

Service Manual

MT-7106-0411 R09

Réducteurs pour les environnements avec des atmosphères potentiellement explosives, selon ATEX 2014/34/UE

Ex II 2G Ex h IIC T4 Gb

Ex II 2G Ex h IIB T4 Gb

Ex II 2D Ex h IIIC T108°C Db

Ex II 3G Ex h IIC T4 Gc

II 3G Ex h IIB T4 Gc

Ex II 3D Ex h IIIC T108°C Dc

EXONÉRATION DE RESPONSABILITÉ La langue officielle choisie par le fabricant du produit est l'anglais. Aucune responsabilité n'est assumée pour les traductions dans d'autres langues qui ne sont pas conformes à la signification originale. Au cas où les versions de ce document dans les autres langues seraient différentes, c'est la langue anglaise originale qui l'emporte. Dana ne sera pas responsable de toute interprétation erronée du contenu de ce document. Il est possible que les photos et les illustrations ne représentent pas le produit exact. © Copyright 2022 Dana Incorporated Tout le contenu est soumis au copyright de Dana et ne peut pas être reproduit, même partiellement, par aucun moyen,

électronique ou tout autre, sans l'autorisation écrite préalable.

CES INFORMATIONS NE SONT PAS DESTINÉES À LA VENTE OU À LA REVENTE, ET TOUTES LES COPIES DOIVENT INCLURE CETTE NOTICE.

CONTENU

1	RÉGLI	EMENTATIONS RESPECTÉES ET TYPE MANUEL	5
2	TRAÇ	ABILITÉ DES VERSIONS	6
	2.1	COMPATIBILITÉ ET MODÈLES PRIS EN CHARGE	6
3	INTRO	DUCTION	7
_	3.1	MODALITÉS DE CONSULTATION DU MANUEL	
	3.2	OBJET DU MANUEL	7
	3.3	GARANTIE/RESPONSABILITÉ	8
	3.3.1	LIMITES DE REPRODUCTION ET COPYRIGHT	8
	3.4	RÉVISIONS	
4		DE LIVRAISON	
5	EMBA	LLAGE, MANUTENTION, RÉCEPTION	
	5.1	EMBALLAGE	
	5.2	MANUTENTION	
	5.3	RÉCEPTION	. 12
_	5.4	MANIPULATION DU RÉDUCTEUR SANS EMBALLAGE	
6		KAGE	
7	PLAQ	JE D'IDENTIFICATION	
	7.1	CONDITIONS D'UTILISATION ET LIMITES DE FONCTIONNEMENT	
8		LLATION ET ACCESSOIRES	
	8.1	MISE À LA TERRE	. 20
	8.2	FIXATION DE BRIDE AVEC ARBRE LENT CREUX RAINURÉ (FE)FE - HIGH TORQUE PLANETARY GEARBOXES	. 21
		FE - INDUSTRIAL PLANETARY GEARBOXESFE - INDUSTRIAL PLANETARY GEARBOXES	
	8.3	FIXATION PAR BRIDE AVEC ARBRE LENT MÂLE RAINURÉ (MN - MR - MP)	23
	0.0	MP- HIGH TORQUE PLANETARY GEARBOXES	
		MN - INDUSTRIAL PLANETARY GEARBOXES	
		MR - INDUSTRIAL PLANETARY GEARBOXES	
	8.4	FIXATION PAR BRIDE AVEC ARBRE LENT MÂLE CYLINDRIQUE (MN1 - MR1 - MP1)MP1- HIGH TORQUE PLANETARY GEARBOXES	
		MN1 - INDUSTRIAL PLANETARY GEARBOXES	
		MR1 - INDUSTRIAL PLANETARY GEARBOXES	. 26
	8.5	FIXATION PENDULAIRE AVEC ARBRE CREUX POUR FRETTE DE SERRAGE (FS)	
		FS - HIGH TORQUE PLANETARY GEARBOXES	
	0.5.4	FS - INDUSTRIAL PLANETARY GEARBOXES	. 28
	8.5.1 8.5.2	INSTALLATION DU RÉDUCTEUR AVEC SORTIE FSMONTAGE DU BRAS DE RÉACTION SUR LE RÉDUCTEUR	
	8.5.3	DÉMONTAGE DU JOINT ET DU RÉDUCTEUR	. 34
	8.6	FIXATION PENDULAIRE AVEC ARBRE LENT FEMELLE RAINURÉ (FAR)	. 35
		FAR - HIGH TORQUE PLANETARY GEARBOXES	. 35
	8.6.1	INDICATION POUR LA CONSTRUCTION ET L'ANCRAGE DU BRAS DE RÉACTION	
	8.7	FIXATION PENDULAIRE AVEC ARBRE LENT AVEC RAINURE DE CLAVETTE (FP)	
	8.7.1	FP - INDUSTRIAL PLANETARY GEARBOXES	. ა <i>1</i> ვგ
	8.7.2	INSTALLATION DU RÉDUCTEUR AVEC SORTIE FPINDICATIONS POUR LA CONSTRUCTION ET L'ANCRAGE DU BRAS DE RÉACTION	. 39
	8.7.3	DÉSINSTALLATION DU RÉDUCTEUR AVEC SORTIE FP	. 40
	8.8	RÈGLES D'INSTALLATION POUR RÉDUCTEUR AVEC FIXATION À PIEDS	. 40
	8.9	MONTAGE D'ACCESSOIRES SUR LES ARBRES DE SORTIE ET/OU D'ENTRÉE	
	8.10	JOINTS À LABYRINTHE TACONITE (ACCESSOIRE EN OPTION)	. 40
	8.11 8.12	DISPOSITIF ANTI-RETOUR (ACCESSOIRE EN OPTION)FREINS DE STATIONNEMENT MULTIDISQUES NÉGATIFS EN BAIN D'HUILE	. 41 ⊿∩
	8.13	ACCESSOIRES - CAPTEURS DE SURVEILLANCE DU RÉDUCTEUR	
	8.13.1	SONDE THERMIQUE	. 46
	8.13.2	INDICATEUR DE NIVEAU D'HUILE « ON-OFF »	. 46
	8.14	RÈGLES D'INSTALLATION POUR LE RÉDUCTEUR DE ROTATION TYPE RPR-RPRC-SLS-SCS-ECS	
	8.15	POSITIONS DE MONTAGE DU RÉDUCTEUR	. 48

