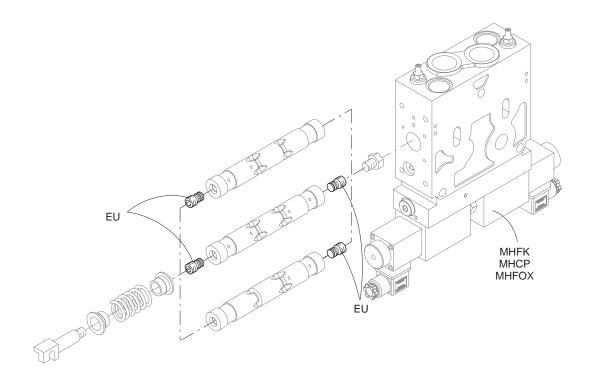
For the wiring diagram of module, please refer to Instruction manual.

MHFOX ATEX modules for HEM working sections

These modules, fitted on the proportional valve with MHOX modules, are subject to the complete certification of the valve; in this case the label will refer to the complete valve: MHOX -


When the modules are individually supplied, a label is attached to the module with the following labelling:

This labelling is printed on the label of modules, in a visible position.


The final customer, when buying this module individually, is in charge of the assembly and coupling of such component with others ATEX components of different classes, groups and temperatures.

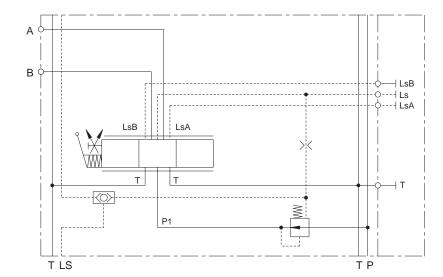
Tfluid= -20 °C ÷ +80 °C

Modules, EU flow restrictors for HPV 77 spools, for LsA/B electrical unloading modules

When the working sections (HEM) are equipped with the MHFK-MHCP-MHFOX electrical LsA/B unloading modules, the EU flow restrictors must always be mounted onto the spools (HEAS).

The code number has to be indicated under the spool code field in the order form.

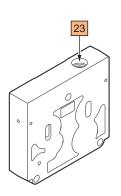
Any kind of spool are always prearranged for EU modules.

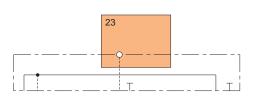

Description	Code
Active on LsA or LsB only	HEAU007704200
Active on LsA + LsB and Ls	HEAU007704201

HCO module - bottom plate to close the MHFO, MHFK, MHFP facilities

Aluminum body.

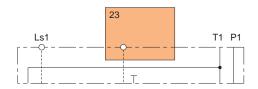
НСО	Code
LsB LsA T	HCO0007704603

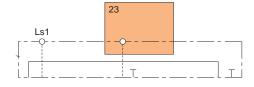



HSC end sections

Available versions:

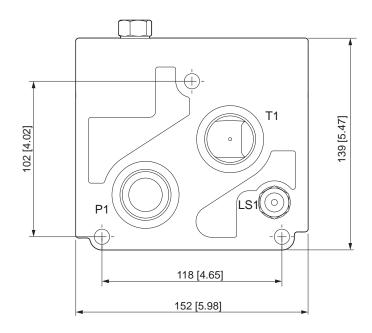
- With no ports
- With Ls1, P1, T1 ports
- With Ls1 port

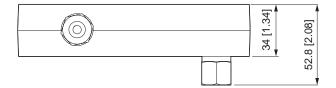

Cast iron body.


With no ports

Code	
BSPP	UN - UNF
HSC0007705020	

With Ls1, P1, T1 ports

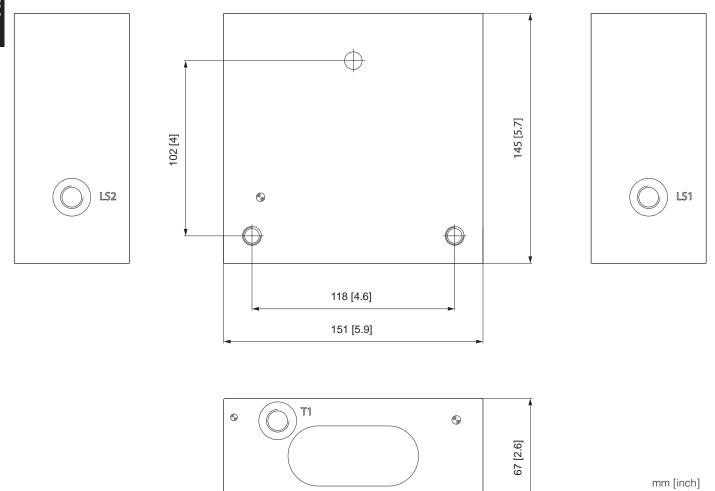

Code	
Ports	Ports
P1, T1 (3/4" BSPP)	P1, T1 (1 1/16"-12UNF-2B)
Ls1 (1/4" BSPP)	Ls1 (7/16"-12UNF-2B)
HSC0007705025	HSC0007705030

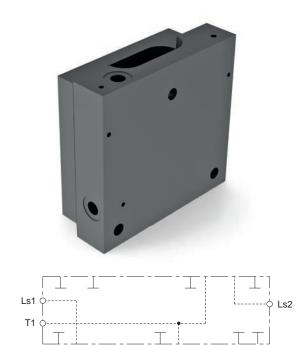


Con connessione Ls1

Code	
Ports Ls1 (1/4" BSPP)	Ports Ls1 (7/16"-12UNF-2B)
HSC0007705026	HSC0007705027

HSC end section overall dimensions

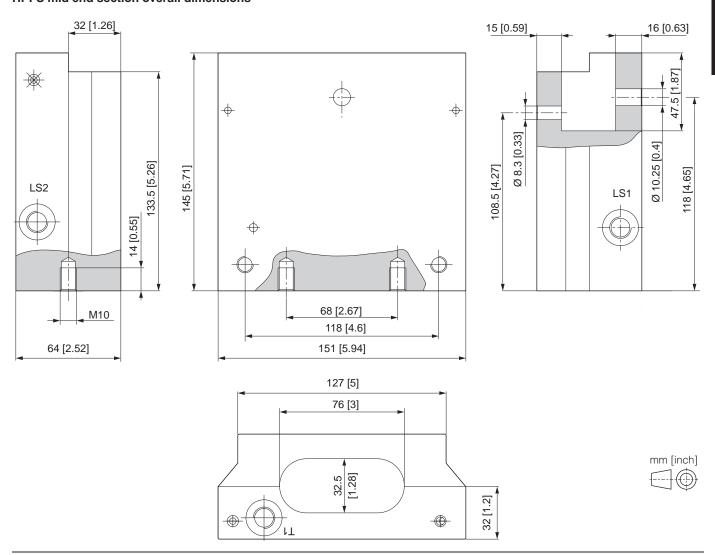

HPFS mid end section


HPFS mid end section allows two inlet sections HSE in one HPV. Cast iron body.

		 []]
Ls1	Ŷ <u>]</u>	Ls2
T1		 - -
		 _

Code	
Ports	Ports
T1 (1/4" BSPP)	T1 (7/16"-20UNF-2B)
HPFS007705032	HPFS007705034

HPFS mid end section overall dimensions



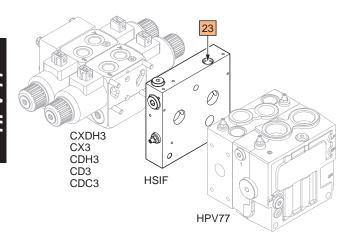
HPFS mid end section

HPFS mid end section allows assembling an HPV77 directional valve with an HPV41 directional valve, each of them with its own HSE inlet section. Cast iron body.

Code	
Ports	
T1 (1/4" BSPP)	
HPFS007705039	

HPFS mid end section overall dimensions

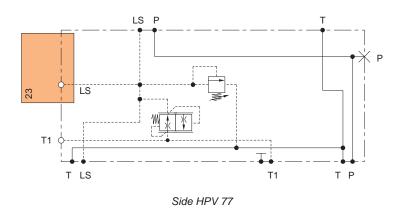
C-91


The HSIF interface allows an hydrauli connection between the elements of HPV77proportional valves with the elements of CXDH3 / CX3 proportional valves or CDH3 / CD3 / CDC3 on/

This type of combination is highly appreciated in case of high flow differences between the controlled actuators.

The HSIF module must be inserted into the proportional valve configuration between the last HPV77 working section and the first CXDH3 / CX3 / CDH3 / CD3 / CDC3 working section. Up to 8 elements of HPV77 and 8 elements of CXDH3 / CX3 / CDH3 / CD3 / CDC3 can be installed.

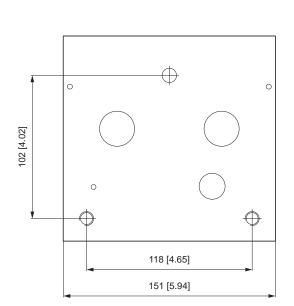
The HSIF interface replaces the inlet module for CXDH3 / CX3 / CDH3 / CD3 / CDC3.

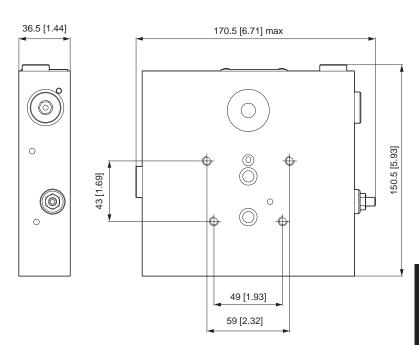

NOTE: You have to indicate in composition module the plug or the cartridge (see page C-96).

Max. operating pressure	300 bar [4351 psi]
Max. flow	80 l/1' [21 US gpm]
Weight (with coil)	5.4 kg [11.9 lb]

Description	Code
Cast iron	HSIF007705034
HSIF interface	

Side CXDH3 / CX3 / CDH3 / CD3 / CDC3

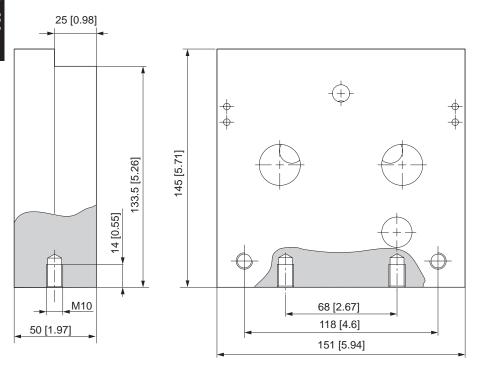


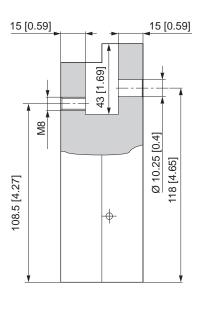


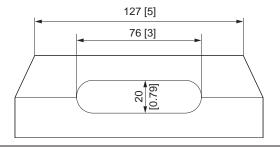
Bankable valves CXDH3 / CX3 / CDH3 / CD3 / CDC3 see catalogue code DOC00046)

HSIF interface overall dimensions

The HSIF interface hydraulically connects the elements of proportional valve HPV 77 with the elements of proportional valve HPV 41.

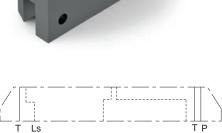

This type of combination is highly appreciated in those cases involving great differences in flow between the controlled actuators

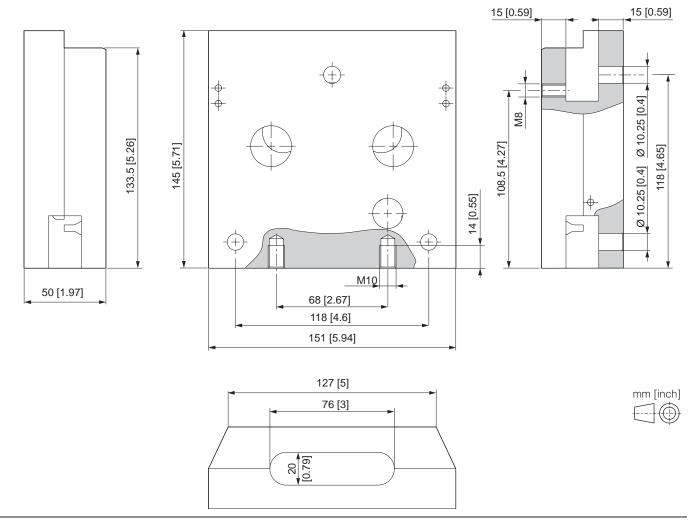

The HSIF module must be inserted into the proportional valve configuration between the last HPV77 working section and the first HPV41 working section.


Up to 6 HPV77 working sections and 8 HPV41 working sections can be installed.

Description	Code
Cast iron HSIF interface	HSIF007705031

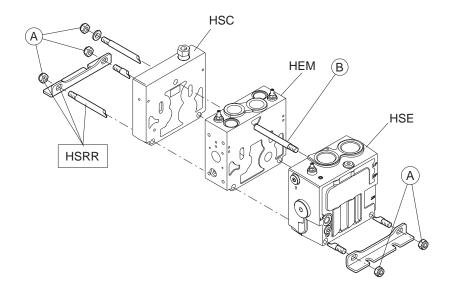
HSIF interface overall dimensions



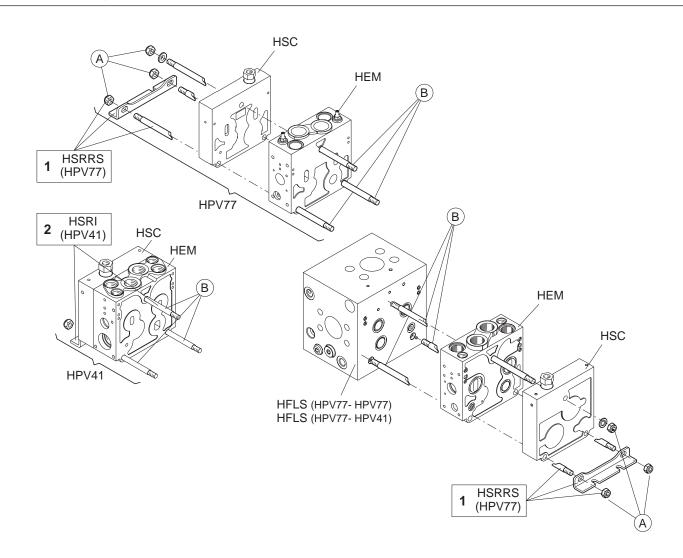

The HSEF interface hydraulically connects the elements of proportional valve HPV 77 with the elements of proportional valve HPV 41 when there is HFLS mid end section in HPV77 side

The HSEF module must be inserted into the proportional valve configuration between the last HPV77 working section and the first HPV41 working section.

