

DC1J1A1_0000000R0 01.2024

Product Catalog

Helical and Bevel Helical Gearboxes Brevini High Power Series

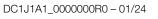
Output torque up to 370.000 Nm

Helical and Bevel Helical solutions

The Brevini High Power gearboxes are designed for heavy duty application in mining, material handling and marine application. They ensure high performances in demanding applications based on their modularity and a wide range of combinations.

Motion Systems

© 2024 Dana Limited. All rights reserved.


The product images and drawings shown are for illustration purposes only and may not be an exact representation of the product. We reserve the right to change or modify our product specifications, configurations, or dimensions at any time without notice.

INDEX

ntroduction	4
echnical description	6
Symbology	8
Shaft arrangement and sense of rotation	9
Designation for order	10
echnical data and dimensional drawings	13
8516	14
12020	16
18020	18
25025	20
35031	22
Dutput	24
riction couplings	26
orque arm costruction and anchoring	28
Accessories	29
Supply, storage and installation	35
ubrication	36
Other products	43

Dana has introduced the introductive index and bookmarks, which allow you to arrive and print the relevant section faster. Clicking the Dana logo at the bottom page, you'll come back to the index

DANA

Dana Brevini High Power series

This powerful combination of planetary gear units and bevel-helical gearboxes is the solution provided by Dana for any high power industrial application, such as:

- materials handling,
- mining,
- marine equipment,
- metal processing,
- pulp and paper,
- recycling industry.

Dana Brevini High Power gear units are designed to offer superior efficiency and performance compared to conventional drives. These powerful gear units match the innovative technology of both Dana Brevini's product lines, planetary output stages with the high quality of helical (on demand) or bevel-helical gearboxes in the input.

The result is a series of gear drives, in right angle configuration, that links the reliable high thermal efficiency and quiet power transmission of helical and bevel-helical gearboxes with the benefits of versatile, high torque output configurations typical of planetary gear units. The application range of these Dana Brevini gear units includes a variety of ratios – from 1:100 to 1:660 – and a transmission capacity of up to 950 kW of power.

Standard accessory offering include: motor flanges, backstop device, cooling fan and coils, torque arm connections.

Output Shafts Designs

- Available types of output shafts:
- Flange and shaft mounting options.
- Keyed male cylindrical shafts.
- Splined shafts: male and female
- Solid shaft, keyed or splined according to DIN5482.
- Hollow shaft, keyed, splined according to DIN5482 or with keyway.
- Hollow shaft with shrink disk.

Input shafts designs:

- Solid shaft
- Double extended solid shaft for helical gear units
- Additional intermediate exterior shaft end for Bevel-Helical gearbox

Casings

The Brevini Industrial series casings basically consist of an input flange, reduction stages, intermediate coupling flanges and output supports. They are dimensioned to suit the loads transmitted through the gearbox, which increase from the input to the output.

Casing materials:

- Input supports: EN-GJL-250 grey cast iron.
- Input supports: on request EN-GJS-500-7
- Rim: high-quality hardened steel.
- Intermediate coupling flange: EN-GJS-400-15 spheroidal-graphite cast iron.
- Output supports: EN-GJS-400-15 spheroidal-graphite cast iron.

Seals

Standard seal systems available for input and output shafts:

- Radial shaft seals in various materials
- Radial shaft seals with additional dust lip
- · Second radial shaft seal with intermediate grease-filled chamber
- Greased labyrinth seals also with radial shaft seals
- Maintenance cover with reusable seal

Lubrication

- Gear wheels and roller bearings are oil-bathed as standard
- Standardized injection lubrication systems with shaft or motor driven pump are available as options
- Oil dipstick as standard for horizontal gear units
- Oil sight glass as standard for vertical gear units

Cooling

Additional cooling devices available as standard are:

- Mechanical or Electrical fan cooling
- Cooling coil
- External cooler with oil/air or with oil/water heat exchanger

Torque arms

available on request with 1 or 2 ball-and-socket joint.

Motors and driving engines

- Motors according to DIN, VDE, IEC, NEMA or other standards
- Speed controlled three phase current drives with the necessary accessories,
- Combinations with mechanical continuously variable units of Dana Motion Systems Deutschland GmbH.

Motor supports

Available as standard:

- Motor bell housings
- Motor brackets
- Base plates as support of the motor and the gear unit

Couplings

At the output suitable for standard output shafts and gear torques:

- Elastic couplings
- Gear coupling
- Barrel coupling
- Multiple disc coupling
- other coupling types on request

At the input, suitable for standard drive shafts and gear torques:

- Flexible couplings
- Hydrodynamic couplings
- other couplings on request

Accessories

- Heating element for very cold conditions
- · Operational monitoring systems for speed, torque, temperature, oil flow, oil level, and other conditions
- Diagnostic systems also available
- Backstop available as standard, accessible in a closed housing.

General information

- Dimension sheets are available as CAD files for various IT systems and interfaces.
- Computer programs for drive selection.
- Gear, shaft and bearing calculation with proof of calculation.
- The degree of protection corresponds to IP 55.

Information on the weight of the gear unit and the amount of gear oil are guide values. Exact values can be found on the gear unit nameplate or technical description.

Scope of delivery, installation and commissioning

- The delivery takes place without oil filling.
- Transport aids such as eye bolts are not included.
- Oil type and oil quantity according to the nameplate or technical description
- Recommended quality: CLP according to DIN 51517 part 3 or see technical description
- The standard preservation under normal transport and storage conditions is sufficient for a period of 18 months.
- Installation and commissioning according to Brevini Motion Systems operating instructions
- On request, we can supply the legally prescribed contact protection on rotating parts.
- Available, for gearboxes with hollow shaft, protection cover for shrink disk.

Technical descriptions

Reduction ratio ieff

It represents the ratio between gear unit input and output speed. The modularity of the DANA range offers the availability of other ratios in addition to those given: consult DANA for the availability of further ratios.

Output torque T₂ [Nm]

Gear unit output torque referred to 10000-50000 hours of operation, calculated according to I.S.O. (D.P. 6336).

Max. torque T_{2MAX} [Nm]

Max. permissible output torque, as peak or for short periods. For drives involving a high number of starts or reversals, also the max. operational torque must be opportunely limited according to the fatigue resistance of the gears or shafts.

Nominal torque T_N [Nm]

The conventional torque characterizing the size of the gear unit. It corresponds to the limit torque according to I.S.O. (P.D. 6336) of the strongest ratio of each size.

Output power P₂ [kW]

A combination of the torque value relevant to a duration of 10000-50000 h at the relative gear unit input speed. In those cases when the nominal power value in the application considered exceeds the relevant gear unit thermal rating, a special auxiliary oil cooling circuit must be provided.

Thermal rating P_t [kW]

The power that can be transmitted continuously by the gear unit, in given operating conditions, relevant to the max. permissible temperatures for the gear unit. See chapter: Thermal rating.

Rated rating P_N [kW]

Gear unit rating at input (helical bevel).

Input speed n₁ [min⁻¹]

The catalogue gives two input speed values to cover the majority of applications in the industrial sector.

Temperature [°C]

The ideal operating temperature is between 50 °C and 70 °C. For short periods 80 °C can be reached. The best system for keeping the temperature under control is to use an auxiliary cooling system.

For very low ambient temperatures, below –15 °C, or operating temperatures above 80 °C, the use of suitable oils together with special seals and materials (supplied by request) is required. In any case it is advisable to consult the DANA technical commercial service. See chapter: Lubrication.

Radial and axial loads

Loads on output shafts FS version

The torque arm mounting is normally accompanied by three types of forces:

- A reaction force given by the anchoring
- B weight of gearbox and motor
- C belt-tension force, in case of belt and pulley drive at gear unit input.

Each one of such loading conditions generates a bending moment.

The vector resultant of these moments affects:

- bearing life
- shaft fatigue resistance
- efficiency of the shafts shrink fit.

In case load condition B becomes relevant (for instance gearboxes driven by large electric motors) and/or in presence of load condition C as well when there are axial loads it is recommended to consult DANA technical staff.

Concerning the load due to the reaction force, condition A, the minimum torque arm lengths, L_{1min}, have been tabulated in correspondence to the dimensional sheets Such lengths grant an ISO L_{10} bearings life $(n_2 \cdot h) > 10^6$ as well as shaft resistance under fatigue and efficiency of the shrink fit.