CONTENU

9	LUBR	IFICATION	50
	9.1	LUBRIFIANTS À USAGE GÉNÉRAL	51
10	MISE	EN SERVICE ET MODE DE CHANGEMENT D'HUILE	52
	10.1 10.2 10.3	LUBRIFICATION DES RÉDUCTEURSREMPLISSAGE ET CONTRÔLE DU NIVEAU D'HUILEÉLIMINATION DE L'HUILE DU RÉDUCTEUR ET DU FREIN MULTIDISQUE (SI PRÉSENT)	52
11	DÉMA	\RRAGE	
		GÉNÉRALITÉS DÉTECTION DE LA TEMPÉRATURE EN SURFACE	
12	CONT	RÔLES ET MAINTENANCE	55
	12.1 12.2		56 57
13	DYSF	ONCTIONNEMENTS	59
14	MISE	HORS SERVICE DU RÉDUCTEUR	60
15	EYEM	DI E DE CERTIFICAT DE DÉCLARATION DE CONFORMITÉ LIE	61

1 RÉGLEMENTATIONS RESPECTÉES ET TYPE MANUEL

Manuel d'installation et d'entretien de réducteurs pour les environnements avec des atmosphères potentiellement explosives, selon :

Tableau 1:

ATEX 2014/34/UE
EN ISO 80079-36:2016
EN ISO 80079-37:2016
EN 1127-1:2011

2 TRAÇABILITÉ DES VERSIONS

Tableau 2:

Nom de fichier	Révision	Date	Descriptions des modifications
MT-7106-0411_IT_EN_rev_00	00	01/03/2011	Première version
MT-7106-0411_IT_EN_rev_01	01	01/10/2011	Complètement révisé
MT-7106-0411_IT_EN_rev_02	02	02/08/2013	Freins multidisques ajoutés
MT-7106-0411_IT_EN_rev_03	03	20/04/2016	Mise à jour selon la 2014/34/UE
MT-7106-0411_IT_EN_rev_04	04	27/04/2017	Mise à jour du Nom Commercial, du Logo et de la Déclaration de Conformité
MT-7106-0411_IT_EN_rev_05	05	14/02/2018	Mise à jour du Nom Commercial, du Logo et de la Déclaration de Conformité
MT-7106-0411_IT_EN_rev_06	06	15/11/2018	Mise à jour du Nom Commercial
MT-7106-0411_IT_EN_rev_07	07	24/01/2019	Mise à jour de l'agencement de la plaque signalétique
IMM-0010FR_Rev.08 MT-7106-0411	08	16/03/2020	Mise à jour de l'Agencement et révision complète
IMM-0010FR_Rev.09 MT-7106-0411	09	24/10/2022	Mise à jour de Tableau 15: (p. 28) Mise à jour de Tableau 16: (p. 30)

2.1 COMPATIBILITÉ ET MODÈLES PRIS EN CHARGE

Tableau 3:

Modèles
Réducteurs planétaires industriels
Réducteurs planétaires à couple élevé
Commandes d'orientation

3 INTRODUCTION

3.1 MODALITÉS DE CONSULTATION DU MANUEL

La consultation de ce manuel est facilitée par l'inclusion sur la première page de l'index général qui permet une localisation immédiate du sujet d'intérêt. Les chapitres sont organisés avec une progression descriptive structurée qui facilite la recherche des informations souhaitées.

3.2 OBJET DU MANUEL

Ce manuel fournit à l'utilisateur du Réducteur les informations nécessaires pour une installation, une utilisation et une maintenance correctes et l'éventuel stockage de celui-ci conformément aux limites de sécurité imposées par la réglementation en viqueur.

Ce Manuel est réalisé par Dana Motion Systems Italia S.r.l. en anglais ; sur demande, le Manuel peut également être mis à disposition dans d'autres langues pour répondre aux besoins juridiques et/ou commerciaux du pays européen qui reçoit la fourniture du produit.

Nous déclinons toute responsabilité pour les traductions dans d'autres langues qui ne seraient pas conformes à la signification originale.

Pour améliorer la compréhension de ce manuel, nous précisons ci-dessous les termes suivants et symboles y figurant :

Zone Dangereuse

Zone à l'intérieur ou à proximité de la machine où la présence d'une personne exposée constitue un risque pour la sécurité et la santé de la personne.

Personne exposée

Toute personne qui se trouve en partie ou en totalité dans une zone dangereuse.

Opérateur

Personne chargée de l'installation, de l'exploitation, du réglage, de la maintenance ordinaire et du nettoyage de la machine dans son ensemble.