Up to 6 HPV77 working sections and 8 HPV41 working sections can be installed..


Description	Code
Cast iron HSEF interface	HSEF007705041

HSEF interface overall dimensions

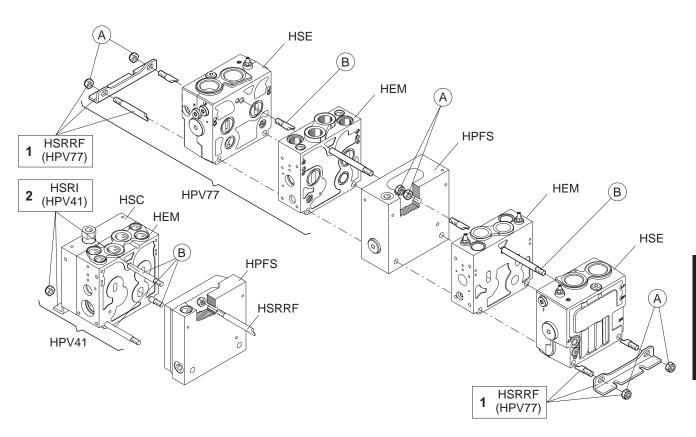

Accessories for HSC end section and HSIF interface

Code		Description	Symbol / Field	Draw
BSPP	UN - UNF	Description	Syllibol / Fleiu	Diaw
CSRV007701203 1/4" BSPP	CSRV007701206 7/16"-20UNF-2B	CSRV External drain cartridge for HSC module (to be connected to drain line)	23	×

No. of working sections (HEM)	Code
1	HSRR007705561
2	HSRR007705562
3	HSRR007705563
4	HSRR007705564
5	HSRR007705565
6	HSRR007705566
7	HSRR007705567
8	HSRR007705568
9	HSRR007705569
10	HSRR007705570

Tightening torques nuts "A": 50 ± 2 Nm [36.9 ± 1.5 lbf·ft] Tightening torques stud bolts "B": 50 ± 2 Nm [36.9 ± 1.5 lbf·ft]

1 - Stav bolts kit for HPV77


Code
HSRRS07705771
HSRRS07705772
HSRRS07705773
HSRRS07705774
HSRRS07705775
HSRRS07705776

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

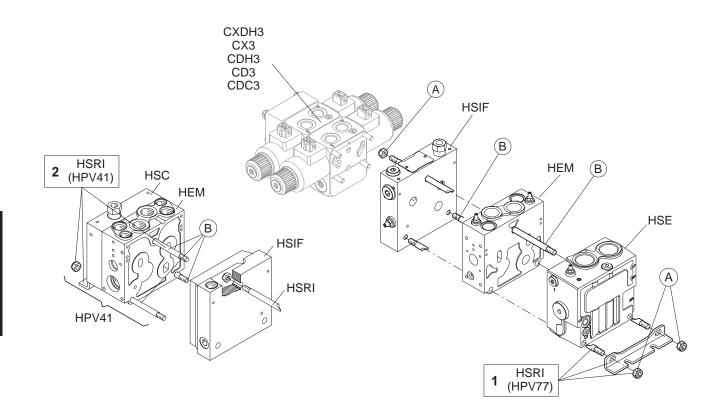
2 - Stay bolts kit for HPV41

Code
HSRI004105561
HSRI004105562
HSRI004105563
HSRI004105564
HSRI004105565
HSRI004105566
HSRI004105567
HSRI004105568
HSRI004105569
HSRI004105570

Tightening torques nuts "A" : 22.5 \pm 2 Nm [16.6 \pm 1.5 lbf·ft] Tightening torques stud bolts "B" : 25 \pm 2 Nm [18.4 \pm 1.5 lbf·ft)

1 - Stay bolts kit for HPV77

No. of working sections (HEM 77)	Code
1	HSRRF07705671
2	HSRRF07705672
3	HSRRF07705673
4	HSRRF07705674
5	HSRRF07705675
6	HSRRF07705676
7	HSRRF07705677
8	HSRRF07705678


Tightening torques nuts "A": 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]
Tightening torques stud bolts "B": 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

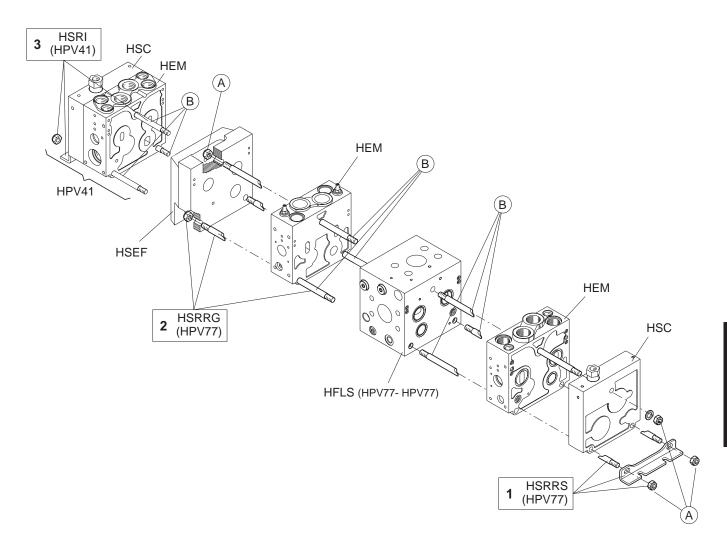
2 - Stay bolts kit for HPV41

No. of working sections (HEM 41)	Code
1	HSRI004105561
2	HSRI004105562
3	HSRI004105563
4	HSRI004105564
5	HSRI004105565
6	HSRI004105566
7	HSRI004105567
8	HSRI004105568
9	HSRI004105569
10	HSRI004105570

Tightening torques nuts "A": 22.5 ± 2 Nm [16.6 ± 1.5 lbf-ft] Tightening torques stud bolts "B": 25 ± 2 Nm [18.4 ± 1.5 lbf-ft)

DANA

1 - Stay bolts kit for HPV77


Codice
HSRI007705570
HSRI007705571
HSRI007705572
HSRI007705573
HSRI007705574
HSRI007705575
HSRI007705576

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

2 - Stay bolts kit for HPV41

Code
HSRI004105561
HSRI004105562
HSRI004105563
HSRI004105564
HSRI004105565
HSRI004105566
HSRI004105567
HSRI004105568
HSRI004105569
HSRI004105570

Tightening torques nuts "A" : 22.5 \pm 2 Nm [16.6 \pm 1.5 lbf·ft] Tightening torques stud bolts "B" : 25 \pm 2 Nm [18.4 \pm 1.5 lbf·ft)

1 - Stav bolts kit for HPV77

No. of working sections (HEM 77)	Codice
1	HSRRS07705771
2	HSRRS07705772
3	HSRRS07705773
4	HSRRS07705774
5	HSRRS07705775
6	HSRRS07705776

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 \pm 1.5 lbf·ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 \pm 1.5 lbf·ft]

2 - Stay bolts kit for HPV77 + interface HSIF + HPV41

No. of working sections (HEM)	Code
1	HSRRG07705589
2	HSRRG07705590

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf·ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf·ft]

3 - Stav bolts kit for HPV41

No. of working sections (HEM 41)	Code
1	HSRI004105561
2	HSRI004105562
3	HSRI004105563
4	HSRI004105564
5	HSRI004105565
6	HSRI004105566
7	HSRI004105567
8	HSRI004105568
9	HSRI004105569
10	HSRI004105570

Tightening torques nuts "A" : 22.5 \pm 2 Nm [16.6 \pm 1.5 lbf·ft] Tightening torques stud bolts "B" : 25 \pm 2 Nm [18.4 \pm 1.5 lbf·ft)

Spare parts seals kits

For sections and controls		Code					
		RKRC0723000	RKRC0730000	RKRC1751000	RKRC1752000	RKRC1754000	RKRC2757000
Rear cover	HCF		•				
Hydraukic remote control	НСН			•			
Electrical	нск	•					
Mechanical control	нсм				•		
Friction	HCN					•	
Rear cover	НСР					•	
Rear cover	НСРА		•				
Spool lock device	HCPD					•	
Working section	HEM						•
Intermediate inlet section	HFLS						•
Intermediate end section	HPFS						
End section	HSC						
Inlet section	HSE						•
Electrical	MHOF			•			
Electrical	MHPED			•			
Electrical	MHPEPD			•			
Electrical activation	MHPH			•			
Electrical	MHPOD			•			
Electrical	MSPF	•					

See composition form page C-25.

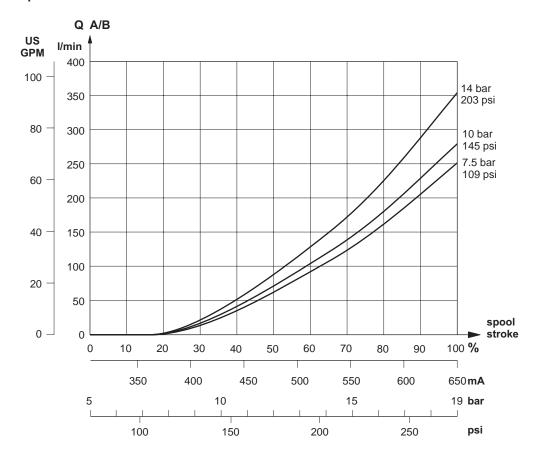
General features

- Pressure compensated flow control;
- Excellent flow control;
- High repeatibility accuracy;
- Low hysteresis:
- Built in general pilot oil supply;
- Energy saving
- Built in pump overflow system (working in progress, not available yet);
- Different spool interchangeable variants;
- Open loop PWM electrical activation;
- Closed loop electrical actuation (0÷10 V 0÷20 mA 0.5 Udc signal, working in progress, not available yet);
- Manual / hydraulic spool control;
- Flow control spool;
- Motion control spool (working in progress, not available
- Up to 5 working sections;
- Hybrid composition with HPV group valves.

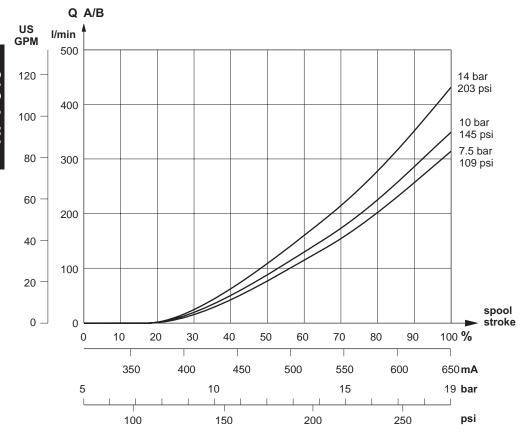
The hydraulic features reported below were measured using a mineral based hydraulic oil according to DIN 51524 or ISO 6743/4 with a viscosity of 25 mm²/s [130 SUS] at a temperature of 50 °C [122 °F].

	HSE inlet section	HSE inlet section, P port		450 HC	
Rated flow	Mid inlet section	ı, HFLS	600 l/min	159 US gpm	
	A, B ports		550 l/min	145 US gpm	
Max. working pressure	Connection	Pressure relief valve setting	400 bar	5800 psi	
	P / P port	Working pressure	370 bar	5370 psi	
	Ports A, B		370 bar 5370 psi		
	Connection Y		to tank		
	Connection T	Static	25 bar	363 psi	
	Connection	Dynamic	35 bar	508 psi	
Max. pilot pressure oil supply			up to 30 bar	up to 428 psi	
Oil temperature	Recommended		-30 ÷ 60 °C	-22 ÷ +140 °F	
	Min.		-25 °C	-13 °F	
	Max.		+80 °C	+176 °F	
Ambient temperature			-30 ÷ 60 °C	-22 ÷ +140 °F	
	Recommended		12 ÷ 80 mm²/s (cSt)		
Viscosiy	Min.		4 mm²/s (cSt)		
	Max.		460 mm²/s (cSt)		
Filtering	Max. contamina	tion: class 9 according to NAS	1638 (20/18/15 according to ISO 4406)		
Stroke	Spool stroke		± 9 mm	± 0.354 in	
	Proportional		± 7.5 mm	± 0.295 in	
Dead band			± 1.5 mm	± 0.059 in	
Nominal internal leakage	age $A, B \rightarrow T$	Without anti-shock valves	98 cm³/min	5.98 in ³ /min	
		With anti-shock valves	115 cm³/min	7.02 in ³ /min	

HPV 310 internal (easy replacement) filters, mesh 100 µm.


Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4. HPV 310 can also be used with phosphorous esters (HFDR), water-glycol /HFC) or water-oil (HFB) mixes, subject to our Technical Dept. approval.