Thermal rating P_t [kW]

The values given refer to a continuous use of the gear unit:

- With splash lubrication
- Horizontally mounted (B3A, B3C)
- At a gear unit input speed of 1500 min-1
- For a max. oil temperature of 80 °C (oil VG150)
- At an ambient temperature of 20 °C

Thermal capacities

SL2PLB B3A, B3C									
v _w [m/s]	n₁ [min ⁻¹]	8516	12020 18020	25025	35031				
			P _{to} [kW]					
0.5 ¹⁾	-	42	60	94	127				
1.2 ²⁾	-	61	85	134	182				
4.0 ³⁾	-	79	111	174	236				
			P _{t1} [kW]					
-	1500	118	166	260	353				
-	1000	88	123	193	263				
			P _{t3} [kW]					
0.5 ¹⁾	-	168	230	421	566				
1.2 ²⁾	-	187	256	461	620				
4.0 ³⁾	-	205	282	501	675				
			P _{t4} [kW]					
-	1500	244	336	588	792				
-	1000	214	294	521	702				

Thermal capacities of types B3B, B3D, V5, V6: on request

 $\mathbf{v}_{\mathbf{w}}$ = Average air speed

- ¹⁾ Small closed room, little air movement
- ²⁾ Large hall with free air movement
- ³⁾ Constantly strong air movement

Thermal Factor										
Tab. 4		f _w								
9 ₀			ED [%]							
[°C]	100	80	60	40	20					
10	1.14	1.21	1.34	1.53	2.03					
20	1.00	1.06	1.17	1.34	1.78					
30	0.86	0.91	1.00	1.15	1.53					
40	0.71	0.76	0.84	0.96	1.27					
50	0.57	0.61	0.67	0.77	1.02					

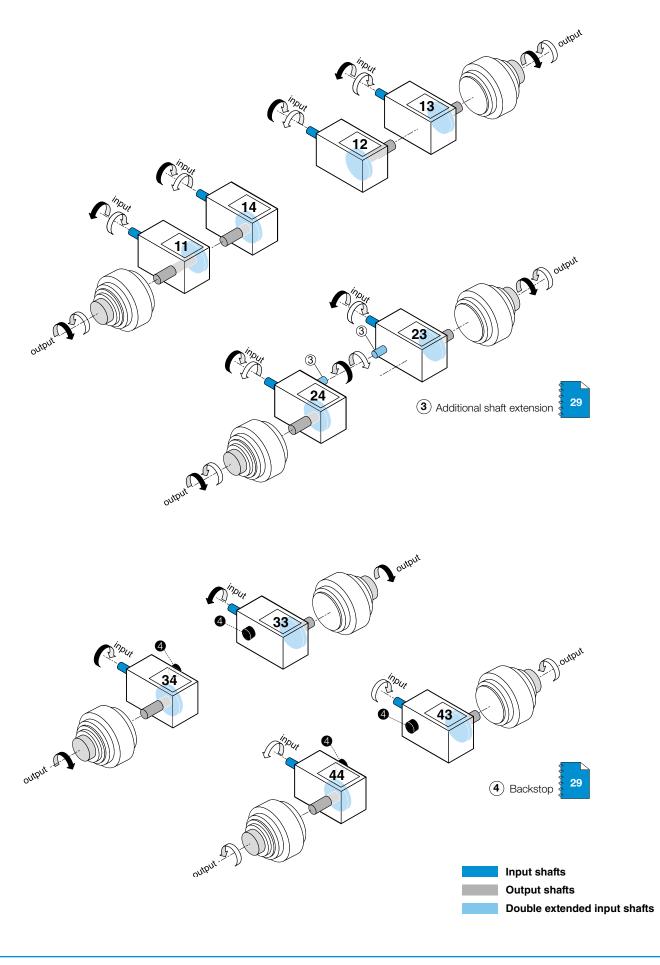
Utilization factor

Tab. 5 f_A										
Charge P _e / P _N [%]										
20	30	40	50	60	70	80	90	100		
0.7	0.8	0.86	0.9	0.93	0.96	0.98	0.99	1		

DC1J1A1_000000R0 - 01/24

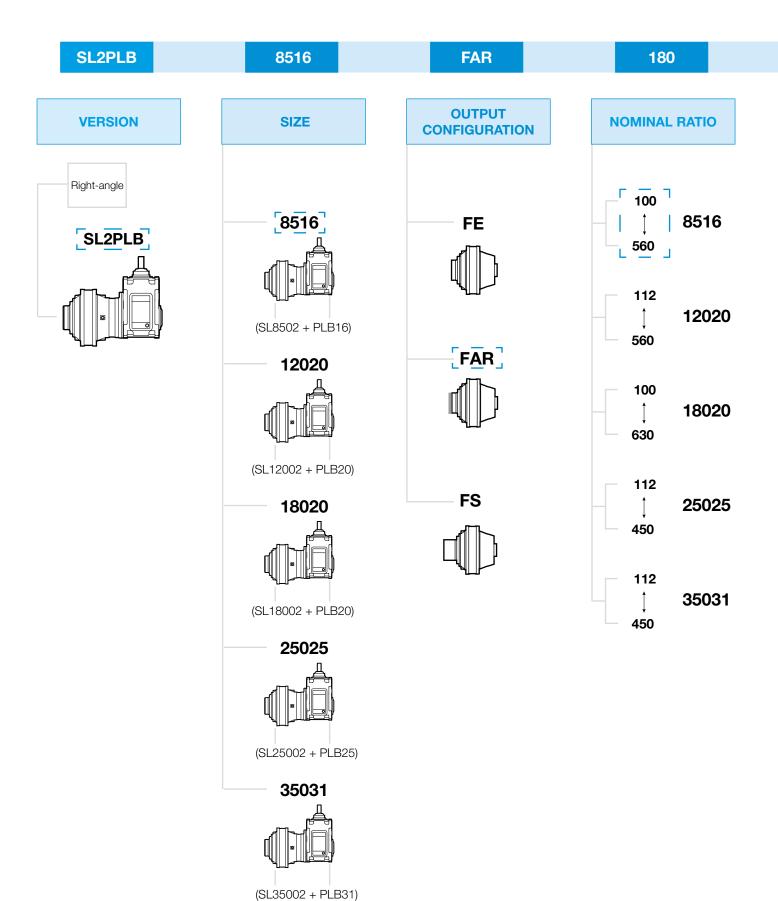
Utilisation < 20%: question required

- Pto: Without additional cooling
- **P**_{t1} : With fan Pt3 : With cooling coil
- P_{t4}: With fan and cooling coil

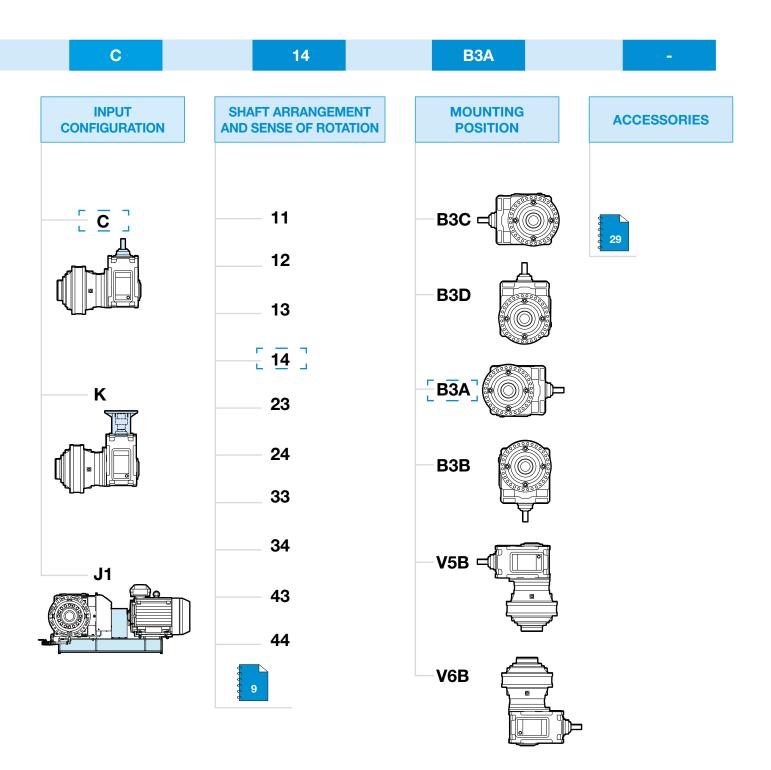

SYMBOLOGY

Description	Measurement unit	Symbol
Nominal reduction ratio	-	in
Actual reduction ratio	-	i _{eff}
Output torque	[Nm]	T ₂
Max. output torque	[Nm]	T _{2max}
Nominal torque	[Nm]	T _N
Output power	[kW]	P ₂
Nominal power	[kW]	P _N
Thermal rating	[kW]	Pt
Input speed	[rpm]	n ₁
Output speed	[rpm]	n ₂

Description	Measurement unit	Symbol
Tightening torque	[Nm]	;
Refer to page	-	Page



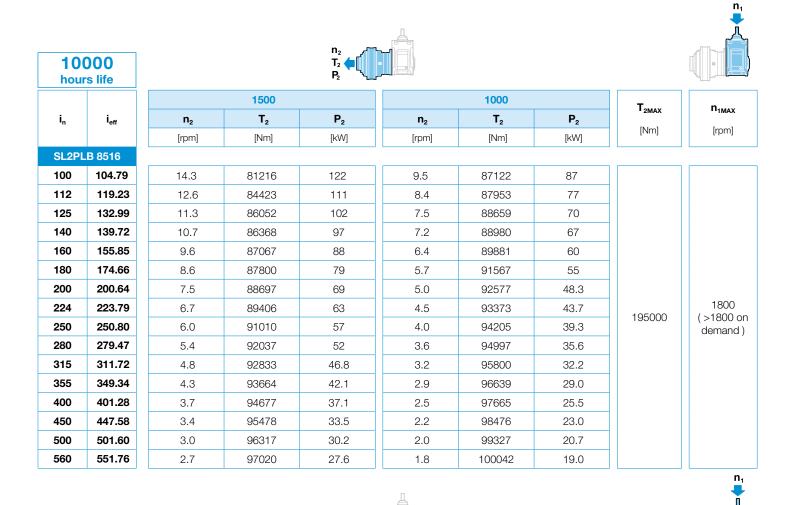
SHAFT ARRANGEMENT AND SENSE OF ROTATION



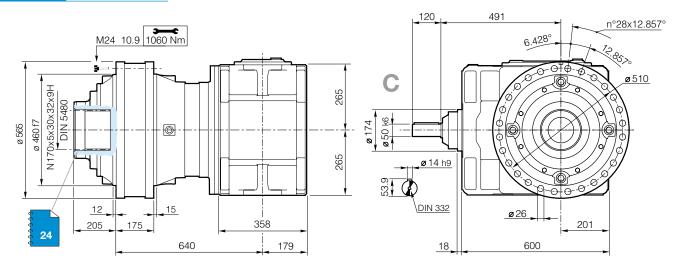
DESIGNATION FOR ORDER

DESIGNATION FOR ORDER

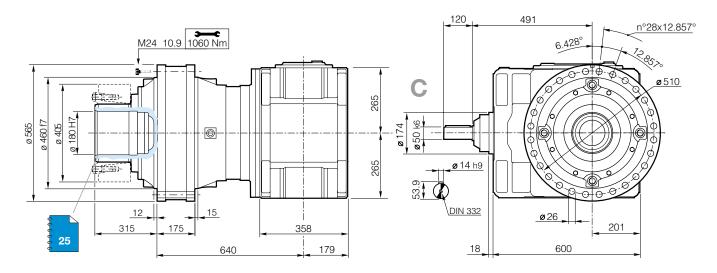




TYPE	T _N	Page
8516	90000	14
12020	133000	16
18020	190000	18
25025	260000	20
35031	370000	22