Technicien qualifié

Personne spécialisée, chargée des opérations de maintenance ou de réparation extraordinaires nécessitant une connaissance particulière de la machine, de son fonctionnement, des dispositifs de sécurité et de leurs modes d'intervention.

AVERTISSEMENT

Il est possible d'endommager la machine et/ou ses composants.

ATTENTION

Règles de prévention des accidents pour l'Opérateur et le Technicien Qualifié.

Notes spécifiques relatives à la sécurité contre le danger d'explosion.

IMPORTANT:

INFORMATIONS SUPPLÉMENTAIRES CONCERNANT L'OPÉRATION EN COURS.

REMARQUE:

Fournit des informations utiles.

Ce Manuel d'installation et de maintenance des réducteurs pour les environnements avec des atmosphères potentiellement explosives, selon ATEX 2014/34 /UE,

- II 2G Ex h IIC T4 Gb
- II 2G Ex h IIB T4 Gb
- II 2D Ex h IIIC T108°C Db

- II 3G Ex h IIC T4 Gc
- II 3G Ex h IIB T4 Gc
- II 3D Ex h IIIC T108°C Dc

et son spécifique « Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité », doivent être conservés à proximité immédiate du réducteur et facilement accessibles.

Pour tout doute et en cas de dommage ou de perte du manuel, n'hésitez pas à contacter le Service Technique de Dana Motion Systems Italia S.r.l.

INTRODUCTION

3.3 GARANTIE/RESPONSABILITÉ

À la livraison, les Produits doivent être exempts de défauts de matériaux et de fabrication et conformes aux spécifications techniques convenues. La période de garantie sera de (i) 12 mois ou 2000 heures de fonctionnement (selon ce qui se produit plus tôt) pour les Produits de transmission de marque Spicer®, ou de (ii) 12 mois pour tous les autres Produits, dans tous les cas à partir de la date de facturation du Client à l'utilisateur final ou le revendeur, à condition que la période de garantie se termine au plus tard 18 mois après la date de la facture de Dana au Client. En cas de défauts, Dana devra (i) si la réparation est effectuée par le client avec l'accord écrit préalable de Dana, rembourser le client des coûts des pièces de rechange conformément à la liste officielle des pièces de rechange de Dana, y compris l'actualisation appliquée, et dans la limite du prix d'achat du Produit en question, ou (ii) réparer le Produit gratuitement dans ses propres locaux ou dans un centre de service agréé, à condition que le Client envoie le Produit défectueux, à ses frais, au lieu de réparation choisi par Dana dans son seule discrétion. Le traitement des demandes de garantie suivra les conditions de garantie standard de Dana, mises à jour périodiquement, qui sont disponibles sur demande en contactant dana_oh_product_service_support@dana.com. Toutes les autres réclamations et recours concernant les défauts des Produits, quels que soient leur nature, leur montant ou leur base légale, sont expressément exclus, sauf en cas de négligence grave et de faute intentionnelle de Dana. Sauf indication contraire dans le présent document, il n'y a aucune protestation ou garantie, expresse ou implicite, concernant les Produits.

La garantie ne couvre pas (a) les Produits ou composants qui ne sont pas achetés directement auprès de Dana ; (b) les produits fournis avant l'approbation de la production ; ou (c) des produits qui ont subi (i) un entretien et/ou des réparations qui ne sont pas exécutés conformément au manuel de service officiel de Dana disponible sur demande en contactant

dana_oh_product_service_support@dana.com, (ii) des conditions de stockage ou de transport qui ne sont pas conformes avec les exigences de Dana disponibles sur demande en contactant dana_oh_product_service_support@dana.com, (iii) l'installation non professionnelle des Produits ou des accessoires, (iv) les dommages causés par l'usure normale, (v) les dommages causés lors du remontage ou de l'installation, (vi) l'utilisation du Produit ou l'application qui n'est pas conforme aux exigences d'application ou aux spécifications de Produit convenues et/ou (vii) l'utilisation de composants, de lubrifiants ou de produits auxiliaires qui ne sont pas approuvés par Dana.

Dans la mesure permise par la loi, aucune des parties ne peut en aucun cas être tenue responsable envers l'autre, que ce soit par contrat, préjudice ou restitution, ou pour manquement à une obligation légale ou fausse déclaration, ou autrement, pour toute perte de profit, perte de bonne volonté, perte d'activité, perte d'opportunité commerciale, perte d'économie prévue, dommages spéciaux, indirects ou consécutifs subis par l'autre partie et résultant de ou en relation avec la relation contractuelle entre les parties. Rien dans les présentes ne doit limiter ou exclure la responsabilité de l'une ou l'autre des parties en cas de décès ou de blessure corporelle, ou de dommages résultant d'une négligence grave, d'une violation intentionnelle ou d'une faute intentionnelle.

3.3.1 LIMITES DE REPRODUCTION ET COPYRIGHT

Tous droits réservés à Dana Motion Systems Italia S.r.l.

La structure et le contenu de ce manuel ne peuvent être reproduits, partiellement ou totalement, sans une autorisation écrite explicite de **Dana Motion Systems Italia S.r.I.** Le stockage sur tout type de support (magnétique, magnéto-optique, optique, microfilm, photocopie, etc.) est également interdit.