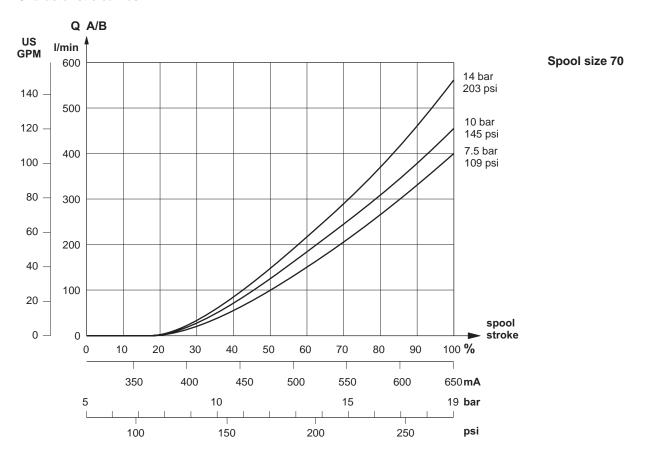
Hydraulic control - MHPH module				
Pilot pressure	Start	5 bar	72 psi	
	End stroke	19 bar	275 psi	
Max. pilot pressure		30 bar	436 psi	



Technical data

Spool flow characteristics

Spool size 10

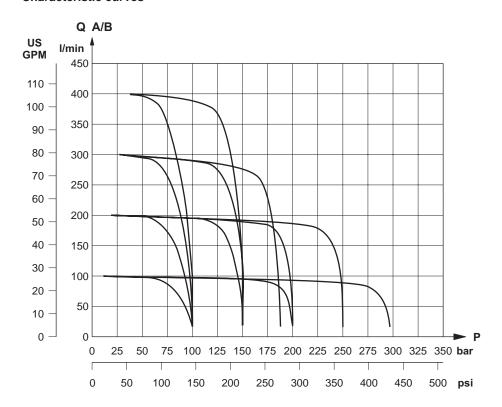


Spool size 40

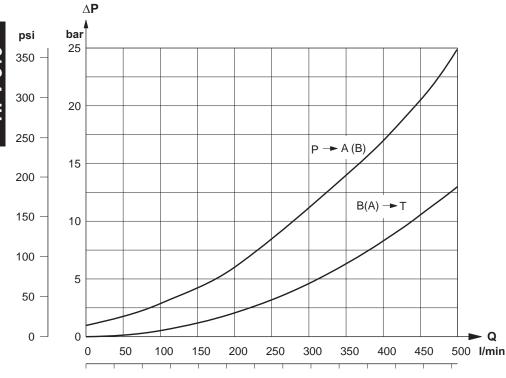
Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 °C [122 °F]

Technical data

Characteristic curves



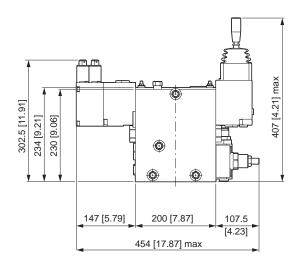
Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 °C [122 °F]

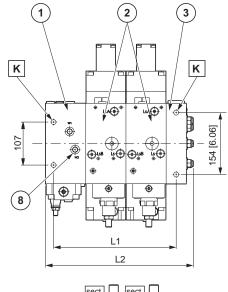


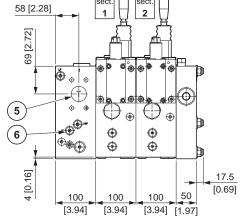
Technical data

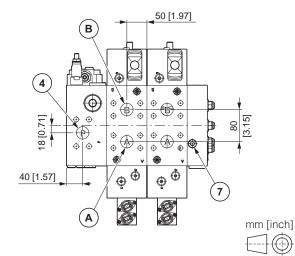
Characteristic curves

HEM working sections oil flow with LS A/B pilot relief valves (pressure compensated)




HEM working sections pressure drop

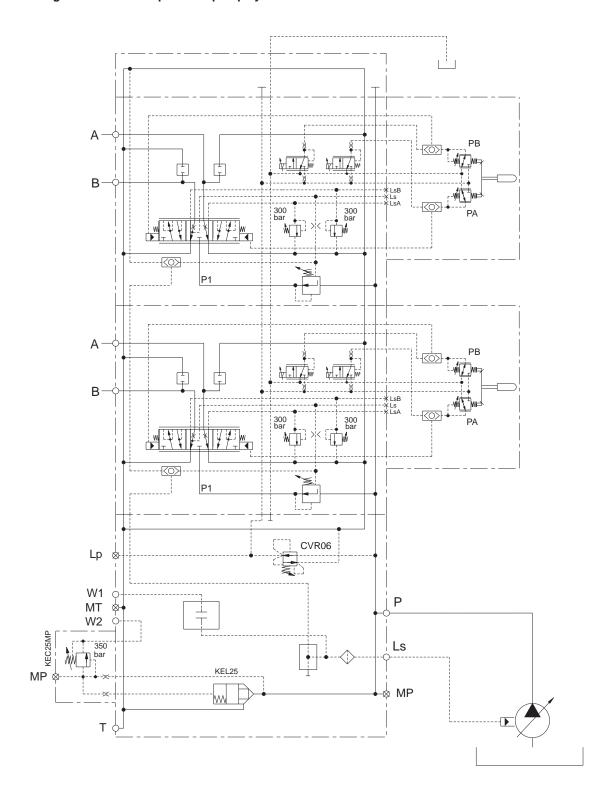

Curves measured with oil viscosity of 25 mm²/s (cSt) at a temperature of 50 °C [122 °F]


HPV 310 overall dimensions with SINGLE inlet section (HSE)

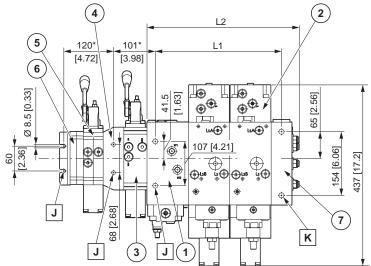
Working Sections	L1 mm [inch]	L2 mm [inch]
1	205 [8.07]	267.5 [10.53]
2	305 [12.01]	367.5 [14.47]
3	405 [15.94]	467.5 [18.41]
4	505 [19.88]	567.5 [22.34]
5	605 [23.82]	667.5 [26.28]
6	705 [27.76]	767.5 [30.22]

A/B Ports, 1 1/4" SAE 6000 psi

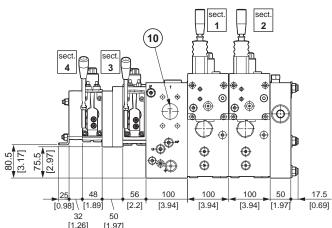
- Fixing holes , M14x2
- Inlet section HSE
- 2 3 Working section HEM
- End section HSC
- Pump side port P, 1 1/4" SAE 6000 psi
- Return line port T, 1 1/2" SAE 3000 psi
- LS connection, G 1/4" BSPP
- T1 connection, G 1/4" BSPP
- W2 connection, G 1/4" BSPP

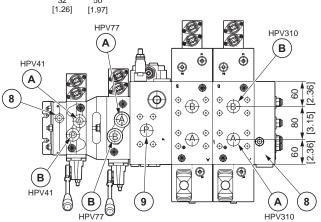

Fixing instructions

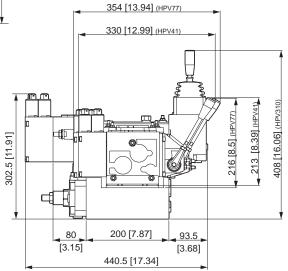
The distributor must be fixed by the fixing holes (K) in the inlect and end sections. We decline all responsibility in the case of malfunctioning or oil leakage caused by the wrong fixing of the distributor.


See the order form, page D-12.

HPV 310 hydraulic diagram for constant pressure pump system




Overall dimensions with MID inlet section HPV310 + HPV77 + HPV41



Wolking Elections	L1 mm[inch]	L2 mm[inch]
1	2052[2507]	267 26 [7 1 6 .53]
2	305 302 .01]	367356[71.56.47]
3	405 405 .94]	467456[71.8.41]
4	505 509 .88]	567556[722.34]
5	605 @25 .82]	667 666[26 .28]
6	7057[23.76]	767756[736.22]

^{*} With 1 working section

Fixing instructions

The distributor must be fixed by the holes on HPV310 sections (K) and holes and feet (J) on HPV77 e HPV41 sections. We decline all responsibility in the case of malfunctioning or oil leaks caused by wrong fixing of the distributor.

On the working sections HPV77 and HPV41 (as in the above example), the A - B port positions are reversed respect HPV310 section (see also the order form, page D-13).

A/B Ports: HPV310: 1 1/4" SAE 6000 psi

G 3/4 BSPP or 1 1/16" - 12 UN - 2B (SAE 12) HPV77: HPV41: 1/2 BSPP or 7/8" - 14 UNF - 2B (SAE 10)

Fixing holes HPV310, M14x2 K

Means and fixing holes M10

HPV310, intermediate inlet section HFLS

2 HPV310, working section HEM

HPV77, working section HEM

Interfate between HPV77 and HPV41, HSEF

HPV41 working section HEM

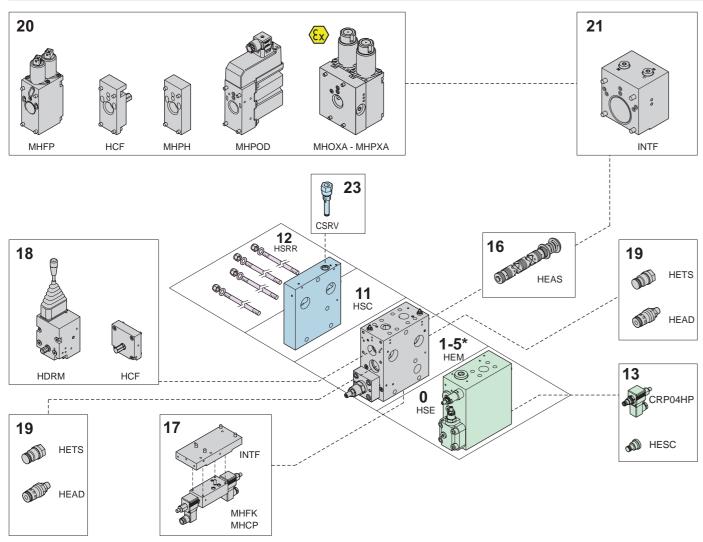

HPV41, end section HSC

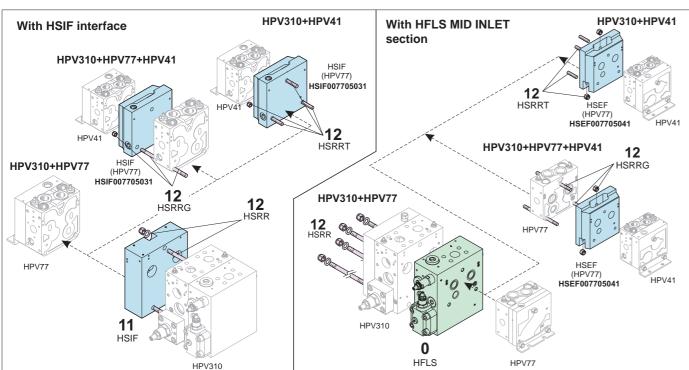
HPV310, end section HSC

T1 connection, G 1/4" BSPP

Pump side port P, 1 1/2" SAE 6000 psi Return line port T, 1 1/2" SAE 3000 psi

Hydraulic diagram with MID inlet section HPV310 + HPV77 + HPV41




HPV310 Composition form

HPV310 Composition form

HPV310 Composition form

FIELD 0 - INLET SECTIONS	
HSE - Inlet section for LS or constant pressure pumps	
HSE - Inlet section for fixed displacement pumps	
HFLS - Mid inlet section for LS or constant pressure pumps	
HFLS - Mid inlet section for fixed displacement pumps	D-2
FIELD 1 to 5 - WORKING SECTIONS	_
HEM - Working section	D-2
FIELD 11 - END SECTIONS	
HSC - End section	
HSEF - Interface for HPV77	D-4
FIELD 12 - STAY BOLTS KITS	
HSRR - Stay bolts kit for single inlet HSE	
HSRRT-HSRRG - Stay bolts kit for HSIF interfaces	
HSRRT-HSRRG - Stay bolts kit for intermediate inlet HSIF and HSEF interface	D-2
FIELD 13 - FACILITIES FOR SOLENOID LS UNLOADING VALVES	
HSET - Plug	D-2
CRP04HP - Electrical valve	D-2
FIELD 16 - SPOOLS	
HEAS - Main spools	D-2
FIELD 17 - ELECTRICAL UNLOADING LSA-B MODULE	
INTF - Adapter for MHFO-MHCP modules	
MHFO - Unloading module	
MHCP - Unloading module	D-4
FIELD 18 - MECHANICAL ACTUATORS	
HDRM - Manual control	
HCF - Rear cover	D-2
FIELD 19 - SHOCK AND SUCTION VALVE	
HEAD, HETS - Valves and plugs	D-2
FIELD 20 - HYDRAULIC AND ELECTRICAL ACTUATORS	
MHPF - Current controls for HEM working sections	D-3
MHPOD - Voltage controls for HEM working sections	D-3
MHOXAB/MHPXAB - Electrohydraulic modules ATEX	
MHPH - Hydraulic activation	D-3
HCF Rear cover	D-3
FIELD 21 - ADAPTER	
INTF - Adapter for HEM working sections	D-3
FIELD 23 - ACCESSORIES FOR HSC ELEMENTS	
CSRV - External drain cartridge	D-4
SPARE PARTS KIT	D-4

D-10 DANA

This order form is the only one ensuring that the product will be defined and ordered correctly without any possible mistakes. It is divided into sectors of pertinence, from 0 to 24, within which the code of the required module must be inserted.

It is also necessary to indicate:

- the setting in bar of the pressure relief valve (sector 0, inlet section);
- when requested, the setting in bar of the LsA/LsB pressure relief valves (sectors 1 to 5, HEM spool elements);

Dana suggests to indicate the pump type and the flow that feeds the proportional valve, so it is possible to test it in working conditions.

The valve is always assembled as indicated in the module assembly selection table.

Order form

With SINGLE inlet section (HSE)

Controlled function	B Port	Field		11 12		23		A Port		Controlled function
Tunotion						40		1 010	1.40	Tunotion
	18		LeΔ	bar		16			18 19 20	
	20	10	LsA LsB			17			20	
	21			22					21	
	18		LeΛ	bar		16			18 19	
	20	9	LsA LsB			17			20	
	21			22					21	
	18 19		LsA	bar		16			18 19	
	20	8	LsB			17			20	
	21			22					21	
	18 19		LeΔ	bar		16			18 19	
	20	7	LsA LsB			17			20	
	21			22					21	
	18		LoA	bar		16			18	
	19 20	6	LsA LsB	+		17			18 19 20	
	21			22					21	
	18		I c A	bar		16			18 19	
	20	5	LsA LsB	+		17			20	
	21			22					21	
	18 19		I c A	bar		16			18 19	
	20	4	LsA LsB	+		17			20	
	21			22					21	
	18		LaA	bar		16			18	
	19 20	3	LsA LsB			17			19	
	21		LUD	22					21	
	18		1	bar		16			18	
	19 20	2	LsA LsB			17			19 20	
	21		LSD	22					21	
	18 19		l	bar		16			18 19	
	20	1	LsA LsB			17			20	
	21		LSD	22					21	
te			Р			13		Note		
		0	bar			14 15		_		
Dight UDV food	d (Ctondord)					IJ	MAIN INFO	I DMATION		
Right HPV feed	u (Staliualu)									
Lott III V 1000					7		Pump type		LS control	O Constant pressure
				1			Pump flow, I/1'	000 liter / min		
							Type of threads	OUNF O	BSPP	
							Reference tension	O12 V	24 V	O Not required
							Electric devices		Atex PWM	O ATEX Tens
										-
stomer:										
m description:										
mpilation form da	ate:									
r valve internal co									-	
stomer reference										
	nodification index									
der No.:					Order quantity					
der Date:					Net price EUR					
					PRICE LIST 2018 - VE	re DCE	PP (GAS)			
livery date:			1 1110L LIST 2010 - VE	iis. Dor	i (GAS)					
der ack. N°.:					Quotazione n° :					

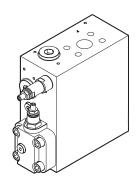
NOTE: For working sections numbering, see page D-5.