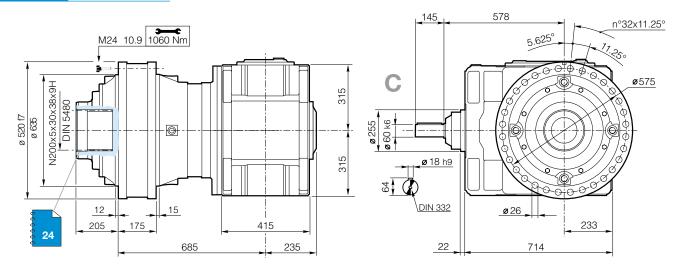


	000 rs life								
			1500			1000		T _{2MAX}	n _{1MAX}
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂		
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2P	LB 8516								
100	104.79	14.3	50113	75	9.5	56595	57		
112	119.23	12.6	52091	69	8.4	58829	52		
125	132.99	11.3	53827	64	7.5	60789	47.9	-	1800
140	139.72	10.7	54630	61	7.2	61696	46.2		
160	155.85	9.6	56450	57	6.4	63751	42.8		
180	174.66	8.6	58413	53	5.7	65968	39.6		
200	200.64	7.5	60895	47.7	5.0	68771	35.9		
224	223.79	6.7	62922	44.2	4.5	71061	33.3	105000	
250	250.80	6.0	65111	40.8	4.0	73532	30.7	195000	(>1800 on demand)
280	279.47	5.4	67259	37.8	3.6	75959	28.5		,
315	311.72	4.8	69500	35.0	3.2	78489	26.4		
355	349.34	4.3	71916	32.3	2.9	81219	24.3	1	
400	401.28	3.7	74970	29.3	2.5	84667	22.1		
450	447.58	3.4	77467	27.2	2.2	86258	20.2		
500	501.60	3.0	80161	25.1	2.0	86972	18.2		
560	551.76	2.7	82486	23.5	1.8	87572	16.6		



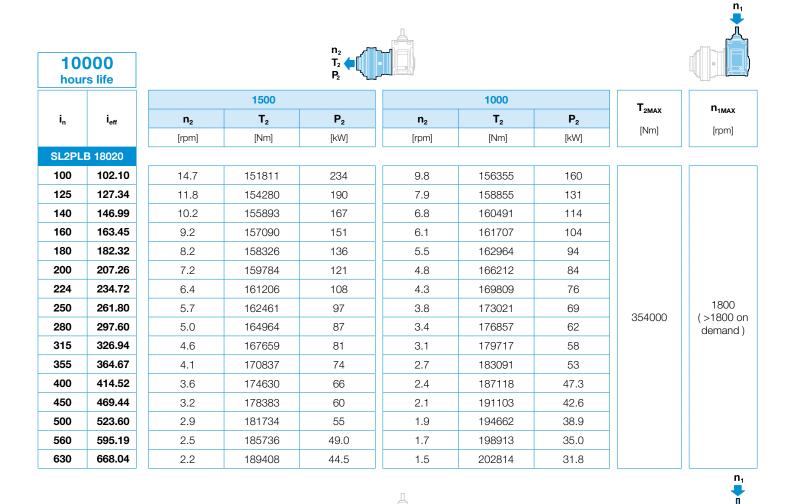
Female output for friction couplings

Output male cylindrical and splined shafts available on request.


n₁

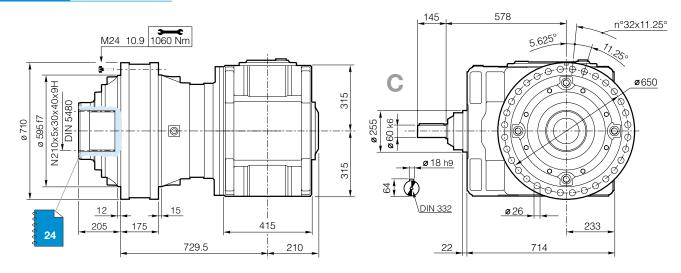
10 hou									
			1500			1000		T _{2MAX}	n
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂		n _{1MAX}
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	B 12020						,		
112	113.87	13.2	127143	175	8.8	130943	120		
125	127.01	11.8	128162	159	7.9	131976	109		1800
140	139.72	10.7	114100	128	7.2	117999	88		
160	155.85	9.6	115155	116	6.4	119045	80		
180	177.17	8.5	116388	103	5.6	120273	71		
200	200.64	7.5	117581	92	5.0	121465	63		
224	223.79	6.7	118627	83	4.5	122513	57		
250	254.39	5.9	119854	74	3.9	123745	51	293000	(>1800 on
280	279.47	5.4	120755	68	3.6	124652	46.7		demand)
315	311.72	4.8	121802	61	3.2	125708	42.2		
355	354.33	4.2	123033	55	2.8	126950	37.5		
400	401.28	3.7	124230	48.6	2.5	128163	33.4		
450	447.58	3.4	125285	44.0	2.2	129231	30.2		
500	508.77	2.9	126526	39.1	2.0	130491	26.9		
560	571.05	2.6	127649	35.1	1.8	131631	24.1	11	

	000 rs life			r_2 T_2 P_2					
			1500			1000			n _{1MAX}
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂	T _{2MAX}	
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	.B 12020								
112	113.87	13.2	82647	114	8.8	93337	86		
125	127.01	11.8	85400	106	7.9	96446	80		
140	139.72	10.7	87878	99	7.2	99245	74		
160	155.85	9.6	90806	92	6.4	102551	69		
180	177.17	8.5	94366	84	5.6	106389	63		
200	200.64	7.5	97956	77	5.0	107474	56		
224	223.79	6.7	101217	71	4.5	108426	51		1800
250	254.39	5.9	105184	65	3.9	109546	45.1	293000	(>1800 on
280	279.47	5.4	106828	60	3.6	110369	41.4		demand)
315	311.72	4.8	107780	54	3.2	111328	37.4		
355	354.33	4.2	108898	48.3	2.8	112456	33.2		
400	401.28	3.7	109986	43.1	2.5	113557	29.6		
450	447.58	3.4	110944	38.9	2.2	114526	26.8		
500	508.77	2.9	112071	34.6	2.0	115669	23.8		
560	571.05	2.6	113090	31.1	1.8	116704	21.4		

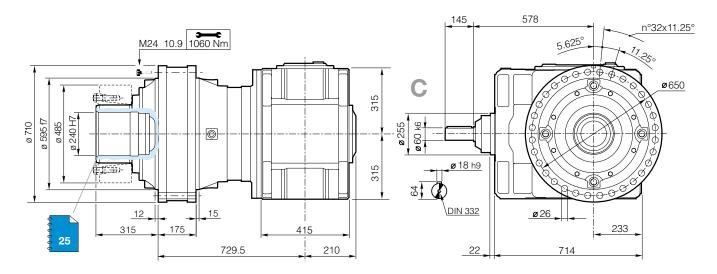


Female output for friction couplings

Output male cylindrical and splined shafts available on request.



	000 rs life								
			1500			1000		T _{2MAX}	n _{1MAX}
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂		
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	.B 18020		·	· · · · · · · · · · · · · · · · · · ·					
100	102.10	14.7	96171	148	9.8	108611	111		
125	127.34	11.8	115885	143	7.9	130875	108		1800
140	146.99	10.2	120985	129	6.8	136634	97		
160	163.45	9.2	124900	120	6.1	141055	90		
180	182.32	8.2	129060	111	5.5	145557	84		
200	207.26	7.2	134121	102	4.8	146902	74		
224	234.72	6.4	138102	92	4.3	148216	66		
250	261.80	5.7	143858	86	3.8	149375	60	054000	
280	297.60	5.0	146443	77	3.4	150743	53	354000	(>1800 on demand)
315	326.94	4.6	142966	69	3.1	151753	48.6		
355	364.67	4.1	148588	64	2.7	152932	43.9		
400	414.52	3.6	149951	57	2.4	154324	39.0		
450	469.44	3.2	151283	51	2.1	155685	34.7		
500	523.60	2.9	152459	45.7	1.9	156888	31.4		
560	595.19	2.5	153848	40.6	1.7	158308	27.9		
630	668.04	2.2	155108	36.5	1.5	159597	25.0		