3.4 RÉVISIONS

Dana Motion Systems Italia S.r.l. est exemptée de tout type d'erreur d'impression dans ce manuel. Ce manuel est considéré comme valable à la date de facturation du produit auquel il est destiné. Le manuel fait référence au niveau de révision imprimé sur celui-ci. En cas de nouvelle révision de ce manuel, Dana Motion Systems Italia S.r.l., conformément à la réglementation et aux pièces détachées, se chargera de mettre à jour et d'indiquer le nouvel index de révision du manuel, réitérant la non-responsabilité, directe ou indirecte, de l'utilisation incorrecte du manuel avec un index de révision qui ne correspond pas entre le numéro de série, la date de facturation et la date de révision du manuel.

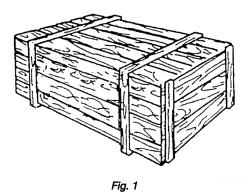
REMARQUE:

Des images, des documents et des dessins sont présentés en tant qu'instructions pour effectuer correctement et en toute sécurité les opérations de manutention et de maintenance des produits. De petites différences par rapport aux dessins de ce manuel peuvent être présentes sur le produit livré. Cependant, ces différences ne concernent pas les principales caractéristiques du produit ou les instructions de maintenance.

4 ÉTAT DE LIVRAISON

Les réducteurs sont fournis traités avec un cycle de peinture ATEX spécifique pour éviter les charges électrostatiques et ne doivent donc pas être repeints ; en cas de fourniture de réducteurs non peints selon la spécification ATEX (condition uniquement possible pour les réducteurs de Catégorie 3), le client doit prendre en charge la peinture.

Sauf indication contraire dans le contrat, tous les réducteurs sont fournis sans lubrifiant.


Les parties externes usinées du réducteur, ainsi que les extrémités des arbres creux et non creux, les surfaces d'appui, les centrages, etc. sont protégés par de l'huile antioxydante (tectyl).

® REMARQUE:

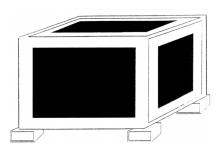
Évitez d'endommager la peinture, de manière mécanique (par ex. rayures) et chimique (par ex. attaque avec des solvants acides) ou thermique (par ex. flammes ou étincelles), afin de ne pas compromettre son effet protecteur.

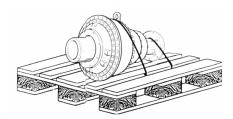
5.1 EMBALLAGE

® REMARQUE:

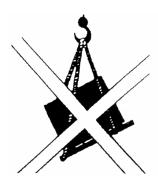
Le produit peut être emballé, en fonction de ce qui a été convenu avec le client au moment de la vente, au moyen d'une caisse en bois, d'un emballage en carton complètement fermé ou sur des palettes.

Pour garantir qu'aucun élément de l'emballage ne puisse être endommagé pendant le transport, les pièces mobiles ont été bloquées avec des fixations et les parties les plus délicates ont été mieux protégées.


À des fins de transport, elle peut être protégée, dans ses parties les plus exposées, avec des matériaux étanches, ou positionnée sur une palette en bois et fixée sur celui-ci au moyen de colliers ou de liens de manière à obtenir un seul corps rigide.

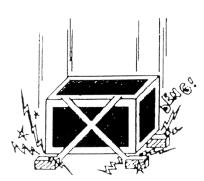

5.2 MANUTENTION

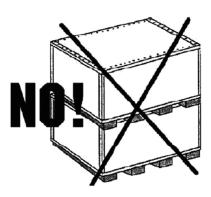
® REMARQUE:


le poids des produits emballés est indiqué sur les Documents de Transport ou la Liste de Colisage.

Si nécessaire, placez des cales en bois appropriées sous le colis pour faciliter le levage.

Pour déplacer les colis, utilisez des moyens de levage adaptés au type d'emballage et de la capacité adéquate affichée sur celui-ci.


Ne pas incliner ni renverser lors du levage et du transport.


Si les colis sont déchargés d'un chariot élévateur, assurezvous que le poids est également bien équilibré sur les fourches.

Si les colis sont déchargés avec un palan et en tout cas par un crochet, assurez-vous que la charge est bien équilibrée et utilisez dans l'élingage des accessoires de levage homologués et conformes à la loi. Pour les colis expédiés sur palettes, assurez-vous que les accessoires de levage n'endommagent pas les produits.

Soyez prudent lorsque vous soulevez et positionnez le colis pour éviter les chocs violents.

IMPORTANT:

L'EMBALLAGE N'EST PAS EMPILABLE.

5.3 RÉCEPTION

REMARQUE:

à l'arrivée des colis à destination, vérifiez, en présence du transporteur, leur intégrité et l'intégrité de leur contenu. Vérifiez la livraison exacte à l'aide de la feuille de liste de colisage jointe au produit (documents de transport), en vérifiant que la livraison correspond aux spécifications de la commande.

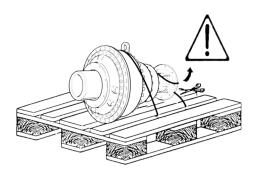


Fig. 3

ATTENTION

La sangle de fixation du produit sur l'emballage est tranchante ; pendant la phase de déballage, elle peut heurter l'opérateur. La démolition de l'emballage doit être effectuée comme suit :

- En coupant les sangles avec une cisaille (attention aux extrémités qui pourraient heurter l'opérateur).
- En coupant ou en enlevant l'emballage d'enveloppe.
- En coupant la sangle interne avec une cisaille (attention aux extrémités qui pourraient heurter l'opérateur).
- En enlevant le réducteur des palettes.