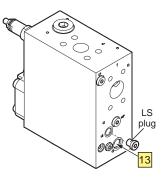
Order form

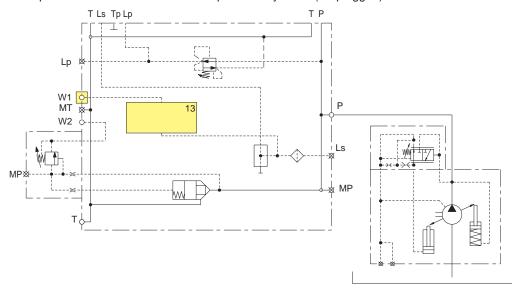
With MID inlet section (HFLS)

Controlled function	B Port	Field		11 12		23		A Port		Controlled function
	18		ļ.,.	bar		16			18 19	
	19 20	6	LsA LsB			17			19 20	
	21		LSD	22					20	
	18			bar		16			18	
	19 20	5	LsA LsB			17			19 20	
	21		LSD	22					21	
	18		LaA	bar		16			18	
	19 20	4	LsA LsB			17			19 20	
	I 21		200	22					21	
	18 19		LoA	bar		16			18 19	
	20	3	LsA LsB			17			20	
	21			22					21	
	18		I c A	bar		16			18 19	
	20	2	LsA LsB			17			20	
	21			22					21	
	18 19		LsA	bar		16			18 19	
	20	1	LsB			17			20 21	
	20 21			22					21	
игі с	Α	0	Р			13		В		ПСІ С
HFLS	Port	0	bar			14 15		Port		HFLS
	18		υαι	bar	+	16			18	
	19	7	LsA						18 19	
	20 21	′	LsB	22		17			20	
	18			bar		16			18	
	19 20	8	LsA						18 19	
	20	⊣	LsB	22		17			20 21	
	18			bar	+	16			18	
	19 20	9	LsA LsB						19 20	
	20	_	LsB	22		17			20	
	18			bar		16			18	
	18 19 20	10	LsA LsB						19 20	
	21		LSB	22		17			20	
	18			bar		16			18 19	
	19	11	LsA LsB						19	
	20 21		LSB	22		17			20 21	
	18			bar		16			18 19	
	I 19	12	LsA LsB						19	
	20 21		LSB	22		17			20	
lote	1 1			11		23		Note		
				12				-		
[******	I DIALETICAL		
HPV feed with					7		MAIN INFO			
HPV feed with HF	ro illoudie			1			Pump type	○ Fixed displ. ○ LS c	ontrol	O Constant pressure
							Pump flow, I/1'	000 liter / min		
							Type of threads	OUNF OBSP	P]
							Reference tension	○12 V ○24 V		O Not required
							Electric devices	○ Standard		O ATEX Tens
					T					
lustomer:										
em description:										
Compilation form da										
Our valve internal co	ode									
Customer reference	code									
Compilation form m	odification index								-	
order No.:					Order quantity					
Order Date:					Net price EUR					
					PRICE LIST 2018 - vers	s. BSF	PP (GAS)			
elivery date:						\ ·- /	1			
order ack. N°.:					Quotazione n° :					

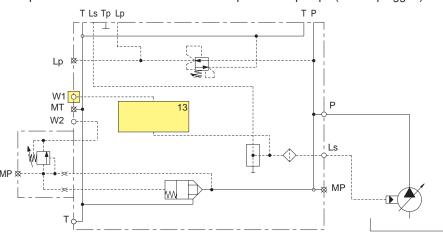
NOTE: For working sections numbering, see page D-7.

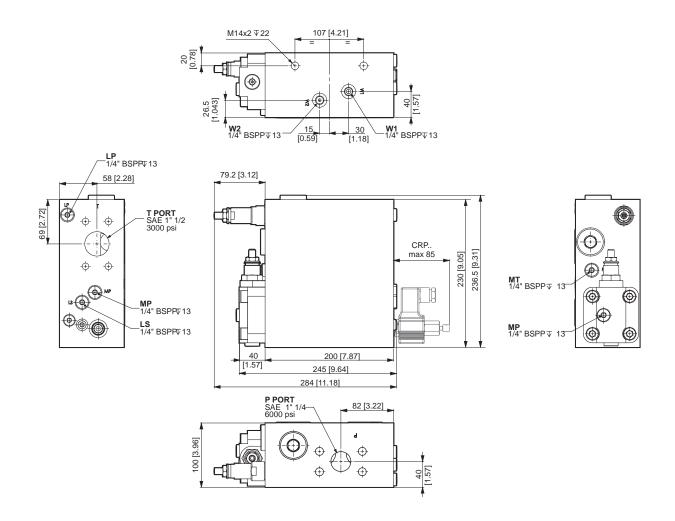



Features


- Built in pilot pressure relief valve
- System with LS variable displacement pumps
- System with constant pressure variable displacement pumps
- Built in central pilot oil supply
- Solenoid LS unloading valve
- P port gauge connection: SAE 1" 1/4 6000 psi
- T port gauge connection: SAE 1" 1/2 3000 psi
- Ls Connection: 1/4" BSPP
- Hydraulic features: see page D-1.
- Made in cast iron

Code HSE0003101012

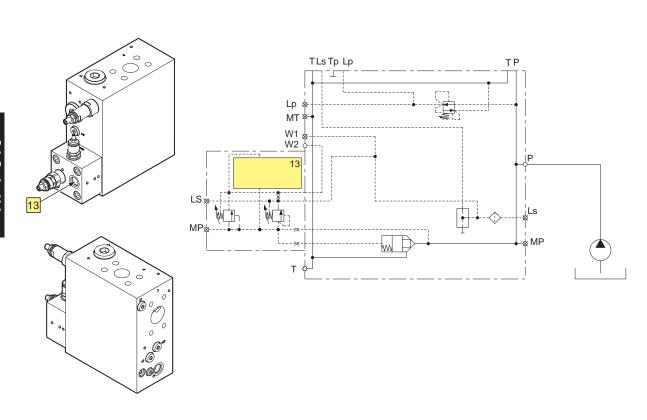

Example with inlet module for constant pressure systems (LS plugged)



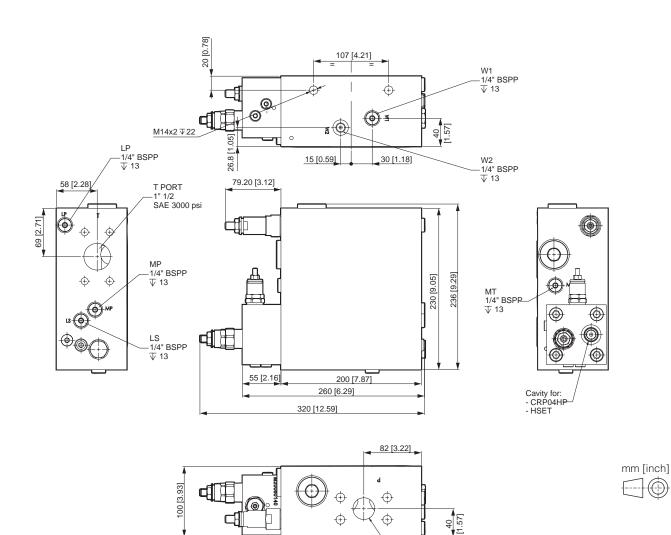
Example with inlet module for LS variable displacement pumps (LS not plugged)

13 Seats, see accessories tables page D-22.

HSE inlet module overall dimensions


Features

- Built in pilot pressure relief valve
- System with constant pressure variable displacement
- Built in central pilot oil supply
- Solenoid LS unloading valve
- P port gauge connection: SAE 1" 1/4 6000 psi
- T port gauge connection: SAE 1" 1/2 3000 psi
- Hydraulic features: see page D-1.
- Made in cast iron

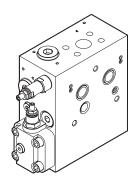

If connected with HPV41 or HPV77 proportional valves use only HPV41 or HPV77 special elements code HEM00S*** (S identify elements without cap on LS line).

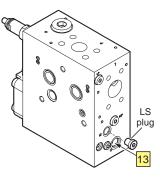
Code HSE0003101310

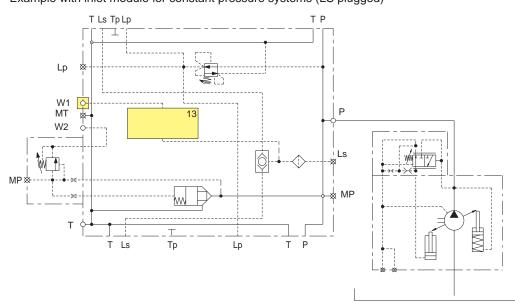
Example with inlet module for fixed displacement pumps

HFLS inlet module overall dimensions

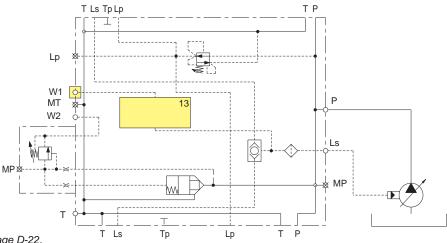

P PORT -1" 1/4 SAE 6000 psi

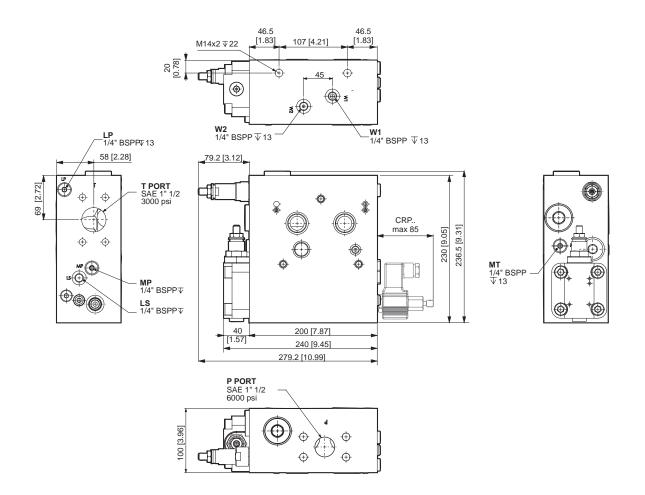



Features


- Built in pilot pressure relief valve
- System with LS variable displacement pumps
- System with constant pressure variable displacement pumps
- Built in central pilot oil supply
- Solenoid LS unloading valve
- P port gauge connection: SAE 1" 1/4 6000 psi
- T port gauge connection: SAE 1" 1/2 3000 psi
- Ls Connection: 1/4" BSPP
- Hydraulic features: see page D-1.
- Made in cast iron

Code HFLS003101212

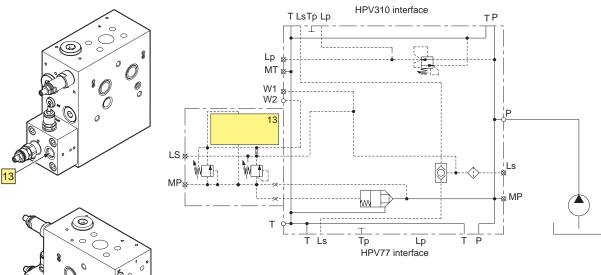


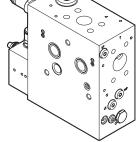


Example with inlet module for LS variable displacement pumps (LS not plugged)

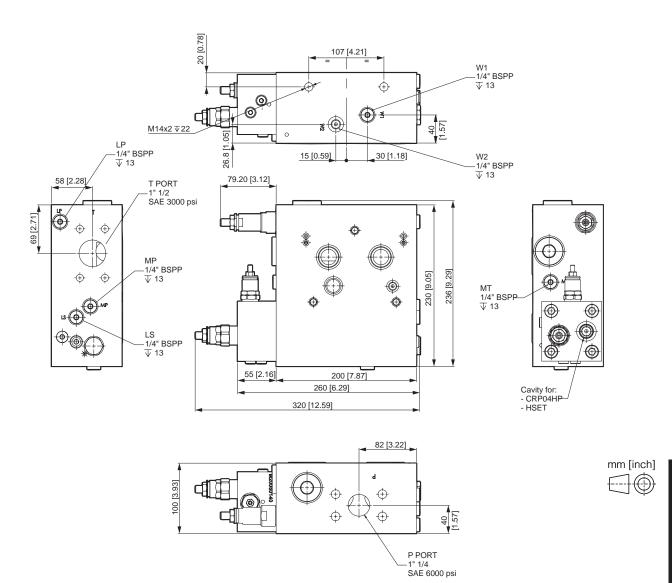
13 Seats, see accessories tables page D-22.

HFLS inlet module overall dimensions


Features


- Built in pilot pressure relief valve
- System with constant pressure variable displacement
- Built in central pilot oil supply
- Solenoid LS unloading valve
- P port gauge connection: SAE 1" 1/4 6000 psi
- T port gauge connection: SAE 1" 1/2 3000 psi
- Hydraulic features: see page D-1.
- Made in cast iron

If connected with HPV41 or HPV77 proportional valves use only HPV41 or HPV77 special elements code HEM00S*** (S identify elements without cap on LS line).


Code
HFLS003101310

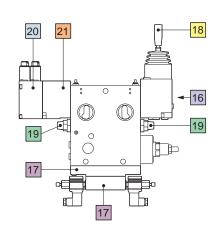
Example with inlet module for fixed displacement pumps

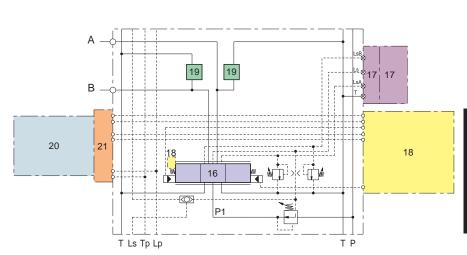
HFLS inlet module overall dimensions

Field 13 - Facilities for solenoid Ls unloading valve

Code	Description	Symbol	Draw
HESC003103015	HESC Kit with closing cover for CRP04 and W1 threaded hole	13 <u> </u>	
CRP04HPNAAELP31 14 Vdc	CRP04HP	13	
CRP04HPNAAEMP31 28 Vdc	High pressure piloted operated solenoid valve normally open	W T P BZ	
CRP04HPNCAEL001 14 Vdc	CRP04HP	13	
CRP04HPNCAEM001 28 Vdc	High pressure piloted operated solenoid valve normally closed	WYLL BZ#	

Note: ATEX distributors can be mounted only with HESC kit.