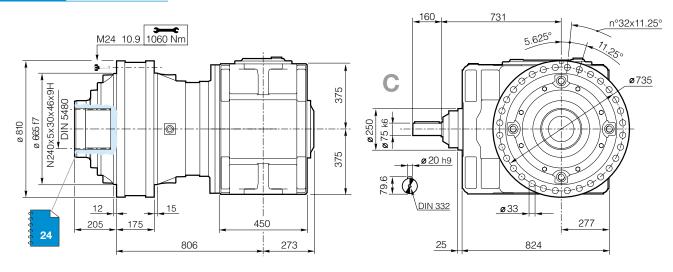


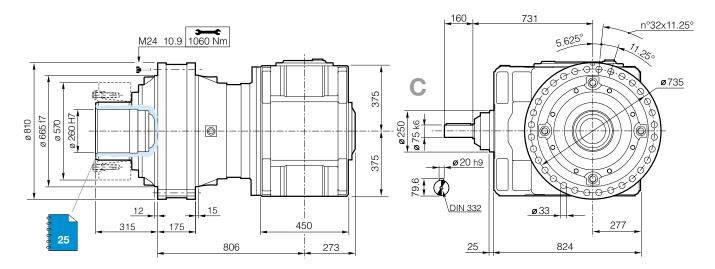
FE - FAR Splined female

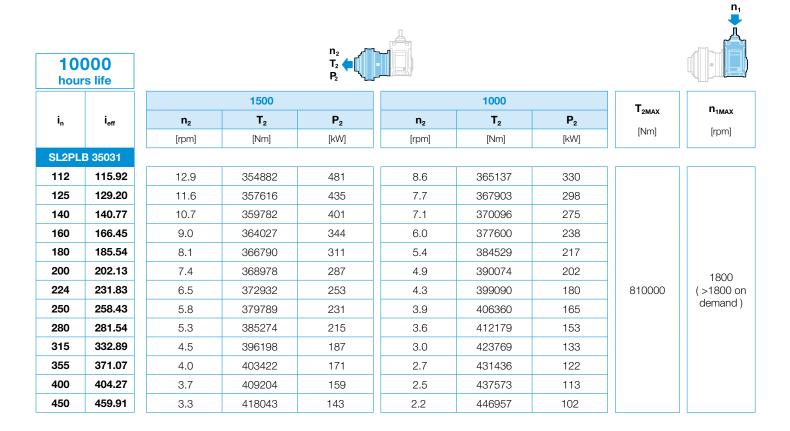
Female output for friction couplings

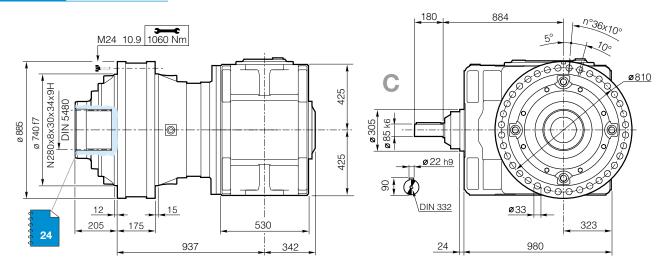
Output male cylindrical and splined shafts available on request.

n₁ ↓

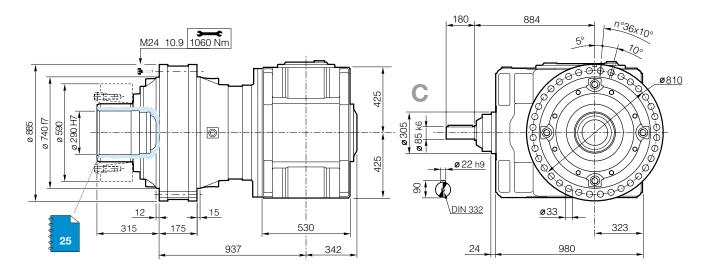

	000 rs life			n_2 T_2 P_2					
			1500			1000		T _{2MAX}	n _{1MAX}
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂		
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	B 25025								
112	116.08	12.9	223717	303	8.6	252654	228		
125	130.49	11.5	231710	279	7.7	258590	208	-	
140	144.39	10.4	238854	260	6.9	260425	189		
160	166.67	9.0	249360	235	6.0	265344	167		
180	187.38	8.0	257801	216	5.3	270647	151		
200	207.33	7.2	259632	197	4.8	275302	139		1800
224	232.51	6.5	262103	177	4.3	280659	126	570000	(>1800 on
250	260.98	5.7	267280	161	3.8	286149	115		demand)
280	288.78	5.2	271886	148	3.5	291036	106		
315	333.34	4.5	278534	131	3.0	298090	94		
355	374.73	4.0	284061	119	2.7	302222	84	-	
400	414.65	3.6	288917	109	2.4	304525	77		
450	465.40	3.2	294546	99	2.1	307162	69		


	000 rs life			$T_2 = P_2$	5				
			1500			1000		-	n
i _n	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂	T _{2MAX}	n _{1MAX}
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	B 25025								
112	116.08	12.9	138041	187	8.6	155896	141		
125	130.49	11.5	142973	172	7.7	161466	130		
140	144.39	10.4	147381	160	6.9	166444	121		
160	166.67	9.0	153864	145	6.0	173766	109		
180	187.38	8.0	159365	134	5.3	179979	101		
200	207.33	7.2	164276	124	4.8	185525	94		1800
224	232.51	6.5	170024	115	4.3	192016	86	570000	(>1800 on
250	260.98	5.7	176020	106	3.8	198788	80		demand)
280	288.78	5.2	181447	99	3.5	204917	74		
315	333.34	4.5	189429	89	3.0	213931	67	1	
355	374.73	4.0	196198	82	2.7	221576	62	1	
400	414.65	3.6	202248	77	2.4	228408	58	1	
450	465.40	3.2	209377	71	2.1	236459	53		

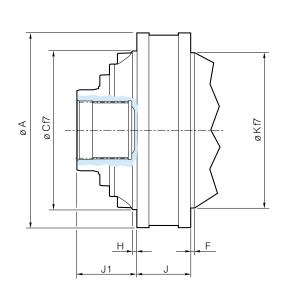


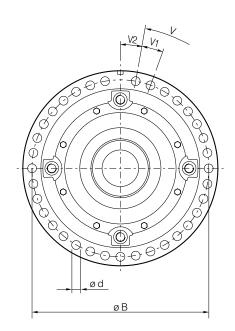


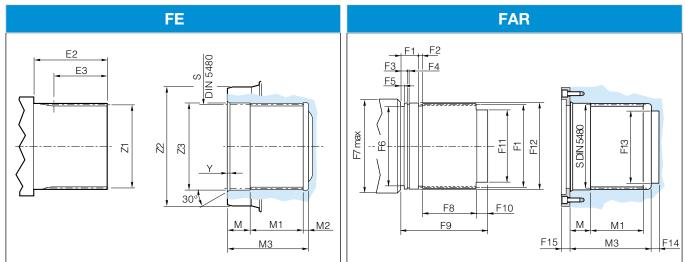
	000 Irs life			$T_2 \blacksquare I$ P_2					
			1500			1000		Ŧ	n
in	i _{eff}	n ₂	T ₂	P ₂	n ₂	T ₂	P ₂	T _{2MAX}	n _{1MAX}
		[rpm]	[Nm]	[kW]	[rpm]	[Nm]	[kW]	[Nm]	[rpm]
SL2PL	B 35031		·						
112	115.92	12.9	221954	301	8.6	250663	226		
125	129.20	11.6	229299	279	7.7	258958	210		
140	140.77	10.7	235275	263	7.1	265707	198		
160	166.45	9.0	247401	233	6.0	279402	176		
180	185.54	8.1	255593	216	5.4	288653	163		
200	202.13	7.4	262248	204	4.9	296169	153		1800
224	231.83	6.5	273258	185	4.3	308603	139	810000	(>1800 on
250	258.43	5.8	282306	172	3.9	318822	129		demand)
280	281.54	5.3	289657	162	3.6	327123	122		
315	332.89	4.5	304586	144	3.0	343984	108		
355	371.07	4.0	314672	133	2.7	354757	100		
400	404.27	3.7	322865	125	2.5	356843	92		
450	459.91	3.3	335599	115	2.2	360000	82		



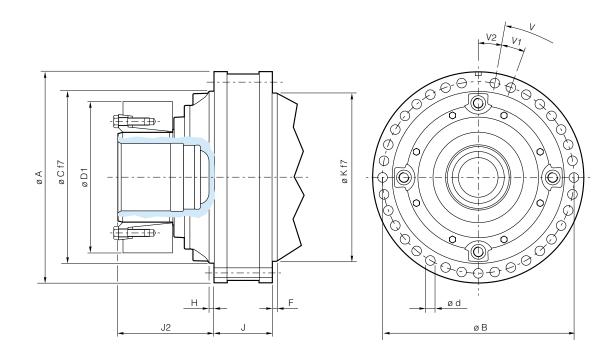
FS

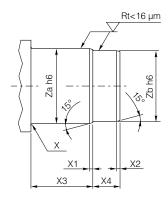

Female output for friction couplings

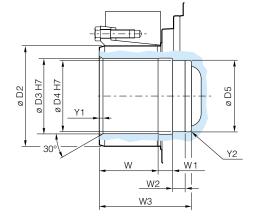




FE - FAR Splined female

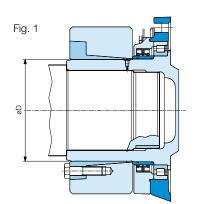

SL2PLB	Α	В	С	d	E2	E3	F	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	н	J	J1	Κ
SL2PLD													d10					g7	g7	H7						
8516	565	510	460	26	150	105	10	42	10	16.4	3.6	9	154	180	110	180	18	145	172	145	13	20	11	156	174	450
12020	635	575	520	26	165	120	15	42	10	16.2	4.8	9	189	220	125	205	28	170	202	170	18	20	12	175	205	520
18020	710	650	595	26	175	130	16	42	10	16.2	4.8	9	199	240	135	215	28	180	212	180	18	20	14	185	213	595
25025	810	735	665	33	190	140	15	49	10	18.2	4.8	11	228	260	141	236	36	220	242	220	22	30	12	195	227	665
35031	885	810	740	33	220	170	14	50	10	19.2	4.8	12	264	300	185	269	34	235	282	235	22	30	14	235	260	740