Si un dommage, un défaut ou une défectuosité est trouvé, informez immédiatement le Service Client de Dana Motion Systems Italia S.r.l.

AVERTISSEMENT

Ne mettez pas en service des réducteurs endommagés, même si ce n'est que légèrement, ou s'ils ne sont pas considérés comme adaptés à l'usage prévu ; dans ce cas, contactez Dana Motion Systems Italia S.r.I.

5.4 MANIPULATION DU RÉDUCTEUR SANS EMBALLAGE

IMPORTANT:

LE POIDS DES RÉDUCTEURS À MANIPULER EST INDIQUÉ SUR LE DESSIN DIMENSIONNEL SI MENTIONNÉ SUR LE CERTIFICAT DE DÉCLARATION DE CONFORMITÉ.

ATTENTION

Les opérations de levage, de transport et de manipulation sont de la compétence exclusive du technicien de maintenance et du personnel formé (élingueurs, grutiers, etc.) coordonné par une personne sur le terrain, experte pour cette tâche, capable de faire les signaux nécessaires.

ATTENTION

Assurez-vous que le dispositif de levage, de transport et de manipulation à utiliser a une capacité adaptée au poids total du réducteur, indiqué sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

Tout autre système utilisé pour soulever, transporter et manipuler le réducteur qui ne fait pas partie de ceux recommandés par le fabricant, annule effectivement la garantie d'assurance pour tout dommage subi par le réducteur et/ou par les groupes optionnels qui lui sont connectés.

Si la taille du réducteur empêche l'opérateur d'avoir une vue parfaite pendant les opérations de levage, de transport et de manipulation, faites appel à deux opérateurs qui vérifient du sol d'éventuels dangers ou obstacles contre lesquels il pourrait entrer en collision. Assurez-vous également qu'il n'y a pas de personnel non autorisé dans la zone de transport et que les accessoires, connectés au réducteur, n'empêchent pas les mouvements et ne rendent pas les mouvements de transport dangereux.

ATTENTION

Les réducteurs sont des composants qui ne sont pas parfaitement équilibrés et doivent être soulevés avec des dispositifs appropriés.

Avant de retirer le réducteur de son emballage, fixez-le avec les accessoires de levage afin qu'il ne puisse pas glisser ou se renverser. Avant de manipuler le réducteur, les dés en bois insérés dans l'emballage pour assurer la stabilité lors du transport doivent être retirés.

- Procédez avec prudence lors de la manipulation du réducteur, en évitant les mouvements brusques et les chocs violents.
- Soulevez la machine en prenant soin de ne pas déséquilibrer la charge lors des manœuvres. Pendant cette phase, deux opérateurs devront guider le réducteur latéralement pendant toute la phase de levage, afin d'éviter le balancement ou les mouvements brusques de la charge, ce qui pourrait conduire à des situations extrêmement dangereuses.
- Si une oscillation excessive se produit pendant l'opération, il est conseillé d'arrêter et de répéter les opérations de levage du réducteur.
- Après avoir soulevé le réducteur, transportez-le à l'endroit prévu pour le positionnement.

Transport:

Vérifiez toujours l'équilibre de l'élément transporté, en prenant soin de l'accrocher au moyen de transport de la manière la plus sûre possible au moyen d'élingues, de cordes et/ou de crochets conformes aux réglementations en vigueur. Pendant le transport, évitez les oscillations dangereuses de la charge qui pourraient la déséquilibrer et provoquer sa chute.

Veillez également pendant le transport à ne rien placer sur le dessus du réducteur car certaines pièces pourraient être irrémédiablement endommagées.

6 STOCKAGE

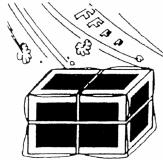
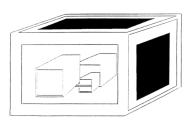
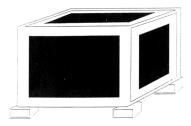


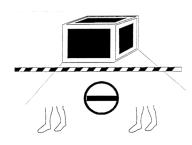
Fig. 5


Si le produit doit être stocké pendant une période supérieure à 2 mois, respectez les points suivants :

- Protégez les arbres et les centrages avec un film de graisse et/ou des liquides de protection anti-corrosion.
- Remplissez complètement le réducteur avec des huiles appropriées, voir Lubrification (p. 50), et orientez le réducteur de sorte que le bouchon d'évent soit placé dans la position la plus élevée.
- Conservez dans un endroit sec et à une température comprise entre 5 ° C et + 30 ° C.
- Protégez les emballages de la saleté et de la poussière.
- Évitez les environnements avec une humidité excessive et exposés aux intempéries (exclure les zones extérieures).
- Évitez tout contact direct du réducteur avec le sol.
- Placez le réducteur sur une base de support stable et assurez-vous qu'il n'y a aucun risque de déplacement accidentel.



Ne juxtaposez pas les pièces.


Ne marchez pas et ne placez pas de pièces sur le colis.

Ne stockez aucun matériau à l'intérieur du colis.

Si possible, placez des cales en bois entre le colis et le sol.

Gardez le colis loin des zones de passage.

® REMARQUE:

Pour un stockage prolongé au-delà de 6 mois, l'efficacité des joints tournants expire. Une inspection périodique est recommandée en faisant tourner les engrenages internes à la main en faisant tourner l'arbre d'entrée.

AVERTISSEMENT

Précautions pour la restauration du réducteur après le stockage :

– Dégraissez les surfaces externes de couplage et éliminez l'antioxydant, en utilisant des solvants habituels, en faisant attention aux bagues d'étanchéité qui ne doivent jamais entrer en contact avec le solvant. Cette opération doit être effectuée en dehors de la zone de risque d'explosion.