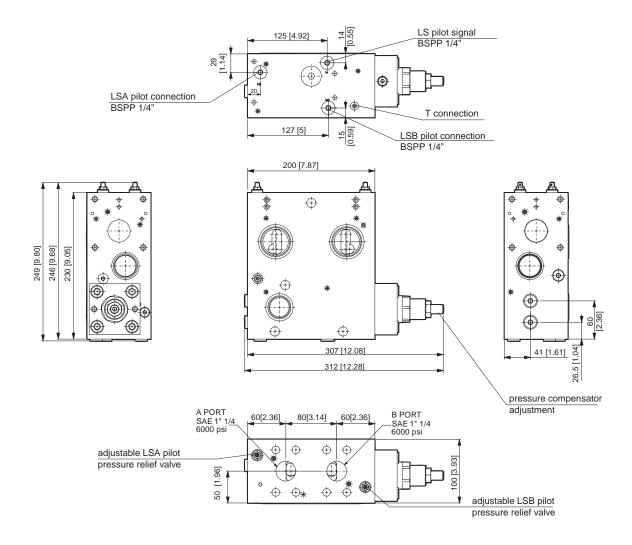

Features


- Built-in adjustable pressure compensator
- Symmetrical distribution that allows the manual activation position to be reversed with all servocontrols
- Built-in adjustable pilot operated shock-suction valves
- Interchangeable spools
- LS and LSA/B pilot connections
- LSA/B pilot relief valves
- LS and LSA/B electrical unloading (work in progress, not available yet)
- Electrical actuation
 - MHPF, PWM signal, open loop control MHPOD, 0-10 V, 0-20 mA, 0,5 UDC signal, open loop control

MHPED, 0-10 V, 0-20 mA, 0,5 UDC signal, closed loop control (work in progress, not available yet)

- Mechanical flow adjustment
- Made in cast iron

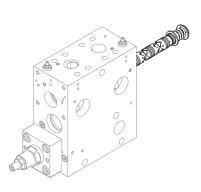
Code HEM0003103010



Field	Description	Page
16	HEAS - Main spools	D-25
	INTF - Adapter	D-39
17*	MHFO - Unloading module Ls A/B	D-40
	MHCP - Unloading module Ls A/B	D-41
18	HDRM Manual control	D-27
10	HCF - Rear cover	D-29
19	HEAD, HETS - Valves and plugs	D-26
	MHPF - Current controls for HEM working sections	D-31
	MHPOD - Voltage controls for HEM working sections	D-33
20	MHOXAB/MHPXAB - Electrohydraulic modules ATEX	D-35
	MHPH - Hydraulic activation	D-37
	HCF - Rear cover	D-38
21	INTF - Adapter for HEM working sections	D-30

^{*} optional

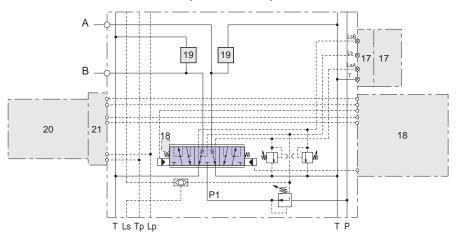
HEM module overall dimensions



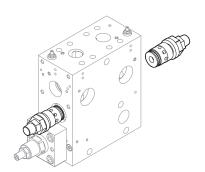
20

21

T Ls Tp Lp



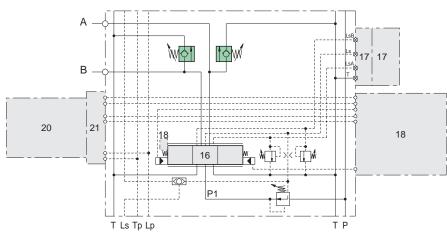
Sį	pool type	Code	Size	∆p bar [psi]	Flow range I/min [US GPM]	Symbol
		HEAS003104200	05	8 ÷ 14 [116 ÷ 203]	180 ÷ 270 [48 ÷ 71]	
011	4-way,	HEAS003104225	10	8 ÷ 14 [116 ÷ 203]	250 ÷ 320 [66 ÷ 85]	B A
UIN	01N 3-position A, B closed	HEAS003104240	40	8 ÷ 14 [116 ÷ 203]	310 ÷ 410 [82 ÷ 108]	T P T
		HEAS003104265	70	8 ÷ 14 [116 ÷ 203]	410 ÷ 500 [108 ÷ 132]	
		HEAS003104300	05	8 ÷ 14 [116 ÷ 203]	180 ÷ 270 [48 ÷ 71]	
03N	4-way,	HEAS003104325	10	8 ÷ 14 [116 ÷ 203]	250 ÷ 320 [66 ÷ 85]	B A
USIN	3-position A, B → T	·	40	8 ÷ 14 [116 ÷ 203]	310 ÷ 410 [82 ÷ 108]	TPT
		HEAS003104365	70	8 ÷ 14 [116 ÷ 203]	410 ÷ 500 [108 ÷ 132]	


Example with 01N spool

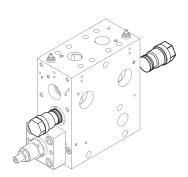
18

ΤP

Shock and suction valve for A - B ports

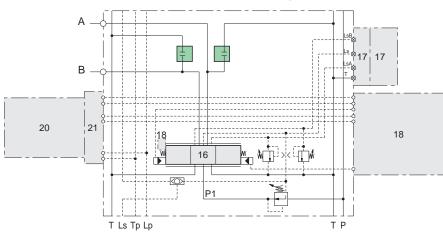

HEAD is designed to absorb shock effects only. Don't use it as a pressure relief valve.

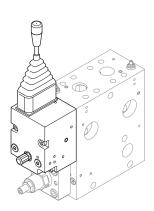
Setting up to 400 bar [5800 psi].


Code (*)
HEAD003101450

Example with HEAD valves

HEAD


Plug for closing shock ports

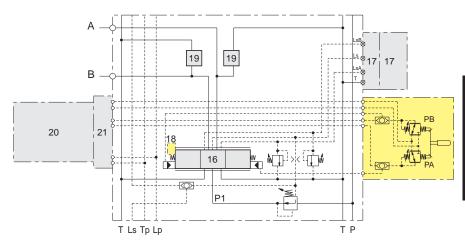

HETS

Example with HETS plugs

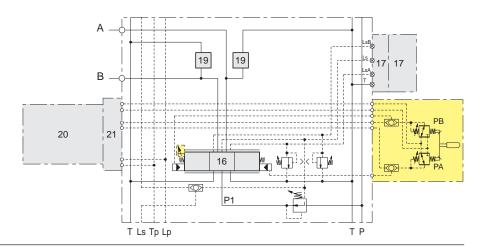
(*) In the order form indicate the lines A and/or B on which the valves are to be mounted

HDRM

Manual activation

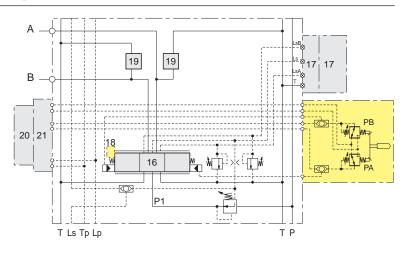

HDRM manual actuations operate on the basis of direct operated pressure reducing valves.

HDRM control devices basically comprise a control lever, two pressure reducing valves and a housing.

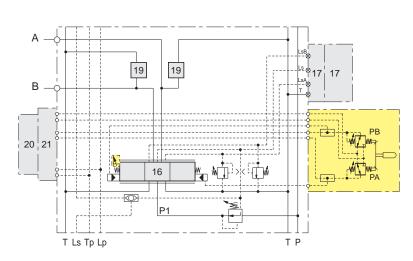

When the control lever is deflected, as a result of the interaction with the two pressure reducing valves the relevant pilot pressure is a function of the control lever position, enabling a highest metering spool control.

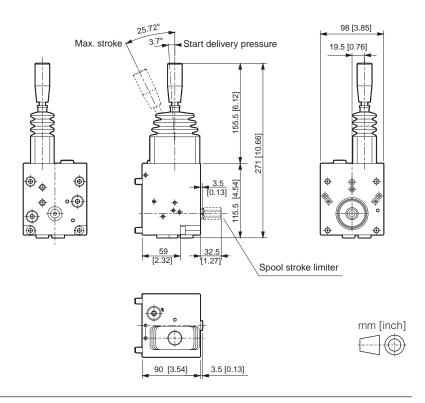
Code	Description
HDRM003107001	Manual actuator without spool stroke limiter for electric control
HDRM003107002	Manual actuator with spool stroke limiter for electric control
HDRM003107003	Manual actuator without spool stroke limiter for manual control
HDRM003107004	Manual actuator with spool stroke limiter for manual control

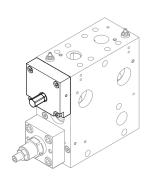
Example with HDRM003107001 without spool stroke limiter for electric control (on field 20).



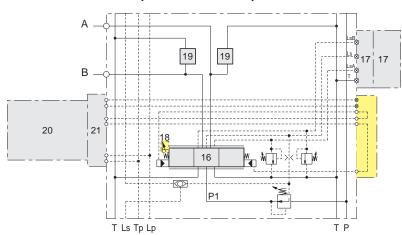
Example with HDRM003107002 with spool stroke limiter for electric control (on field 20).



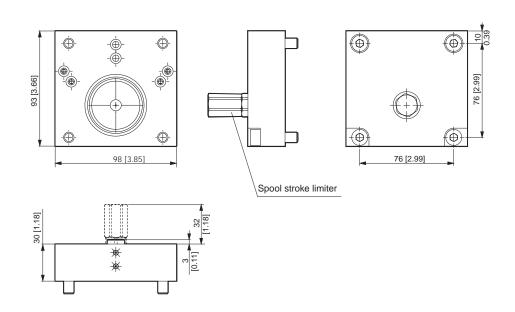

Example with HDRM003107003 without spool stroke limiter for manual control (on field 20).


Example with HDRM003107004 with spool stroke limiter for manual control (on field 20).

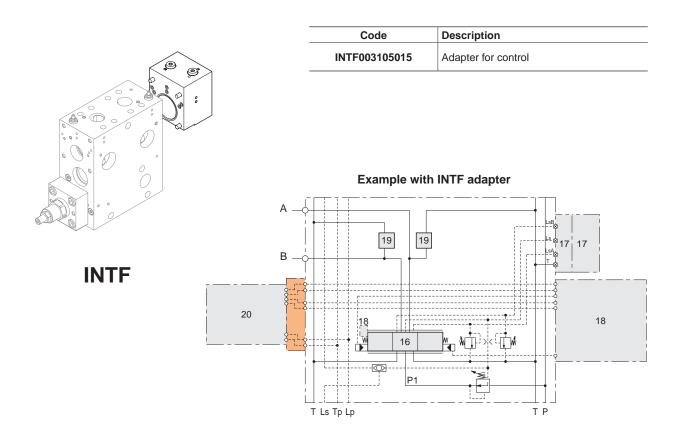
HDRM control overall dimensions



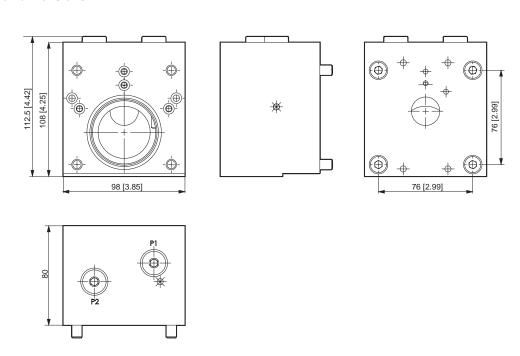
Flange with / without stroke limiter

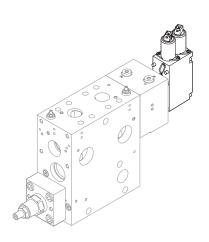

Code	Description
HCF0003104010	Flange with stroke limiter
HCF0003104011	Flange without stroke limiter

Example with HCF with spool stroke limiter.



HCF


HCF flange overall dimensions



Adapter for control

INTF adapter overall dimensions

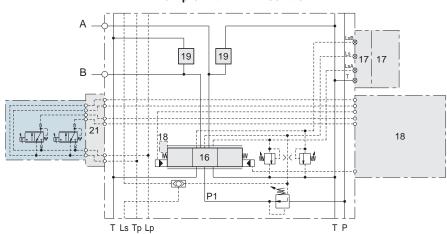
MHPF

MHPF electrohydraulic PROPORTIONAL module

MHPF proportional electrohydraulic module shifts the position of the spool precisely in proportion to an electric current signal generated by the remote control.

The spool is shifted by means of the hydraulic pressure generated by the pressure-reduction proportional solenoid valves. The MHPF module is not equipped with an inductive position transducer (LVDT) and the entire electronic circuit to detect and signal faults.

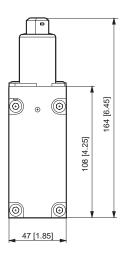
This means that in the joystick remote control phase, any control (for example a manual control) that overrides the force exerted by the pressure reduction valves on the spool, may vary the position of that spool without any error signal and without inhibition, leavingthe safety of the entire hydraulic system to the visual operator control, only.

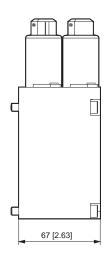

MHPF module has the following main features:

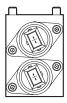
- It can be operated with on-off signals also
- Short response time
- Electro-proportional pressure reduction valves
- PWM electric control of low-frequency solenoid valves
- Any adjustment to limit the flow or to create work ramps will be made directly on the remote control
- Very low hysteresis and excellent sensitivity

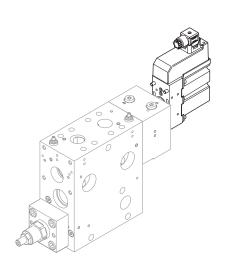
Current controls

Code	Description
MHPF003107050	12 VDC
MHPF003107051	24 VDC


Example with MHPF control




MHPF current controls for HEM working sections


Rated voltage		12 Vdc	24 Vdc	
Power supply voltage range		11 to 15 V	22 to 30 V	
Max. ripple		8	%	
Max. current		1500 mA ± 10	750 mA ± 10	
Power consumption		18 W at 22 °C [71.6	°F] coil temperature	
Start spool travel		630 mA	280 mA	
End spool travel		1170 mA	610 mA	
R ₂₀		4.72 Ω ± 5 %	20.8 Ω ± 5 %	
Heat insulation		Class H, 180	°C [356 °F]	
	Recommended	-30 ÷ +60 °C [-22 ÷ +140 °F]		
Oil temperature	Min	-30 °C [-22 °F]		
	Max	+90 °C [+194 °F]		
Dither adjustment		75 Hz		
Inductance		8.5 mH	70 mH	
Current variation		100 mA/s	50 mA/s	
Duty cycle % ED on-off operation	20	14 V = 100	28 V = 100	
Duty cycle % ED on-on operation		15 V = 50	30 V = 50	
Plug connector		2-pole AMP Junior Power Timer		
Reaction time from neutral posi	tion to end spool stroke (constant voltage)	120 ms		
Reaction time from end spool s	troke to neutral position (constant voltage)	90	ms	
Grade of enclosure to IEC 529,	with female connector	IP	65	

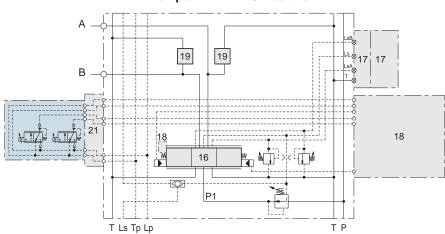
MHPF control overall dimensions

MHPOD

MHPOD electrohydraulic PROPORTIONAL module

MHPOD is a open loop electrohydraulic activation unit, whose design is based on digital technology.