SL2PLB	М	M1	M2	M3	S	V	V1	V2	Y	Z1	Z 2	Z 3
8516	45	105	10	160	N170x5x30x32x9H	n°28x12.857°	12.857°	6.428°	5x30°	W170x5x30x32x8g	235	172
12020	45	120	15	180	N200x5x30x38x9H	n°32x11.25	11.25°	5.625°	5x30°	W200x5x30x38x8g	275	202
18020	45	130	15	190	N210x5x30x40x9H	n°32x11.25	11.25°	5.625°	5x30°	W210x5x30x40x8g	297	212
25025	50	140	15	205	N240x5x30x46x9H	n°32x11.25	11.25°	5.625°	5x30°	W240x5x30x46x8g	338	242
35031	50	170	17	237	N280x8x30x34x9H	n°36x10°	10°	5°	5x30°	W280x8x30x34x8g	358	282



DANA

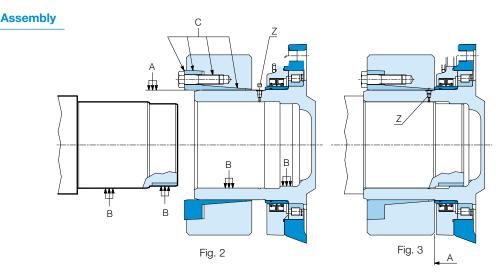
SL2PLB	Α	В	С	d	D1	D2	D3	D4	D5	F	Н	J	J2	К	V
8516	565	510	460	26	405	240	180	170	172	10	11	156	257	450	n°28x12.857°
12020	635	575	520	26	460	280	220	210	212	15	12	175	315	520	n°32x11.25
18020	710	650	595	26	485	300	240	230	232	16	14	185	322	595	n°32x11.25
25025	810	735	665	33	570	340	260	250	252	15	12	195	358	665	n°32x11.25
35031	885	810	740	33	590	360	290	280	282	14	14	235	368	740	n°36x10°
SL2PLB	V1	V2	W	W1	W2	W3	Х	X1	X2	Х3	X4	Y1	Y2	Za	Zb
8516	12.857°	6.428°	140	35	30	220	R 4 max	5	5	145	65	5	R 6	180	170
40000			1 = 0					-	-		= 0				


8516	12.857°	6.428°	140	35	30	220	R 4 max	5	5	145	65	5	R 6	180	170
12020	11.25°	5.625°	179	40	32	269	R 4 max	5	5	184	72	8	R 10	220	210
18020	11.25°	5.625°	181	40	32	271	R 4 max	5	5	186	72	8	R 10	240	230
25025	11.25°	5.625°	211	45	37	311	R 4 max	5	5	216	82	8	R 10	260	250
35031	10°	5°	218	45	40	323	R 4 max	5	5	223	85	8	R 12	290	280

To check joint coupling see pages 26 and 27.

DC1J1A1_000000R0-01/24

The friction couplings are mounted on FS output shaft. Given below are the characteristics and measures to be considered for correct assembly and disassembly of these parts used for the transmission of motion.

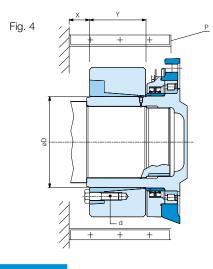


SL2PLB	T _N [Nm]	D [mm]	T _{GN} [Nm]	Coupling Type	DANA code
8516	90000	240	187000	3208-240X405	448J43GU100
12020	133000	280	355000	3208-280X460	448J43GU200
18020	190000	300	397000	3208-300X485	448J43GU300
25025	260000	340	604000	3208-340X570	448J43GU400
35031	370000	360	766000	3208-360X590	448J43GU500

= Gear unit nominal torque T_{GN} = Joint nominal torque Hub diameter

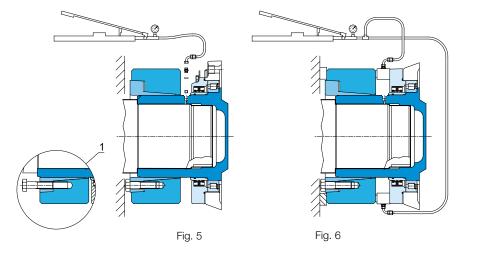
 T_{N}

D


- 1) Carefully clean and remove all grease from the shaft and its seat (Fig.2 points B). To facilitate subsequent disassembly, it is advisable to execute the small shaft centering by means of a suitably worked bushing (Fig.3).
- 2) Lubricate the joint seat (Fig.2 point A). When new, the joint does not have to be disassembled for greasing. Greasing of areas C is advisable only when reinstalling a used joint.
- Fit the joint on the gear unit without tightening the screws and leave enough space for removing the cap (Fig.3 point Z) which allows air 3) bleeding when fitting the gear unit on the machine shaft. If the mounting position is vertical and the relative shaft is facing downwards, make sure the joint cannot slip off and fall. In all cases, never tighten the screws before fitting the shaft in its seat.
- 4) Fit the shaft in its seat. Assembly must occur without any interference and this is only possible with exact gear unit/shaft alignment, carried out with the aid of suitable lifting equipment.
- CAUTION! Assembly must be carried out without applying axial forces, blows or impacts that could damage the gear unit bearings.
- 5) Refit the cap (Fig.2 point Z) to protect the coupling from oxidation and move the joint in the final position (Fig.3 point A) before tightening the screws.
- 6) Tighten the screws gradually in a circular sequence, using a suitable torque wrench, chosen according to design distance "X" and set to the driving torque given in the table. Carry out the last tightening, setting the wrench to a torque of 3-5% higher than that given. Set the wrench to the torque specified in the table and make sure that no screws can be further tightened, otherwise repeat the procedure from point 5. Assembly is complete and correct if the front surfaces of the inner and outer ring are on the same level.

The driving torque does not have to be checked after the joint has gone into operation.

7) Protect the joint area with the special sheet casing, (Fig.4 point P) if there is the risk of stones, sand or other material that could damage the joint or the gear unit seals.


DC1J1A1_000000R0 - 01/24

FRICTION COUPLINGS

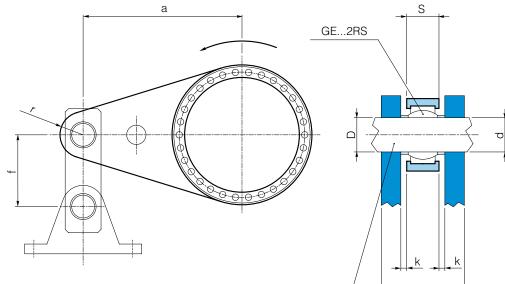
				Ţ	for	X [mm] type of wre	nch
SL2PLB	Coupling type	Y	d	T [Nm]		Ð	Oring the
8516	3208-240X405	144	M20	490	55	115	58
12020	3208-280X460	172	M24	840	65	120	70
18020	3208-300X485	176	M24	840	65	120	70
25025	3208-340X570	206	M27	1250	—	125	85
35031	3208-360X590	210	M27	1250	—	125	85

Disassembly

1) Loosen the screws in repeated sequence until the joint can be moved on the hub.

IMPORTANT: do not undo the screws completely until the rings separate on their own. High axial forces could cause a violent removal, with subsequent danger for operators.

- 2) If the rings do not separate on their own after loosening the screws, transfer some of them to the extraction holes of the inner ring (Fig.5 detail 1) and, tightening them, separate the inner ring from the outer ring.
- 3) Slide the joint axially as shown in fig.5 to allow use of the hole G 1/8" for the introduction of pressurized oil (max. 1000 bar) to facilitate removing the gear unit from the machine shaft. If, on using the method described, the gear unit cannot be freed, because the shaft coupling does not ensure pressure tightness, op-


erate as shown in fig. 6. Available space permitting, using the special hydraulic pushers, operate on two bosses at 180° located on the seal covers, without exceeding the following axial loads:

4) If the gear unit is disassembled some time after start-up, it is necessary to remove the joint from the hub, separate the tapered rings and clean any residuals of dirt or rust from all the surfaces relative to fitting. Before refitting the clamping unit, carefully clean it and lubricate as shown in fig. 2 (points C).

		SL2PLB		
8516	12020	19020	25025	35031
		Axial load [N]		
50000	70000	80000	100000	115000

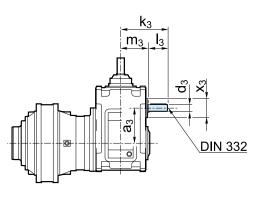
TORQUE ARM COSTRUCTION AND ANCHORING

 $Rm = 900 \div 1000 \text{ N/mm}^2$

SL2PLB	a min [mm]	S [mm]	r min [mm]	f min [mm]	GE2RS	D d [mm]	k [mm]	t min [mm]
8516	1000	35	45	200	45	45	4	81
12020	1000	40	55	230	50	50	5	90
18020	1200	50	60	250	60	60	5	104
25025	1400	55	70	300	70	70	5	115
35031	1600	60	80	350	80	80	5	120

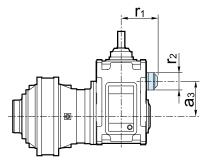
Assembly

- 1) The torque arm anchorage point must be floating in all directions. Therefore ball joints must be used in all connections.
- 2) It is advisable to use long life ball joints, protecting rubbing surfaces with PTFE. Alternatively, "steel to steel" type joints can be used, providing for the possibility of periodical greasing.
- 3) The anchorage connecting rod must be parallel to the torque arm in order to guarantee, unloaded, the side clearance K which ensures free movement of the structure in the event of deformation.
- 4) The fixed support to which the second end of the connecting rod is connected must ensure adequate anchorage for the load.
- 5) The torque arm and relevant connecting rod can have different design solutions to those proposed, but the following arrangements must be respected.
 - The torque arm must be perfectly straight
 - If welded parts are provided for, any deformations must be sanded, normalized and machine tool corrected
 - The contact area of the torque arm at the flanging with the reduction unit must be perfectly flat
 - Before connecting the torque arm to the gear unit, carefully remove all traces of grease from the contact surfaces.