- Si le remplissage d'huile autre que celle nécessaire au fonctionnement a été effectué pour le stockage, il est nécessaire de laver l'intérieur du réducteur avant le remplissage d'huile de fonctionnement.
- Nous recommandons le remplacement éventuel des joints tournants avant le démarrage, après un stockage très prolongé.

7 PLAQUE D'IDENTIFICATION

Chaque réducteur est équipé de **Plaque d'identification** et d'une **Déclaration de Conformité UE** conformément à la directive 2014/34 /UE.

La Plaque d'Identification contient les principales informations techniques relatives aux caractéristiques fonctionnelles et de construction du réducteur ; elle doit donc être conservée intacte et visible, en la nettoyant périodiquement.

Utilisez les données indiquées sur la plaque pour les contacts avec les centres de service Dana Motion Systems Italia S.r.l.

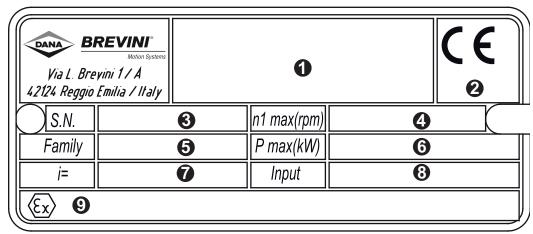


Fig. 6

- 1 Code à barres
- 2 Date de production
- 3 Numéro de série
- 4 Régime d'entrée max. (Avec Duty cycle voir dessin SI)
- 5 Famille du réducteur
- 6 Puissance max. de fonctionnement (avec Duty Cycle voir dessin SI)
- 7 Rapport total
- 8 Type d'entrée
- 9 Marquage ATEX
 - II 3G Ex h IIC T4 Gc
 - II 3G Ex h IIB T4 Gc
 - II 3D Ex h IIIC T108°C Dc
 - II 2G Ex h IIC T4 Gb
 - II 2G Ex h IIB T4 Gb
 - II 2D Ex h IIIC T108°C Db
 - X: Conditions particulières d'utilisation

Les conditions de fonctionnement ne doivent pas dépasser les valeurs du Cycle de travail du projet, indiquées sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

En cas de dysfonctionnement du système de contrôle de la puissance de travail fournie par la machine, la machine doit être immédiatement arrêtée et le réducteur doit être envoyé au Service Client Dana Motion Systems Italia S.r.l. pour un examen.

ATTENTION

Les motoréducteurs (réducteur avec moteur) doivent disposer de deux plaques séparées avec marquage conforme ATEX. Le marquage du moteur doit correspondre aux spécifications de conception de l'installation ou de la machine. Pour les motoréducteurs, la protection ATEX inférieure parmi celles indiquées sur le réducteur et sur le moteur est valable.

PLAQUE D'IDENTIFICATION

7.1 CONDITIONS D'UTILISATION ET LIMITES DE FONCTIONNEMENT

La température ambiante de fonctionnement admissible est comprise entre -20 ° C et + 40 ° C

AVERTISSEMENT

Les valeurs de la Plaque, relatives aux températures de surface maximales, se réfèrent à des mesures dans des conditions environnementales normales et à une installation normale et correcte. Le fonctionnement du réducteur dans un petit compartiment réduit considérablement la capacité de dissipation de la puissance thermique, ce qui a donc des effets importants sur le développement de la chaleur.

L'installation des réducteurs doit être effectuée avec soin et professionnalisme en employant du personnel correctement et techniquement formé.

Le personnel doit être informé des sujets suivants liés à la sécurité lors de l'utilisation de la machine :

- Règles générales de prévention des accidents ou prévues par les directives internationales et par la législation du pays de destination de la machine.
- Règles spécifiques de prévention des accidents :
- 1 La directive européenne 2014/34/UE traite des systèmes de prévention à mettre en place sur les équipements et donc, dans notre cas spécifique, il s'agit de la directive de référence pour les réducteurs.
- 2 La directive européenne 1999/92/CE (ATEX 153) traite de la sécurité du personnel lors de l'installation, du fonctionnement ou de la maintenance de systèmes potentiellement explosifs.
- · Risques d'accident.
- Équipements conçus pour la sécurité de l'opérateur EPI. (équipements de protection individuelle : lunettes, gants, casque, etc.).

La préparation du fonctionnement doit se faire dans le respect de toutes les indications techniques contenues dans le Dessin Dimensionnel spécifique, SI.

Toutes les opérations d'installation doivent s'inspirer des plus hauts niveaux de sécurité par rapport :

- 1 à la sécurité des opérateurs et des tiers
- 2 au bon fonctionnement du réducteur
- 3 à la sécurité de fonctionnement

Il est absolument interdit de manipuler arbitrairement le réducteur et les accessoires revus à l'origine.

Les réducteurs fournis par Dana Motion System Italia sont destinés à être intégrés dans des équipements ou des systèmes complets, ils ne doivent donc pas être mis en service tant que la machine ou le système n'a pas été déclaré conforme aux dispositions des directives en vigueur (Directive Machines 2006/42/CE et modifications ultérieures).

Avant de commencer l'installation, vérifiez la congruence entre les données indiquées sur la plaque d'identification du réducteur et celles relatives à l'environnement dans lequel il sera installé.