MHPOD has been specially developed to meet the harsh operating requirements of today's mobile machine market. MHPOD electrical open loop proportional actuation operates the main spool's shift according to an electrical signal coming from a remote control unit, and is recommended where a simple proportional control is required, and where hysteresis and reaction time are not critical.

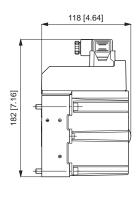

MHPOD does not have the inductive position transceiver (LVDT) and any electronic circuit for faults monitoring. This means that any forces that override the pilot pressure spool forces may change the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

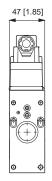
MHPOD is defined by:

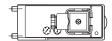
- Capacity to handle three different kinds of input signal control (see chart below).
- The required signal control is to be stated in the order phase
- Integrated PWM (Pulse Width Modulator)
- Good flow regulation
- · Simple built-up.

	ı	I	
Voltage	0.5 x Upc (A) joystick	0 ÷ 10 Vpc (B) PLC	0 ÷ 20 mA (C) PLC
12 Vdc	MHPOD03108077	MHPOD03108082	MHPOD03108086
24 Vdc	MHPOD03108075	MHPOD03108084	MHPOD03108088

Example with MHPOD control

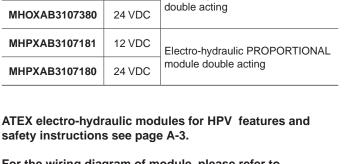



MHPOD voltage controls for HEM working sections


Rated voltage		12 Vdc	24 Vdc	
Power supply voltage range		11 ÷ 15 V	20 ÷ 28 V	
Max. ripple		5 %		
Current si	upply		520 mA	260 mA
Current co	onsumption (neutral position	, constant voltage)	36 mA	46 mA
Power cor	nsumption		6 W	
Heat insu	lation		Class H 180 °C [256 °F]	
Ponetion	time (constant voltage)	From neutral position to max. spool travel	110 ÷	140 ms
Reaction	time (constant voltage)	From max. spool travel to neutral position	70 ÷	90 ms
Ponetion	time (neutral switch)	From neutral position to max. spool travel	130 ÷ 170 ms	
Reaction	ume (neutral Switch)	From max. spool travel to neutral position	70 ÷ 90 ms	
Connector		Standard (IP 65) according to DIN 43650 / ISO 4400		
Enclosure	e to IEC 529		IP	65
		Neutral position	0.5 x UDC	
(A)	Input signal control	Control range	0.25 x UDC to 0.75 x UDC	
joystick	Max. current signal control		0.5 mA	1 mA
	Input impedance in relation to 0.5 x UDC		12 kΩ	
		Voltage	0 ÷ 10 VDC	
(D)	Input signal control	Neutral position	5 VDC	
(B) PLC		Control range	0.25 x 10 VDC to 0.75 x 10 VDC	
1 20	Current signal control		0.5 mA	
	Input impedance in relation	n to 0 ÷ 10 VDC	20 kΩ	
		Current	0 ÷ 20 mA	
(C)	Input signal control	Neutral position	10 mA	
PLĆ		Control range	0.25 x 20 mA to 0.75 x 20 mA	
	Input impedance in relation to 0 ÷ 20 mA		0.5 kΩ	

Electrical connections for MHPOD controls, see page: E-4

MHPOD control overall dimensions



ports.

Code

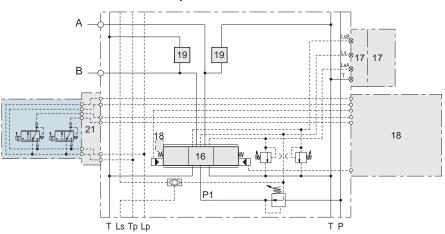
MHOXAB3107381

Electro-hydraulic ON/OFF module

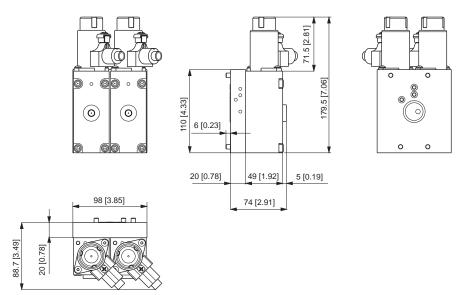
Description

MHOXAB

safety instructions see page A-3.


Electro-hydraulic ON/OFF or PROPORTIONAL operated The MHOXAB/ MHPXAB double acting can activate A and B

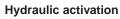
Voltage


12 VDC

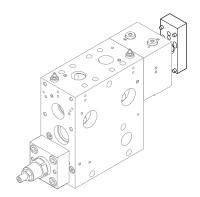
For the wiring diagram of module, please refer to Instruction manual.

Example with ATEX control

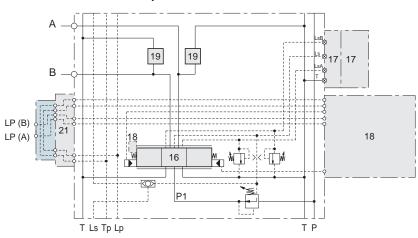
MHOXAB/MHPXAB control overall dimensions

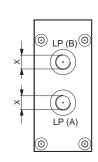


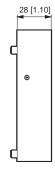
MHOXAB/MHPXAB ATEX controls for HEM working sections

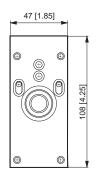

Nominal voltage	12 Vdc	24 Vdc
Coil resistance, R20	9 Ω ± 6 %	35.8 Ω ± 6 %
Min. current	700 mA	350 mA
Rated current	1330 mA	670 mA
Max. current	1850 mA	930 mA
Limit power	14.3 W	14.4 W
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manu	facturer manual
Short-circuit protection	With fuse - See coil	manufacturer manual
Duty cycle	10	00%
Input pressure	Max. 50 b	ar [725 psi]
Switching pressure	>23 bar	[334 psi]
Fluid temperature	-20 ÷ +80 °C	[-4 ÷ +176 °F]
Ground connection	Up to 4 mi	m² - 11 AWG
Protection class (DIN VDE 0580)		I
Fluids	Hydraulic oil to [DIN 51524.ATF-oil
Protection ratings (DIN VDE 0470 / EN 60529)	IP67	/ IP69K
Shock-resistance to EN 50014	4	1 J
Technical features electro-hydraulic PROPORTIONAL - MHPXAB		
Nominal voltage	12 Vdc	24 Vdc
Voltage range	11 ÷ 15 Vdc	22 ÷ 28 Vdc
Coil resistance, R20	4.3 Ω	15.3 Ω
Rated current, IN	1360 mA	686 mA
Max. current regulation range	0 ÷ 1500 mA	0 ÷ 750 mA
Max. power	14.8 W	12.8 W
Start spool travel	490 mA	240 mA
Start spool flow	510 mA	260 mA
End spool travel	875 mA	500 mA
Pilot pressure	28 bar [406 psi]	
Power supply	PWM	100 Hz
Max. pressure (static)	50 bar [725 psi]	
Ambient temperature	-20 ÷ +50 °C [-4 ÷ +122 °F]	
Fluid temperature	-20 ÷ +80 °C	[-4 ÷ +176 °F]
Connection cable	FL4G11Y - 3 x 1.5 mm ² [3 x 15 AWG] L = 5-5.1 mt [197-201 inch]	
Integrated diode to limit switch-off overvoltage	See coil manufacturer manual	
Short-circuit protection	With fuse - See coil	manufacturer manual
Groud connection	Up to 4 mr	n² - 11 AWG
Fluids	Hydraulic oil to [DIN 51524.ATF-oil
Grade of enclosure (DIN VDE 0470 / EN 60529)	IP67 / IP69K	
Shock-resistance to EN 50014	4 J	
Hydraulic features		
Max pilot pressure oil supply	30 bar [435 psi]	
Start spool flow	4.5 bar [65 psi]	
End spool flow	15 bar [218 psi]	
UEM modulo hydraulic data		
HEM module hydraulic data Max pressure (static - input)	350 bar	[5076 psi]
Max flow	130 l/min [34.3 US gpm]	
	100 #11111 [0	2 2 3k]

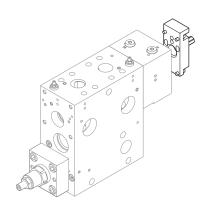
• Start pilot pressure: 4.5 bar [65 psi]
• End stroke pressure: 15 bar [218 ps

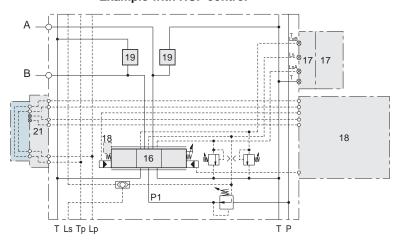

End stroke pressure: 15 bar [218 psi]
Max. pilot pressure: 30 bar [435 psi]

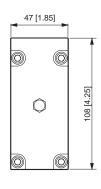

Thread	Code (Aluminum)	Code (Cast iron)	
(X) 1/4 BSPP	MHPH003104601	MHPH003104621	
(X) 7/16" - 20 UNF	MHPH003104602	MHPH003104622	


MHPH

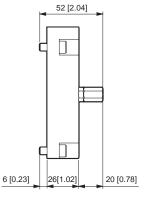

Example with MDPH control

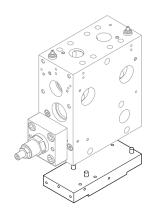

MDPH control overall dimensions

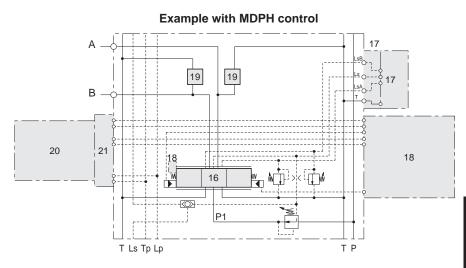

Rear cover with stroke adjustment


Code	Code	
(Aluminum)	(Cast iron)	
HCF0007704587	HCF0007704584	

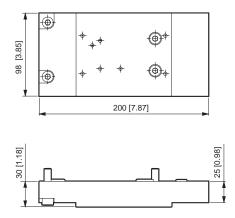

HCF

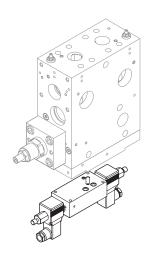

Example with HCF control


HCF control overall dimensions



Adapter for MHCP module



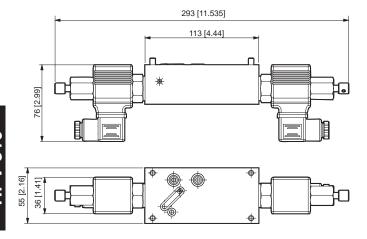

Code	Description
INTF003104005	Adapter for adapter MHCP

INTF

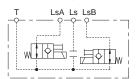
INTF adapter overall dimensions

MHFO electrical Ls A/B unloading module

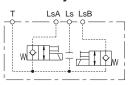
LSA / LSB pilot signal unloading solenoid valve. If the on/off solenoids are not energized, there is no flow on A/B work ports, while the pressure in the open centre circuits will be equal to the P \rightarrow T unloading pressure value on the inlet section, plus the counterpressure acting on T line. In closed centre circuits (under the same operating conditions) the pressure will be equal to the stand-by pump pressure.


MHFO

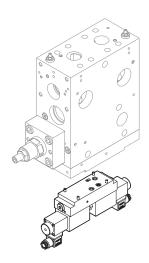
With the MHFO modules it is not previewed the mounting of flow restrictors EU onto the spools (HEAS).


Technical data valve CRP04HP, see catalogue "Cartridge valves / In-line valves" code DOC00044.

Code 12VDC Code 24VDC Description					
Code 12VDC	Code 24VDC	Description			
MHFO007706205	MHFO007706210	Normally open			
WITH 0007706205	WITH COUTTOOZ 10	Active on LSA			
MHFO007706215	MHFO007706220	Normally open			
WINFOUUT 100213	WITH COUT 1 00220	Active on LSB			
MHFO007706225	MHFO007706230	Normally open			
WINFOUU1106225	WITH C007706230	Active on LSA + LSB			
MHFO007706300	MHFO007706305	Normally open			
WITH C007700300	WITH C007706303	Active on LS			
MHFO007706235	MHFO007706240	Normally closed			
WITH 0007 7 00233	WITIFO007700240	Active on LSA			
MHFO007706245	MHFO007706250	Normally closed			
WITTOUU1106245	WITH C007706250	Active on LSB			
MHFO007706255	MHFO007706260	Normally closed			
WITH 0007706255	WITH COUT / U6260	Active on LSA + LSB			
MHFO007706310	MHFO007706315	Normally closed			
WITE 000//06310	WITH COUTTOOS 15	Active on LS			

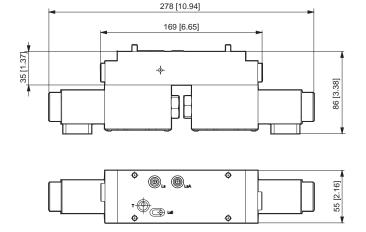

MHCP module overall dimensions

Normally open



Normally closed

Example with MHFO module



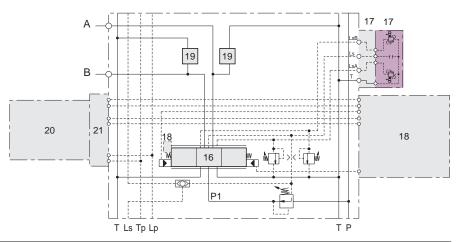
MHCP

With the MHCP modules it is not previewed the mounting of flow restrictors EU onto the spools (HEAS).

MHCP module overall dimensions

Electrohydraulic proportional module for remote A / B ports working pressure control

MHCP is a electric proportional module that allows the working pressure to be remotely operated by means of a current signal MHPF is designed to ensure system pressure to be infinitely adjust in accordance upon the electrical command valve. When the working pressure exceed the setting pressure value, the A – B ports flow is being cut-off.

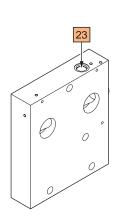

When MHCP is not energized, both pressure and flow will be maintain close to zero.

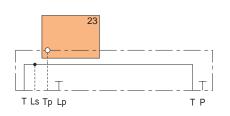
MHCP is always to be used with pressure compensated working sections.

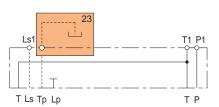
Technical data pressure relief valve XP3, see catalogue "Valves and electronics" code DOC00078.