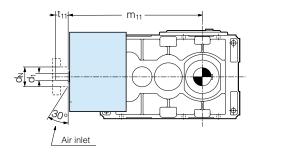

WARNING

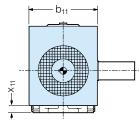
Do not carry out any welding work involving the gear unit, even as an earthing!

- 6) Always use a torque wrench for tightening the connection screws.
- 7) The drawing is only by way of example, since the correct configuration depends on the gear unit rotation direction. In fact, during work it is advisable for the connecting rod to be in traction and not compression. Therefore mounting on the opposite side with respect to that represented may be convenient. If necessary, due to specific encumbrance the connecting rod can be assembled upwards.
- 8) When carrying out an assembly by means of friction coupling and torque arm, remember that the weights of the gear unit, the torque arm and all the elements connected to them, bring about loads and tipping moments that are supported by the output stage planetary carrier bearings. Therefore the relative position of all the masses involved in transmitting power must be appraised in the design phase, in order to minimize the resultant value on the bearings. Likewise, the weight of the components connected to the gear unit must be limited, carefully appraising the hicknesses of the structures actually necessary for supporting the stresses, and decentralizing all the elements not involved in power transmission. An incorrect design can shorten the life of the bearing and gears due to possible excessive elastic deformation of the stages and determine the possibility of slipping and seizing of the friction coupling.


Additional shaft extension

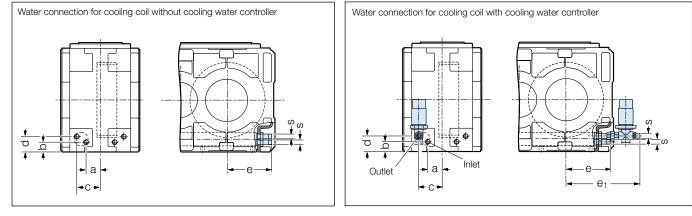
SL2PLB	a ₃	Ød₃	k ₃	l ₃	m1	Øx ₃
8516	164	60 m6	337	140	197	195
12020 18020	201	70 m6	369	140	229	205
25025	247	90 m6	446	180	266	255
35031	302	100 m6	537	215	322	328


Backstop


SL2PLB	a ₃	r,	r ₂
8516	164	275	175
12020 18020	201	322	210
25025	247	372	250
35031	302	456	315

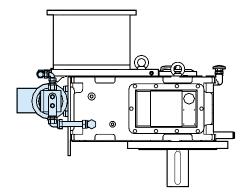
Fan cooling (Z1)

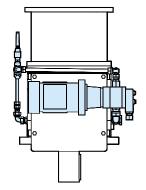
SL2PLB	b ₁₁	d ₁	dN max	k ₁	I ₁₁	m 11	X 11
8516	380	50 k6	140	611	80	531	59
12020 18020	440	60 m6	140	723	105	618	89
25025	468	75 m6	150	891	120	771	94
35031	548	85 m6	180	1064	140	924	94



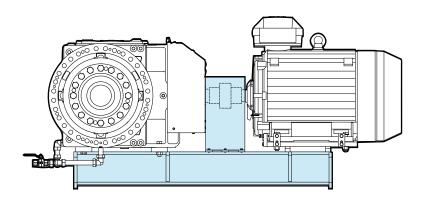
ACCESSORIES

Cooling coils (Z3)

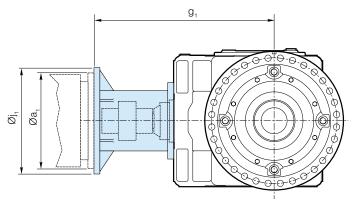



Cooling coil placed adjacent to the final gear wheel. For the gear wheel position see the dimension $\ensuremath{\mathsf{sheets}}$

	а	b	С	d	e	e ₁	S	V Water [I/min]	∆ p Water [bar]
8516	55	48	76	115	193	329	R 1/2 A	12	0.55
12020 18020	58	58	116	98	208	344	R 1/2 A		0.75
25025	54	55	118	118	250	386	R 1/2 A		0.4
35031	68	55	127	123	293	429	R 1/2 A		0.5


Motor pumps

With pressure lubrification (motor pump)



Swing base (J1)

Motor bell housing (K)

[Code	IEC	a ₁	g₁	j ₁
8516	K250	*	250	778	300
	K300	*	300	778	300
	1/050	160	350	723	354
	K350	180	350	723	354
	K400	200	400	723	354
	K450	225	450	838	494
	K550	250	550	838	494
		280	550	838	494
	K660	315	660	868	660
12020	K250	*	250	860	300
	K300	*	300	860	300
	K350	*	350	890	354
	K400	200	400	890	354
	K450	225	450	920	494
	K550	250	550	920	494
	K550	280	550	920	494
	K660	315	660	950	660
	K250	*	250	860	300
	K300	*	300	860	300
	K350	*	350	890	354
18020	K400	200	400	890	354
18(K450	225	450	920	494
	K550	250	550	920	494
	K550	280	550	920	494
	K660	315	660	950	660
	K350	*	350	967	407
ъ 2	K400	*	400	967	407
25025	K450	*	450	1034	494
Ñ	K550	280	550	1034	494
	K660	315	660	1064	660
	K350	*	350	1177	404
-	K400	*	400	1077	404
35031	K450	*	450	1144	494
e	K550	280	550	1144	494
	K660	315	660	1174	660

* On request

Breather with filter

A breather with a filter can be used to prevent dust from entering the gearbox while the gear unit is cooling down.

Breather with wet filter

If the humidity is high, we recommend a breather with wet filter to prevent water vapor from penetrating the gear oil.

Temperature switch

To control the max. oil temperature there is the possibility to install a Temperature switch into the oil sump and get output signal when the temperature is above certain level.

Pressure switch

In case of a force lubrication or cooling unit there is the possibility to control the oil pressure with a pressure switch. If the oil pressure is below certain pressure a signal will stop the main motor of the gearbox.

(PT100)

To monitor the oil temperatures on the gearbox, and set up different level of attention at certain temperature, for instance start, alert and stop of the gearbox.

Manometer

In case of a force lubrication or cooling unit there is the possibility to have visual control the oil pressure with a manometer.

Oil level switch

With the oil level switch is it possible to control the min. oil level of the gearbox in case you use a heater.

Oil drain with ball valve

For an easy, safe and clean oil drain from the gearbox, we can deliver an oil drain with a ball valve $% \left({\left[{{{\rm{A}}_{\rm{B}}} \right]_{\rm{A}}} \right)_{\rm{A}}} \right)$

Oil filter, single, double

To increase the bearing lifetime is it possible in case of force lubrication/cooling to use an oil filter. We recommend a double switching filter for 24 hours operation.

Regulator for quantity of cooling water

In order to have a constant gear oil temperature with water cooling, we recommend the installation of a water regulator.

Supply conditions

The gear units are painted externally with synthetic primer in blue "RAL 5012", unless otherwise specified in the contract. The protection is suitable for withstanding normal industrial environments (also external) and can be finished with synthetic paints. If particular aggressive ambient conditions are foreseen, special painting is required.

The worked external parts of the gear unit, such as the ends of the hollow and solid shafts, support tables, centerings, etc., must be protected with antioxidant oil (tectyl). The parts inside the gear unit casings are painted wiyh oil-proof paint and the kinematic mechanisms are protected with antioxidant oil.

Storage conditions

If the product is to be stored for more than 2 months, carry out as follows:

- protect shafts and spigots with a film of grease or corrosion protection products;
- fill the gearbox completely with the lubricant required for the application;
- store in a dry place with a temperature from -5 °C to +30 °C;
- protect the gearbox from dirt, dust and damp;
- always place a wooden support or other material between the gearbox and the ground to prevent direct contact with the ground.

When storing for more than 6 months the rotating seals will loose efficiency.

It is advisable to carry out a periodical check, manually turning the internal gears, turning the input shaft. Possible replacement of the gaskets on starting is advisable.

Installation

The gear units must be carefully installed by suitably trained technical personnel. Preparation for operation must occur according to all technical information contained in relevant documents.

The structures to which they are fixed must be rigid, with perfectly flat machined unpainted support surfaces, normal with driven shaft, and with centerings to tolerance H8. The contact surfaces must be duly and perfectly greased. The unit must be carefully aligned with the driven shaft, especially with gear units with female splined output shaft which, it must be remembered, do not take external loads.

For fixing, use screws of class min. 10.9 with tightening at 75% yielding.

During assembly, violent axial impacts must absolutely be avoided since they could damage the internal bearings. The control parts to be fitted on the cylindrical output shaft must be worked according to the specifications given in the chapter:"Output".

We are therefore recommending to use couplings that can recover misalignment when connecting gearbox and motor. In case of use of mechanical components that do not allow misalignment recovering, please pay special care to the alignment between gearbox and motor during assembling operations.

35

DANA gearboxes are supplied without lubricant; therefore the user must fill them correctly before starting the machine.

Essential oil specifications

The important parameters to consider when choosing the oil type are:

- viscosity under nominal operating conditions
- additives

The same oil must lubricate the bearings and the gears and all these components work inside the same box, in different operating conditions.

Viscosity

Nominal viscosity refers to a temperature of 40 °C, but decreases rapidly as the temperature increases. If the gearbox operating temperature is from 50 °C to 70 °C, a nominal viscosity can be chosen from the following guide table; choose the highest viscosity if a higher operating temperature is expected.