Les réducteur ne doivent pas être repeints, si ils sont déjà fournis peints par Dana Motion Systems Italia S.r.I.

S'il est absolument nécessaire d'appliquer une couche de protection supplémentaire, le danger d'inflammation dû aux charges électrostatiques doit être évité.

ATTENTION

Tous les travaux d'installation ou de maintenance doivent être effectués avec le réducteur arrêté, il est donc recommandé de veiller à ce qu'une insertion involontaire de la force motrice ne puisse pas se produire.

AVERTISSEMENT

Les structures sur lesquelles les réducteurs doivent être fixés doivent être rigides, avec des surfaces de support bien usinées planes et non peintes, perpendiculairement à l'axe d'actionnement, et avec une tolérance de centrage correspondant.

Les surfaces de contact doivent d'abord être parfaitement dégraissées.

Vérifier que l'accouplement avec la bride du moteur électrique ou hydraulique (côté entrée moteur) est tel qu'il ne permette pas l'entrée de poussières ou de corps étrangers.

Par mesure de précaution, l'utilisation de pâte d'étanchéité type Loctite 510 est obligatoire.

L'alignement entre le réducteur et l'arbre à contrôler doit être respecté, en particulier dans le cas de réducteurs à sortie femelle rainurée qui, rappelez-vous, n'acceptent pas de charges externes, ni radiales ni axiales.

Pour les tolérances de fabrication correctes de la structure et de l'arbre de la machine, suivez les indications du Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

Avant de serrer les vis reliant le réducteur à la structure et le moteur au réducteur, vérifiez que l'accouplement entre les arbres mâle et femelle s'effectue avec précision, mais sans interférence.

Les éléments de commande à coupler sur l'arbre de sortie doivent être usinés comme indiqué dans les chapitres suivants, selon les types respectifs de fixation et d'arbres lents.

Dans la connexion entre les arbres d'entrée du réducteur et le moteur, l'utilisation de joints capables de récupérer le désalignement est recommandée, tandis que si vous utilisez des pièces mécaniques non capables de récupérer le désalignement, lors du montage, faites très attention à l'alignement entre le réducteur et le moteur.

Dans le cas des réducteurs orthogonaux, avec arbre d'entrée mâle, il peut se produire pendant l'installation que l'axe d'entrée soit dévié de sa position idéale.

Pour remédier à cette situation, nous recommandons :

- dans le cas de connexions via des joints capables de récupérer des désalignements, de mesurer le désalignement existant,
 de vérifier le désalignement acceptable du joint et dans le cas où la valeur est supérieure, de caler le moteur pour revenir aux jeux admissibles;
- dans le cas de connexion à travers des pièces mécaniques qui ne permettent pas la récupération de jeu, de procéder à l'alignement du moteur au moyen de cales.

Pour la fixation, des vis de classe 10.9 doivent être utilisées, avec serrage à 75% du limite d'élasticité et des rondelles plates ISO 7089 de dureté HV300.

Pour le serrage, il est recommandé de consulter le tableau Tableau 4: Couples de serrage (p. 19).

• REMARQUE:

Pour fixer les réducteurs de Catégorie 2 GD, utilisez de la pâte de frein filet de type LOCTITE 243 sur les vis de fixation de la structure de la machine.

Lors du montage, les chocs axiaux violents qui pourraient endommager les roulements internes doivent être absolument évités. Lubrifiez les accouplements rainurés d'entrée et de sortie avec des composés anti-grippage tels que LOCTITE 8150, MO-LYKOTE GN PLUS, CHESTERTON 710-785.

Il est absolument interdit d'effectuer des travaux de soudure sur les réducteurs.

Il est absolument interdit de confiner les réducteurs à l'intérieur d'enveloppes fermées ou en tout cas dans des espaces trop étroits ou à proximité de sources de chaleur.

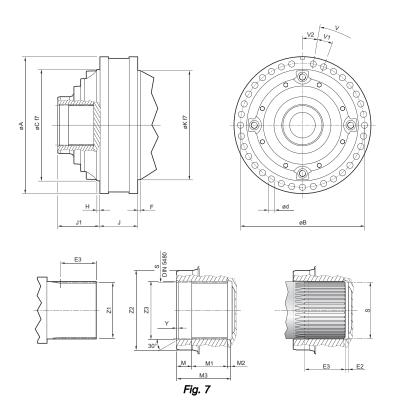
Préparez la lubrification selon les indications contenues dans le chapitre Lubrification (p. 50).