Symbol	Туре	Code
T LsA Ls LsB	24 VDC Active on LsA	MHCP007706210
T LsA Ls LsB	24 VDC Active on LsB	MHCP007706220
T LsA Ls LsB	24 VDC Active on LsA + LsB	MHCP007706230
T LsA Ls LsB	24 VDC Active on Ls	MHCP007706305

Example with MHCP module

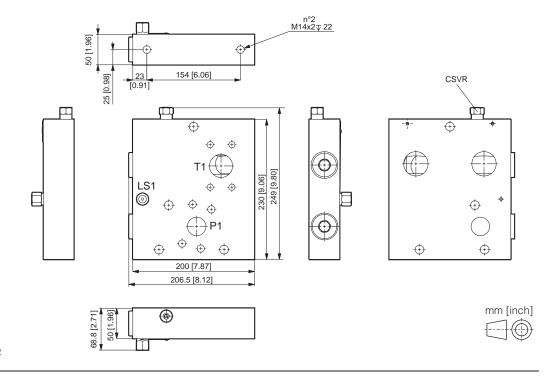


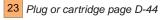



HSC end sections

Available versions:

- With no ports
- With Ls1, P1, T1 ports

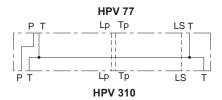


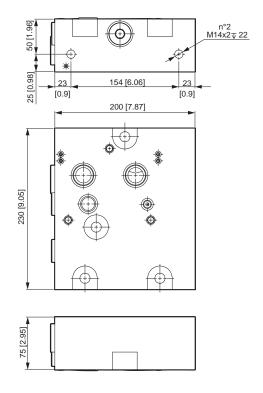


Code	Ports
HSC0003105005	Without ports

Code	Ports
HSC0003105010	P1 port - SAE 1" 1/4 - 6000 psi T1 port - SAE 1" 1/2 - 3000 psi Ls1 port - BSPP 1/4" - depth 13

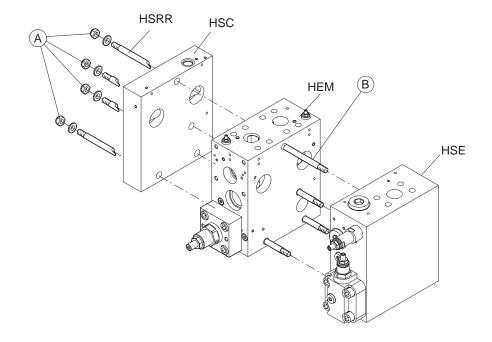
HSC end sections overall dimensions

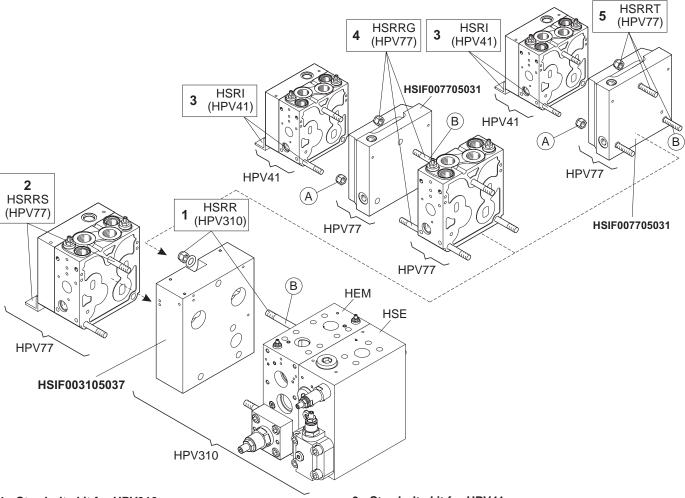



Interface between HPV310 and HPV77

HSIF interface allows assembling an HPV310 valve with an HPV77.

Code	Description	
HSIF003105037	Interface HPV310 - HPV77	


HSIF interface overall dimensions


Accessories for HSC end section and HSIF interface

Code		Description	Symbol / Field	Draw
BSPP	UN - UNF			
CSRV007701203 1/4" BSPP	CSRV007701206 7/16"-20UNF-2B	CSRV External drain cartridge for HSC module (to be connected to drain line)	23	X X X X X X X X X X X X X X X X X X X

No. of working sections (HEM)	Code
1	HSRR003105551
2	HSRR003105552
3	HSRR003105553
4	HSRR003105554
5	HSRR003105555
6	HSRR003105556

Tightening torques nuts "A" : 140 \pm 5 Nm [103 \pm 3.7 lbf·ft] Tightening torques stud bolts "B" : 140 \pm 5 Nm [103 \pm 3.7 lbf·ft]

1 - Stay bolts kit for HPV310

No. of working sections (HEM 310)	Code		
1	HSRR003105551		
2	HSRR003105552		
3	HSRR003105553		
4	HSRR003105554		
5	HSRR003105555		
6	HSRR003105556		
	•		

Tightening torques nuts "A" : 140 \pm 5 Nm [103 \pm 3.7 lbf-ft] Tightening torques stud bolts "B" : 140 \pm 5 Nm [103 \pm 3.7 lbf-ft]

2 - Stay bolts kit for HPV77

No. of working sections (HEM 77)	Code
1	HSRRS07705771
2	HSRRS07705772
3	HSRRS07705773
4	HSRRS07705774
5	HSRRS07705775
6	HSRRS07705776

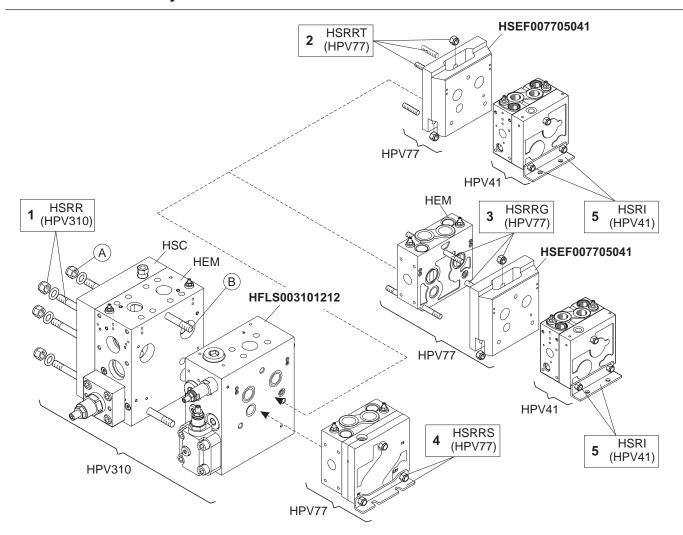
Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

3 - Stay bolts kit for HPV41

No. of working sections (HEM 41)	Code
1	HSRI004105561
2	HSRI004105562
3	HSRI004105563
4	HSRI004105564
5	HSRI004105565
6	HSRI004105566
7	HSRI004105567
8	HSRI004105568
9	HSRI004105569
10	HSRI004105570

Tightening torques nuts "A": 22.5 ± 2 Nm [16.6 ± 1.5 lbf·ft] Tightening torques stud bolts "B": 25 ± 2 Nm [18.4 ± 1.5 lbf·ft]

4 - Stay bolts kit for HPV77 + interface HSIF + HPV41


No. of working sections (HEM 77)	Code
1	HSRRG07705589
2	HSRRG07705590

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

5 - Stay bolts kit for interface HSIF + PV41

No. of working sections (HEM)	Code			
0	HSRRT07705771			
Tightoning torques puts "A" : EQ + 2 Nm [26 Q + 1 5 lbf ft]				

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

1 - Stay bolts kit for HPV310

No. of working sections (HEM 310)	Code
1	HSRR003105551
2	HSRR003105552
3	HSRR003105553
4	HSRR003105554
5	HSRR003105555
6	HSRR003105556

Tightening torques nuts "A" : 140 ± 5 Nm [103 ± 3.7 lbf·ft] Tightening torques stud bolts "B" : 140 ± 5 Nm [103 ± 3.7 lbf·ft]

4 - Stay bolts kit for HPV77

. Clay botto tar ioi iii vii	
No. of working sections (HEM 77)	Code
1	HSRRS07705771
2	HSRRS07705772
3	HSRRS07705773
4	HSRRS07705774
5	HSRRS07705775
6	HSRRS07705776

Tightening torques nuts "A": 50 ± 2 Nm [36.9 ± 1.5 lbf·ft] Tightening torques stud bolts "B": 50 ± 2 Nm [36.9 ± 1.5 lbf·ft]

2 - Stay bolts kit for interface HSEF + PV41

No. of working sections (HEM)	Code
0	HSRRT07705771

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf·ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf·ft]

3 - Stay bolts kit for HPV77 + interface HSEF + HPV41

No. of working sections (HEM 77)	Code
1	HSRRG07705589
2	HSRRG07705590

Tightening torques nuts "A" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft] Tightening torques stud bolts "B" : 50 ± 2 Nm [36.9 ± 1.5 lbf-ft]

5 - Stay bolts kit for HPV41

No. of working sections (HEM 41)	Code
1	HSRI004105561
2	HSRI004105562
3	HSRI004105563
4	HSRI004105564
5	HSRI004105565
6	HSRI004105566
7	HSRI004105567
8	HSRI004105568
9	HSRI004105569
10	HSRI004105570

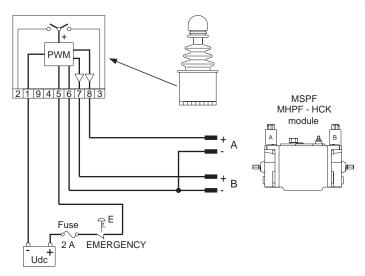
Tightening torques nuts "A": 22.5 ± 2 Nm [16.6 \pm 1.5 lbf·ft] Tightening torques stud bolts "B": 25 ± 2 Nm [18.4 \pm 1.5 lbf·ft)

Spare parts seals kits

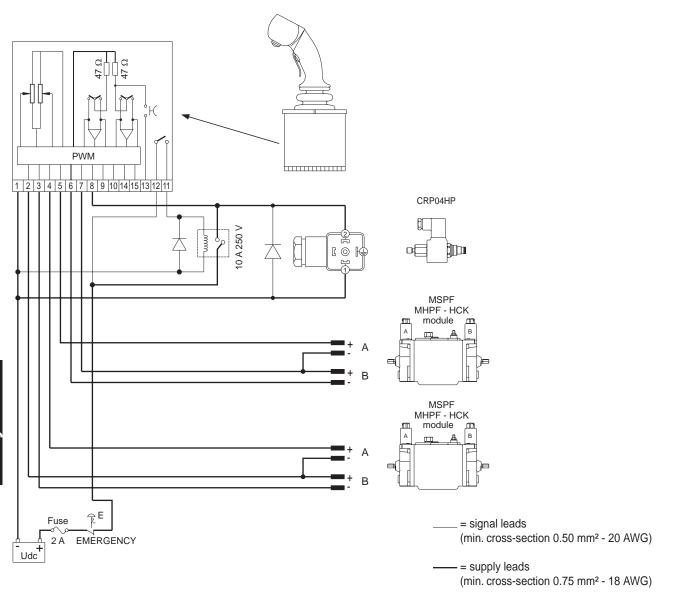
						Code			
For sections and controls		RKRC0723000	RKRC1751000	RKRC1752000	RKRC3759000	RKRC3757001	RKRC3757000 RKRC2757000	RKRC3758000	
tions	Inlet section	HSE						•	
intet, working, end sections	Intermediate inlet section	HFLS					•		
ng, er	Working section	HEM						•	
worki	End section	HSC							
intet,	HPV77 interface	HSIF						•	
control field 18	Manual control	HRDM				•			
con	Rear cover	HCF				•			
	Interface	INTF							•
20 - 21	Electrical	MHPF	•						
field 2	Rear cover	HCF			•				
control field 20	Hydraulik	МНРН		•					
	Electrical	MHPOD		•					

See composition form page D-9.

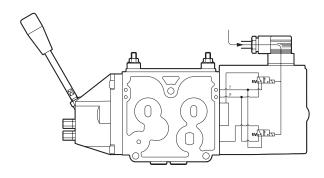
Electrohydraulic module combination with Joystick

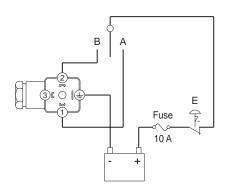

No. axis	Current input signal (A)	Voltage input signal (V) (Input signal control 0.5 x UDC)	Joystick type
controlled	Modules MHPF - MSPF HCK	Modules MHPED - MHPOD MHPEPD	
1	JMPEI	JMPEV	
	JMPIF	JMPVF	
	_	JMPVU	
2/3	JMPID	JMPVD	
2/3/4	JMPIAZ	JMPVAZ	
Potentiometer	MPVRD	MPIRD	

Electrical connection see Dana Joystick catalogue.

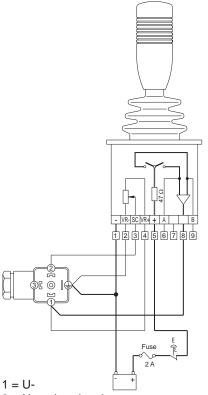

Electrical connections for MSPF-MHPF-HCK working sections

MSPF-MHPF-HCK modules electrical connections examples


Cable connections


- 1 = U-
- 2 = A port directional switch (max. load 30 mA)
- 3 = B port directional switch (max. load 30 mA)
- 4 = (free)
- 5 = U+
- 6 = A / B common
- 7 = A output control
- 8 = B output control
- 9 = (free)
- ____ = signal leads (0.35 mm² 21 AWG)
- ---- = supply leads (0.75 mm² 18 AWG)

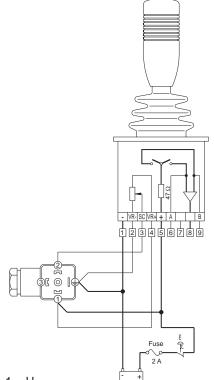
Wiring diagram



With the use of

remote control

neutral switch


JOYSTICK electrical connections example. Input signal control 0.5 x UDC

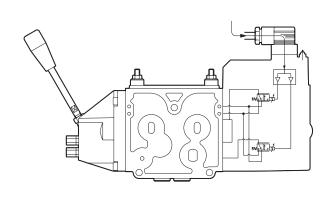
- 2 = Negative signal
- 3 = Signal control
- 4 = Positive signal
- 5 = U+
- 6 = "A" port, directional output (max. load 30 mA)
- 7 = (free)
- 8 = Output +
- 9 = "B" port, directional output (max. load 30 mA)
- = signals leads
 - (min. cross-section 0.35 mm² 21 AWG)
- = supply leads
 - (min. cross-section 0.75 mm² 18 AWG)

In order to verify if the wiring is correct, please proceed as follows:

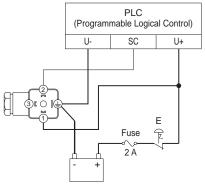
- 1. By touching with the multimeter the pin no. 1 and the pin "ground", the tension voltage supply (UDC) must be read.
- By touching with the multimeter the pin no. 2 and the pin "ground", half of the tension voltage supply (50% UDC) must be read, with joystick in neutral position and if the hookup keeps the module

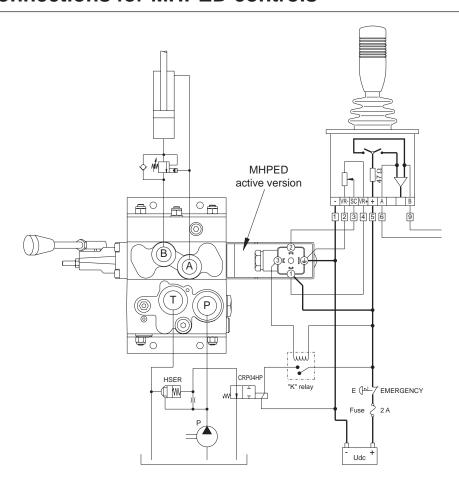
Without the use

neutral switch


of remote control

- 1 = U-
- 2 = Negative signal
- 3 = Signal control
- 4 = Positive signal
- 5 = U +
- 6 = "A" port, directional output (max. load 30 mA)
- 7 = (free)
- 8 = (free)
- 9 = "B" port, directional output (max. load 30 mA)
- = signals leads
 - (min. cross-section 0.35 mm² 21 AWG)
- = supply leads
 - (min. cross-section 0.75 mm² 18 AWG)


switched on.