Output speed	Working temperature				
n ₂ [rpm]	50° C	70° C			
n ₂ ≥ 20	VG 150	VG 220			
5 < n ₂ < 20	VG 220	VG 320			
n₂ ≤ 5	VG 320	VG 460			

Special attention must be paid to highly loaded output stages and those with very low speeds (<1 rpm). In such cases, always use high viscosity oils and with a good amount of Extreme Pressure (EP) additive.

Additives

In addition to the normal anti-foam and antioxidant additives, it is important to use oils with additives offering EP (extreme-pressure) and anti-wear properties, according to ISO 67436 L-CKC or DIN 515173 CLP. The lower the gearbox output speed, the more marked the EP characteristics of the products have to be. It should be remembered that the chemical compounds replacing hydrodynamic lubrication are formed to the detriment of the original EP load.

Therefore in case of very low speeds and high loads, it is important to observe the maintenance intervals so as not to lower the lubricating properties of the oil excessively.

Oil types

Oil types

The oils available generally belong to three large families.

- Mineral oils
- Polyalphaolefin (PAO) synthetic oils
- Polyalkylene glycol (PAG) synthetic oils

The most suitable choice is generally tied to the conditions of use.

Gearboxes that are not particularly loaded and with an intermittent operating cycle but without considerable temperature ranges can be lubricated with mineral oil.

In cases of heavy use, when the gearboxes are highly and continuously loaded resulting in a temperature increase, it is best to use polyalphaolefin synthetic lubricants.

The use of polyalkylene glycol oils is not allowed as they are not compatible with other oils and are often completely mixable with water:;this phenomenon is particularly dangerous because it can go unnoticed, but rapidly diminishes the lubricating properties of the oil. Moreover, these lubricants may chemically attack the oil seals and paint inside the gearbox.

In addition to the above, there are also hydraulic oils and oils for the food industry.

The former are used for negative brakes.

The latter are used specifically in the food industry as they are special products that are not harmful to health.

The tables below contain lubricants offered by the best-known manufacturers, with specifications suitable for lubricating DANA gearboxes.

Contamination

During normal operation, due to run-in of the surfaces, metallic microparticles will inevitably form in the oil.

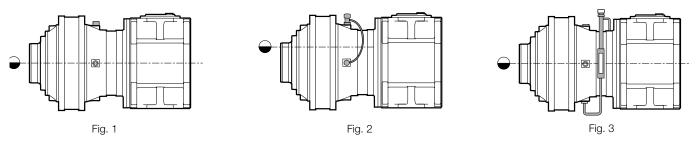
This contamination can shorten the life of the bearings, resulting in premature gearbox failure. To limit and control this phenomenon, without resorting to frequent and costly oil changes, a suitable auxiliary oil circulation system with filtering and cooling of the oil must be provided.

This system offers the dual advantage of controlling the level of contamination through the use of special filters and stabilising the operating temperature at a level more suitable for ensuring the required viscosity.

For lubrication problems with gearboxes intended for special uses, it is advisable to contact your local DANA representative regarding the construction type and operating parameters.

Lubricant oils for general use

Manufacturer		Mineral Oil		Polyalphaolefin Synthetic Oils (PAO)				
Manufacturer	ISO VG	ISO VG	ISO VG	ISO VG	ISO VG	ISO VG		
	150	220	320	150	220	320		
ADDINOL	Eco Gear	Eco Gear	Eco Gear	Eco Gear	Eco Gear	Eco Gear		
	150 M	220 M	320 M	150 S	220 S	320 S		
ARAL	Degol	Degol	Degol	Degol	Degol	Degol		
	BG 50 Plus	BG 220 Plus	BG 320 Plus	PAS 150	PAS 220	PAS 320		
BP	Energol	Energol	Energol	Enersyn	Enersyn	Enersyn		
	GR-XP 150	GR-XP 220	GR-XP 320	EPX 150	EPX 220	EPX 320		
CASTROL	Alpha	Alpha	Alpha	Alphasyn	Alphasyn	Alphasyn		
	SP 150	SP 220	SP 320	EP 150	EP 220	EP 320		
CEPSA	Engranajes XMP 150	Engranajes XMP 220	Engranajes XMP 320	-	Aerogear Synt 220	Aerogear Synt 320		
CHEVRON	-	-	-	Tegra Synthetic Gear 150	Tegra Synthetic Gear 220	Tegra Synthetic Gear 320		
ENI	Blasia	Blasia	Blasia	Blasia	Blasia	Blasia		
	150	220	320	SX 150	SX 220	SX 320		
FUCHS	Renolin CLP Gear	Renolin CLP Gear	Renolin CLP Gear	Renolin Unisyn CLP	Renolin Unisyn CLP	Renolin Unisyn CLP		
	Oil 150	Oil 220	Oil 320	150	220	320		
KLÜBER	Klüberoil	Klüberoil	Klüberoil	Klübersynth	Klübersynth	Klübersynth		
	GEM 1-150 N	GEM 1-220 N	GEM 1-320 N	GEM 4-150 N	GEM 4-220 N	GEM 4-320 N		
LUBRITECH	Gearmaster	Gearmaster	Gearmaster	Gearmaster	Gearmaster	Gearmaster		
	CLP 150	CLP 220	CLP 320	SYN 150	SYN 220	SYN 320		
MOBIL	Mobilgear	Mobilgear	Mobilgear	Mobil SHC Gear	Mobil SHC Gear	Mobil SHC Gear		
	XMP 150	XMP 220	XMP 320	150	220	320		
MOLIKOTE	L-0115	L-0122	L-0132	L-2115	L-2122	L-2132		
NILS	Ripress EP 150	Ripress EP 220	Ripress EP 320	Atoil Synth PAO 150	-	Atol Synth PAO 320		
Q8	Goya	Goya	Goya	El Greco	El Greco	El Greco		
	NT 150	NT 220	NT 320	150	220	320		
REPSOL	Super Tauro	Super Tauro	Super Tauro	Super Tauro Sintetico	Super Tauro Sintetico	Super Tauro Sintetico		
	150	220	320	150	220	320		
SHELL	Omala S2	Omala S2	Omala S2	Omala S4	Omala S4	Omala S4		
	G 150	G 220	320	GX 150	GX 220	GX 320		
SUNOCO	Sun EP 150	Sun EP 220	Sun EP 320	-	-	-		
TEXACO	Meropa	Meropa	Meropa	Pinnacle	Pinnacle	Pinnacle		
	150	220	320	EP 150	EP 220	EP 320		
TOTAL	Carter	Carter	Carter	Carter	Carter	Carter		
	EP 150	EP 220	EP 320	SH 150	SH 220	SH 320		
TRIBOL	1100/150	1100/220	1100/320	-	-	1510/320		


Lubricant oils for use in the food industry

(USDA-H1 and NSF-H1 approved)

Manufacturer		Hydraulic Oil		Gear Oil			
	ISO VG	ISO VG	ISO VG	ISO VG	ISO VG	ISO VG	
	32	46	68	150	220	320	
ARAL	Eural Hyd 32	Eural Hyd 46	Eural Hyd 68	Eural Gear 150	Eural Gear 220	-	
CASTROL	Optileb	Optileb	Optileb	Optileb	Optileb	Optileb	
	HY 32	HY 46	HY 68	GT 150	GT 220	GT 320	
CHEVRON	Lubricating Oil FM 32	Lubricating Oil FM 46	Lubricating Oil FM 68	-	Lubricating Oil FM 220	-	
ENI	Rocol Foodlube	Rocol Foodlube	Rocol Foodlube	Rocol Foodlube	Rocol Foodlube	Rocol Foodlube	
	Hi-Power 32	Hi-Power 46	Hi-Power 68	Hi-Torque 150	Hi-Torque 220	Hi-Torque 320	
FUCHS	Cassida Fluid	Cassida Fluid	Cassida Fluid	Cassida Fluid	Cassida Fluid	Cassida Fluid	
	HF 32	HF 46	HF 68	GL 150	GL 220	GL 320	
KLÜBER	Klüberfood	Klüberfood	Klüberfood	Klüberoil	Klüberoil	Klüberoil	
	4 NH1-32	4 NH1-46	4 NH1-68	4 UH1-150N	4 UH1-220N	4 UH1-320N	
MOBIL	Mobil SHC	Mobil SHC	Mobil SHC	Mobil SHC	Mobil SHC	Mobil SHC	
	Cibus 32	Cibus 46	Clbus 68	Cibus 150	Clbus 220	Cibus 320	
NILS	Mizar	Mizar	Mizar	Ripress Synt Food	Ripress Synt Food	Ripress Synt Food	
	32	46	68	150	220	320	
TEXACO	Cygnus Hydraulic Oil 32	Cygnus Hydraulic Oil 32	Cygnus Hydraulic Oil 32	Cygnus Gear PAO 150	Cygnus Gear PAO 220	-	
TRIBOL	Foodproof 1840/32	Foodproof 1840/46	Foodproof 1840/68	-	Foodproof 1810/220	Foodproof 1810/320	

Indications for oil control diagrams without auxiliary cooling system

Horizontal mounting. Position of level plug

With horizontal mounting of the gear unit, the normal level for guaranteeing correct lubrication is located at the centre line. Fig. (1). For applications with very low output rotation speed ($n_2 \le 5$ rpm) it is advisable to fix the level at a value higher than 50-100 mm. Fig. (2).

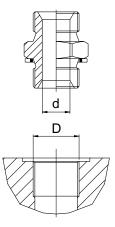
The correct level can be easily checked using a transparent tube positioned as shown in the Fig. (2). If the output speed is extremely low ($n_2 \le 1$ rpm), or if long gear unit downtimes are foreseen, it is advisable to fill the entire box. In this case a special auxiliary tank must be provided.

To fit an instrument for visually checking the level (or by means of a special electric signal), assembly must be done according to the drawing in Fig.(3).

Locate the breather plug over the instrument by mean of a long tube. Connect the upper (empty) part of the gearbox just under the breather by mean of a bleeding tube to prevent oil leakage.

Technical data of auxiliary cooling system

If the power applied is greater than the thermal power that can be dissipated by the gearbox, an auxiliary cooling system (air-oil) must be used to dissipate the excess thermal power and keep the lubricating oil clean by means of constant filtering.


To fulfil this function, DANA offers a range of cooling units: contact your local DANA representative for details. The control units consist of an air-oil heat exchanger, a filter, an electric motor, a hydraulic pump with safety valve and a coaxial fan integral with the pump. If a different type of auxiliary system is to be fitted, make sure not to use systems with an external tank.

If an auxiliary tank is required (e.g. for cooling several gearboxes with a single system), we recommend contacting your local DANA representative. When designing an oil circulation circuit, it is advisable for the suction to be at the lowest point, so that this branch of the circuit can also be used to drain the gearbox.

In any case, the oil suction and delivery points must be far enough apart to ensure that fresh oil passes through the gearbox. The diameter of the oil holes is very important, especially in suction. In fact, the pump tends to cavitate if the holes are too small. Not being able to change the pump delivery, which is a function of the power to be dissipated, the capacity of the holes must be verified.

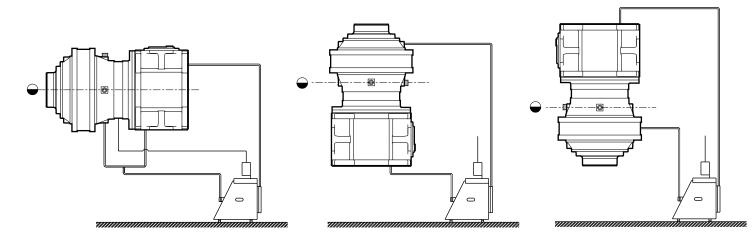
When sucking oil from the input supports or flanges of fast gearboxes, the use of one hole may be insufficient for the entire flow; therefore 2 or 3 holes must be connected by means of a manifold connected to the suction pipe.

Delivery is usually less problematic since, if the natural flow rate is too low, a small pressure is generated which ensures the flow.

Oil speed table [m/s]							
Hole diameter			Pump flow [I/min]				
D (nom.)	d [mm]	6	12	20			
G 1/4"	7	2.59	5.19	8.6			
G 3/8"	10	1.27	2.54	4.24			
G 1/2"	12	0.9	1.76	2.94			
G 3/4"	16	0.5	1	1.65			
G 1"	22	0.26	0.52	0.87			
G 1 1/4"	30	0.14	0.28	0.47			

The velocity can be obtained from the table, or calculated with the formula:

where: V = velocity of oil in m/s


Q = flow in l/min

d = internal diameter of union in mm

In calculating, a kinematic oil viscosity of 60 cSt was considered.

Indications for oil control diagrams with auxiliary cooling system

That described in the previous pages holds good for defining the levels.

IMPORTANT

The auxiliary oil filtering and cooling systems described above represent the minimum condition necessary for obtaining control of the gear unit lubrication.

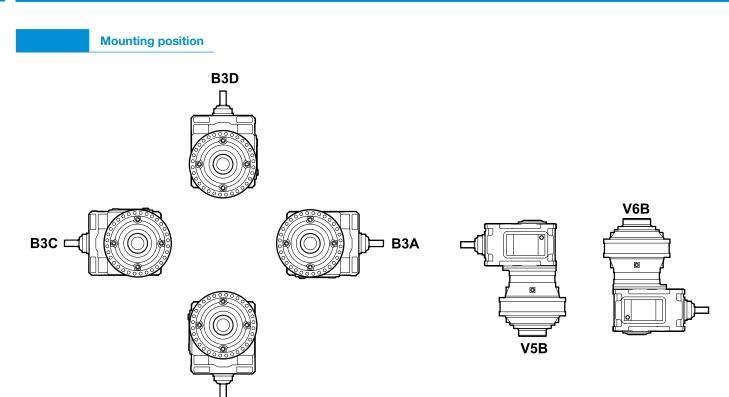
The end-user can always enhance the system with the addition of auxiliary safety controls on the flow, temperature and level. The system can also be equipped with cocks for facilitating oil change operations with the auxiliary of the service pump and suction auxiliary filter for protecting the pump from possible debris accidentally coming from inside the gear unit.

41

Oil change

If there is no filtering and cooling circuit, the first oil change must be done after 500–600 hours of operation. Subsequently, the following oil change frequencies are recommended:

	Oil change interval				
Oil temperature [°C]	[h]				
[0]	Synthetic Oil	Mineral Oil			
≤ 65	10'000	4`000			
65 – 80	8.000	3'000			

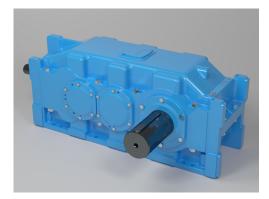

In case of heavy duty applications, the above values must be halved. The values given in the table refer to a work environments free from external contamination.

It is advisable to carry out the oil change with the gearbox hot, (approximately 40°C) to prevent sludge from forming and to help it drain completely.

For the correct procedure, follow the rules given in the installation and maintenance manual supplied with each gearbox. It is advisable to check the oil level periodically.

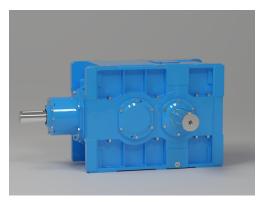
Check for leaks if more than 10% the total volume has to be added.

Oil quantity [I]


B3B

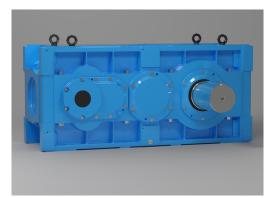
SL	SL2PLB		ВЗА	ВЗВ	B3C	B3D	V5B	V6B		Kg
851	_ 1	I	20	28	20	36	30	40		349
160	2	2	16	16	16	16	32	32	c	549
1202	_{رم} 1	I	40	50	40	64	60	80	-	186
1202	.0 2	2	20	20	20	20	40	40		100
1802	1	I	40	50	40	64	60	80	-	354
1002	.0 2	2	27	27	27	27	54	54	1	304
2502	_. 1	I	70	74	70	89	105	140	0	217
2502	.5 2	2	35	35	35	35	70	70	2	217
3503		I	120	134	120	156	180	240	0	164
3503	2	2	45	45	45	45	90	90	3164	104

43



Brevini EvoMax™

The Brevini EvoMax[™] gearbox series is a further development of the POSIRED 2 series from PIV Drives GmbH. The development has incorporated over 90 years of application knowledge and customer feedback and the outcome is a series of highly reliable, efficient and economical products.


The development of the Brevini EvoMax[™] gearbox series enabled the improvement in torque density, smaller physical envelope, higher efficiency, lower weight, noise and power consumption. Overall, the modular design of the Brevini EvoMax[™] series gives sustainable and efficient transmission that minimize operating costs and maximize availability.

Torque range 10 kNm up to 290kNm Ratios from 4 up to 500

Brevini Posired 2 PB - PLB

The Posired 2 is a bevel-helical gearbox series with 2, 3 and 4 helical bevel helical gear stages. The gearbox based on the modular system of Brevini EvoMax[™]. Torque range from 340 kNm up to 805 kNm. Ratios up to 560.

Brevini Posired 2 Big sizes

The Posired 2 is a bevel-helical gearbox series with 2, 3 and 4 helical bevel helical gear stages. The gearbox based on the modular system of Brevini EvoMax[™]. Torque range from 340 kNm up to 805 kNm. Ratios up to 560.

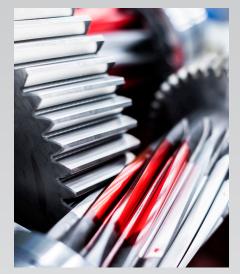
OTHER PRODUCTS

Brevini® S Series planetary gearboxes

S Series planetary gearboxes are designed to ensure effective performances and quite operation in multiple possible configurations. Torques from 16.000 Nm to 1.100.000 Nm

POSIRED N

The POSIRED N is a helical gearbox with a extended center distance Torquerange 8 kNm up to 290 kNm Ratios from 12,5 up to 500



Technologies Customized to **Every Part** of the Globe

With a presence in 31 countries, Dana Incorporated boasts more than 150 engineering, manufacturing, and distribution facilities. Our worldwide network of local service centers provides assurance that each customer will benefit from the local proximity and responsiveness.

About Dana Incorporated

Dana is an integral partner for virtually every major vehicle and engine manufacturer worldwide. We are a leading supplier of drivetrain, sealing, and thermal technologies to the global automotive, commercial-vehicle, and off-highway markets. Founded in 1904, we employ thousands of people across six continents.

About Dana Off-Highway Drive and Motion System

Dana delivers fully optimized Spicer[®] drivetrain and Brevini[®] motion systems to customers in construction, agriculture, material-handling, mining, and industrial markets. We bring our global expertise to the local level with technologies customized to individual requirements through a network of strategically located technology centers, manufacturing locations, and distribution facilities.

Learn more about Dana's drivetrain and motion systems at dana.com/offhighway.

Dana-Industrial.com

Application Policy

Capacity ratings, features, and specifications vary depending upon the model and type of service. Application approvals must be obtained from Dana; contact your representative for application approval. We reserve the right to change or modify our product specifications, configurations, or dimensions at any time without notice.