With multimeter in the same position as per point 2, by moving the joystick the signal control must be 25% of UDC on one side and 75% UDC on the other side

The methods of control and the parameters as per points 1), 2), 3) are the same for all kinds of our joysticks.

PLC electrical connections example. Input signal control 0 ÷ 20 mA and 0 ÷ 10 V

Example HIGHEST SAFETY NEEDS Active Version (Fault Monitoring System)

The system provides the highest safety level against spool positioning failures or electrohydraulic / mechanical malfunctioning (i.g. should spool seizure occur).

When the fault monitoring system is connected and an error state is detected, the system ensures a fast and operator independent reaction that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

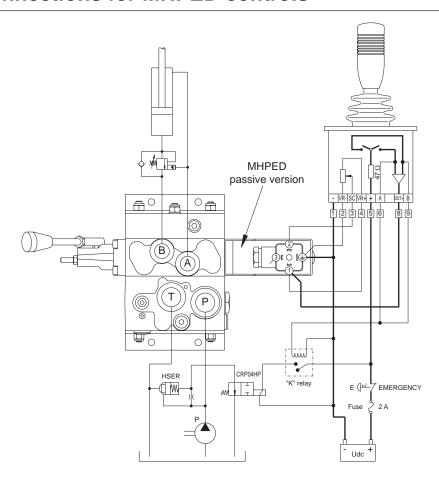
As aforementioned, when an error state is detected, an alarm signal is sent out through the pin no. 3 of the connector and the MED alarm logic module will cut off current to the CRP04HP pilot solenoid valve which in turn will make the HSER pump unloading valve in an unbalanced condition, then leading the oil flow directly from pump to tank.

Thus, all functions are with no oil flow and without operating pressure, and the pressure drop on the HPV's inlet section is at the lowest possible level (see HSER typical curve).

When an active error state occurs, the fault monitor logic will be triggered.

In order to prevent the electronics from going into an undefined state, any time the system is being switched or on reset, a general check of the power supply and the internal clock frequency is made.

Active fault monitoring reactions


When an error state is detected, the 2 proportional solenoid valves will be automatically switched off, a red lamp will light up, and main spool will go to the neutral position (if it is not seized up owing to dirt in the system). The system will only react to faults of more than 500 ms duration (in other words, there is a delay of half a second before anything happens). An alarm signal is sent out through the connector (pin No. 3) and minus is opened.

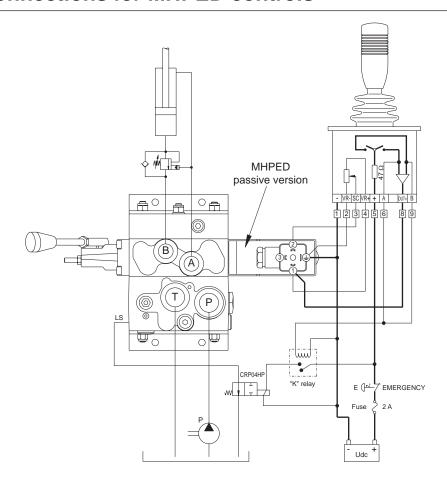
This state is memorized and will continue as long as the system is being reset by switching off the supply voltage (new start-up). If the signal coming from the transducer position (main spool travel) is beyond 15% of the input signal voltage, the input signal control is continuously monitored and a range between 15% and 85% of supply voltage is allowed. Outside this range, the solenoid valves will be deactivated (spool goes to neutral position) and a warning signal is sent out.

If the module's pilot pressure curve is not correct according to the input signal voltage, If the supply voltage is exceeded by 50% (18 V for 12 VDC and 36 V for 24 VDC) or falls below 8 V, MHPED with fault monitoring system does not work when the supply voltage is cut off.

So it means that the system is to be supplied also when the main spool is held in the centre position.

Example RAISED SAFETY NEEDS Passive Version (No fault monitoring system)

The figure highlights the difference in use between the MHPED module passive version and the active one previously described.

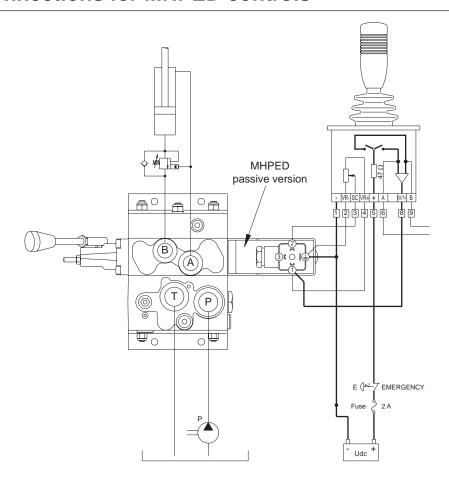

The difference lies in the fact that the safety output (pin No. 3) is unconnected, as the module does not have the fault monitoring system function, furthermore it is kept SWITCHED OFF by means of the remote control neutral position switch.

Whenever the latter is used, the MHPED module is SWITCHED

ON by the OUT+ signal (pin No. 8). In turn, the A / B direction movement signals (pin No. 6-9) of the remote control activates the relay in position "K", which in turn switches on the CRP04HP pilot solenoid valve, which then turns on the HSER hydraulic activated pump unloading valve, setting up the hydraulic system.

We recommend that both the neutral position switch and direction movement output signal always be connected to the electrical system. This circuit still gives a high degree of protection but requires operator intervention to check anything goes wrong.

Example NORMAL SAFETY NEEDS Passive version


Also with this solution, both the MHPED module and the relay in position "K" are kept SWITCHED OFF by means of the remote control neutral position switch.

With this figure, the CRP04HP electrical activated Ls pressure unloading valve leads the Ls signal direct to the tank.

With this method (CRP04HP deactivated), in systems with fixed displacement pumps, the ΔP of the pump unloading oil flow, is almost always between 8 - 15 bar [116 - 218 psi] (system dependent) while in the systems with Ls variable displacement pumps, the remaining pressure depends on the pump stand-by pressure settings.

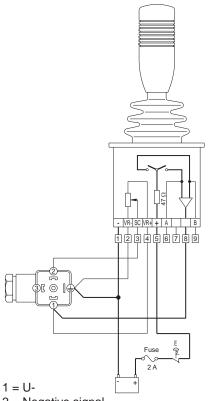
We urge grate care in this method, because all functions requiring a lower working pressure might be operated.

Example LOW SAFETY NEEDS Passive version

In this solution, the only safety feature is the remote control neutral switch (apart from the general emergency in position

"E").

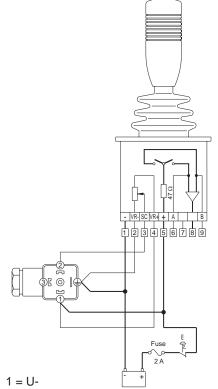
There is no protection against hydraulic and mechanical faults, and the hydraulic characteristics (remaining ΔP) described in para. "NORMAL SAFETY NEEDS" must be taken into consideration.



With the use of

remote control

neutral switch


JOYSTICK electrical connections example. Input signal control 0.5 x UDC

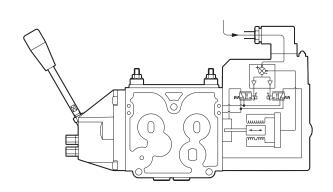
- 2 = Negative signal
- 3 = Signal control
- 4 = Positive signal
- 5 = U+
- 6 = "A" port, directional output (max. load 30 mA)
- 7 = (free)
- 8 = Output +
- 9 = "B" port, directional output (max. load 30 mA)
- = signals leads
 - (min. cross-section 0.35 mm² 21 AWG)
- = supply leads
 - (min. cross-section 0.75 mm² 18 AWG)

In order to verify if the wiring is correct, please proceed as follows:

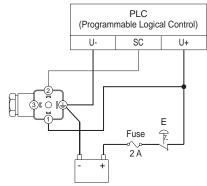
- 1. By touching with the multimeter the pin no. 1 and the pin "ground", the tension voltage supply (UDC) must be read.
- 2. By touching with the multimeter the pin no. 2 and the pin "ground", half of the tension voltage supply (50% UDC) must be read, with joystick in neutral position and if the hookup keeps the module

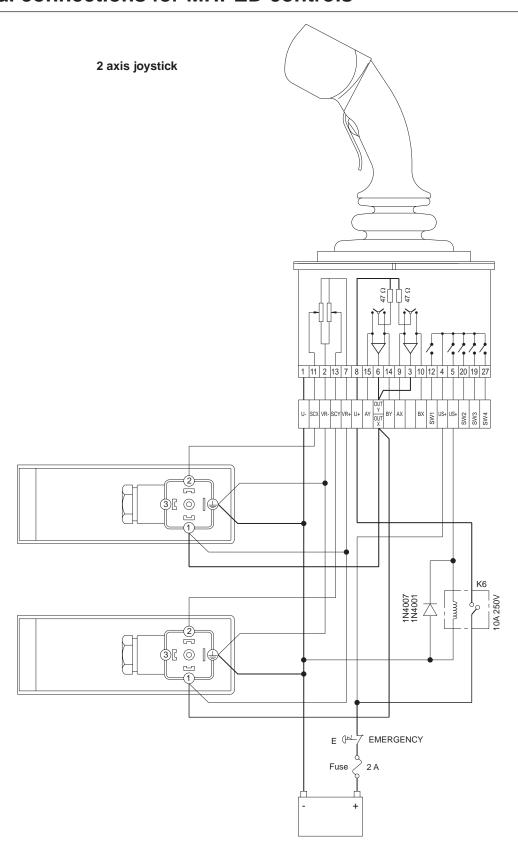
Without the use

neutral switch


of remote control

- 2 = Negative signal
- 3 = Signal control
- 4 = Positive signal
- 5 = U +
- 6 = "A" port, directional output (max. load 30 mA)
- 7 = (free)
- 8 = (free)
- 9 = "B" port, directional output (max. load 30 mA)
- = signals leads
 - (min. cross-section 0.35 mm² 21 AWG)
- = supply leads
 - (min. cross-section 0.75 mm² 18 AWG)


switched on.


With multimeter in the same position as per point 2, by moving the joystick the signal control must be 25% of UDC on one side and 75% UDC on the other side

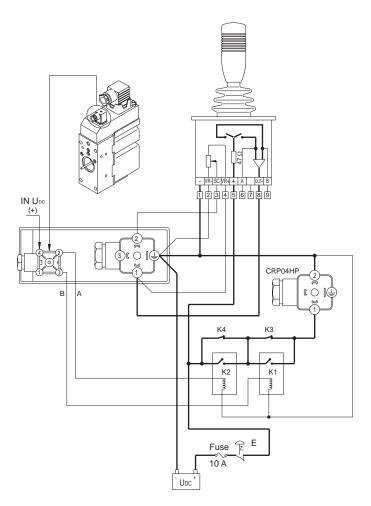
The methods of control and the parameters as per points 1), 2), 3) are the same for all kinds of our joysticks.

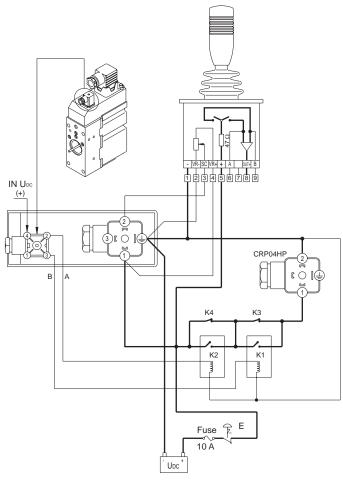
PLC electrical connections example. Input signal control 0 ÷ 20 mA and 0 ÷ 10 V

___ = signals leads

(min. cross-section 0.35 mm² - 21 AWG)

___ = supply leads

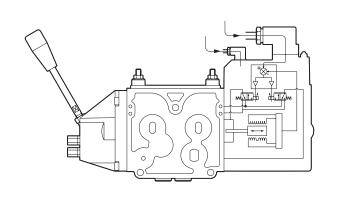

(min. cross-section 0.75 mm² - 18 AWG)

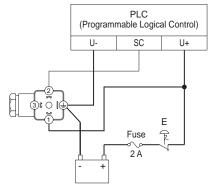

Joystick

Electrical connections for MHPEPD working sections

With the use of remote control neutral switch Input signal control 0.5 x UDC

Without using remote control neutral switch Input signal control 0.5 x UDC




Suitable relay (K1, K2): FEME RMIA00200 24 V DC FEME RMIA00200 12 V DC

K3, K4: end stroke switches, 10 A 250 V

- ___ = signals leads
 - (min. cross-section 0.35 mm² 21 AWG)
- __ = supply leads
- (min. cross-section 0.75 mm² 18 AWG)

PLC electrical connections example. Input signal control $0 \div 20$ mA and $0 \div 10$ V

Code DBFCAT0002 - Rev. 03-2021

Dana Motion Systems Italia S.r.I. Fluid Power Division

Sede operativa: Via Giulio Natta 1, 42124 Reggio Emilia - Italy Tel: +39.0522.270711 - Fax: +39.0522.505856

Sede legale: Via Luciano Brevini 1/A, 42124 Reggio Emilia - Italy

Tel: +39.0522.9281 - Fax: +39.0522.928300

www.dana.com/brevini - dana.re@dana.com