Tableau 4: Couples de serrage

Précharge	s et mome	ents de serr	age pour vis	à filetage r	nétrique ISC)					
dxp	Sr		4.8		5.8		8.8		10.9		12.9
mm	mm²	F kN	M Nm	F kN	M Nm	F kN	M Nm	F kN	M Nm	F kN	M Nm
3 x 0.5	05:03	1.2	0.9	1.5	1.1	2.3	1.8	3.4	2.6	4.0	3.0
4 x 0.7	8.78	2.1	1.6	2.7	2.0	4.1	3.1	6.0	4.5	7.0	5.3
5 x 0.8	14.2	3.5	3.2	4.4	4.0	6.7	6.1	9.8	8.9	11.5	10.4
6 x 1	20.1	4.9	5.5	6.1	6.8	9.4	10.4	13.8	15.3	16.1	17.9
7 x 1	28.9	7.3	9.3	9.0	11.5	13.7	17.2	20.2	25	23.6	30
8 x 1.25	36.6	9.3	13.6	11.5	16.8	17.2	25	25	37	30	44
8 x 1	39.2	9.9	14.5	12.2	18	18.9	27	28	40	32	47
10 x 1.5	58	14.5	26.6	18	33	27	50	40	73	47	86
10 x 1.25	61.2	15.8	28	19.5	35	30	53	43	78	51	91
12 x 1.75	84.3	21.3	46	26	56	40	86	59	127	69	148
12 x 1.25	92.1	23.8	50	29	62	45	95	66	139	77	163
14 x 2	115	29	73	36	90	55	137	80	201	94	235
14 x 1.5	125	32	79	40	98	61	150	90	220	105	257
16 x 2	157	40	113	50	141	76	214	111	314	130	368
16 x 1.5	167	43	121	54	150	82	229	121	336	141	393
18 x 2.5	192	49	157	60	194	95	306	135	435	158	509
18 x 1.5	216	57	178	70	220	110	345	157	491	184	575
20 x 2.5	245	63	222	77	175	122	432	173	615	203	719
20 x 1.5	272	72	248	89	307	140	482	199	687	233	804
22 x 2.5	303	78	305	97	376	152	592	216	843	253	987
22 x 1.5	333	88	337	109	416	172	654	245	932	286	1090
24 x 3	353	90	383	112	474	175	744	250	1060	292	1240
24 x 2	384	101	420	125	519	196	814	280	1160	327	1360
27 x 3	459	119	568	147	703	230	110	328	1570	384	1840
27 x 2	496	131	615	162	760	225	1200	363	1700	425	1990
30 x 3.5	561	144	772	178	955	280	1500	399	2130	467	2500
30 x 2	621	165	859	204	1060	321	1670	457	2370	535	2780

8.1 \Rightarrow MISE À LA TERRE

AVERTISSEMENT


Effectuez une connexion équipotentielle du réducteur et de la base de la machine éventuelle en utilisant l'un des trous libres du boîtier du réducteur en prenant soin de :

- enlever la peinture dans la zone de contact ;
- utiliser des conducteurs de section adéquate selon les normes en vigueur, voir tableau 5 de la norme EN 60079-0, en considérant la section des conducteurs de phase d'installation comme celle des câbles d'alimentation moteur;
- utiliser des systèmes de fixation anti-desserrage et anti-rotation dans la connexion des câbles ;
- indiquer sur le réducteur le point utilisé pour la connexion à la terre avec des symboles adéquats (🚔) ;
- vérifier la liaison équipotentielle entre le réducteur et les systèmes qui lui sont connectés en entrée et en sortie.

8.2 FIXATION DE BRIDE AVEC ARBRE LENT CREUX RAINURÉ (FE)

FE - High Torque Planetary Gearboxes

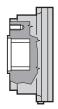
Sortie femelle rainurée

Tableau 5:

	Α	В	С	d	E2	E3	F	Н	J	J1	K	М	M1	M2	M3
S300	445	400	370	15.5	2	>90	12	10	124	117	365	15	90	_	105
S400	445	400	370	15.5	10	>92	12	10	124	140	365	15	90	10	115
S600	510	460	410	22	10	>87	12	12	142	160	415	45	85	10	140
S850	565	510	460	26	10	>107	10	11	156	174	450	45	105	10	160
S1200	635	575	520	26	15	>125	15	12	175	205	520	45	120	15	180
S1800	710	650	595	26	15	>135	16	14	185	213	595	45	130	15	190
S2500	810	735	665	33	15	>145	15	12	195	227	665	50	140	15	205
S3500	885	810	740	33	17	>178	14	14	235	260	740	50	170	17	237
S5000	980	900	810	39	17	>208	14	14	265	338	810	60	200	17	277
S7500	1160	1070	970	40	15	>245	20	20	285	413	970	60	235	15	310

Tableau 6:

	S	V	V1	V2	Υ	Z1	Z2	Z3
S300	N120x5x30x22x9H	n°35x10°	10°	10°	1x45°	W120x5x30x22	165	122
S400	N140x5x30x26x9H	n°35x10°	10°	10°	3x30°	W140x5x30x26	185	142
S600	N150x5x30x28x9H	n°28x12.857°	12.857°	6.428°	5x30°	W150x5x30x28	218	152
S850	N170x5x30x32x9H	n°28x12.857°	12.857°	6.428°	5x30°	W170x5x30x32	235	172
S1200	N200x5x30x38x9H	n°32x11.25°	11.25°	5.625°	5x30°	W200x5x30x38	275	202
S1800	N210x5x30x40x9H	n°32x11.25°	11.25°	5.625°	5x30°	W210x5x30x40	297	212
S2500	N240x5x30x46x9H	n°32x11.25°	11.25°	5.625°	5x30°	W240x5x30x46	338	242
S3500	N280x8x30x34x9H	n°36x10°	10°	5°	5x30°	W280x8x30x34	358	282
S5000	N340x8x30x41x9H	n°32x11.25°	11.25°	5.625°	5x30°	W340x8x30x41	435	342
S7500	N400x8x30x48x9H	n°40x9°	9°	4.5°	7x30°	W400x8x30x48	548	402

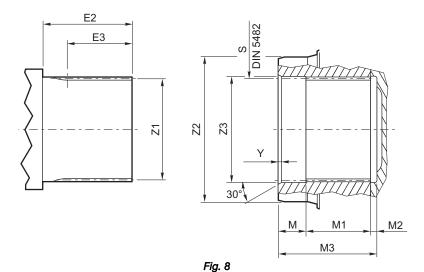


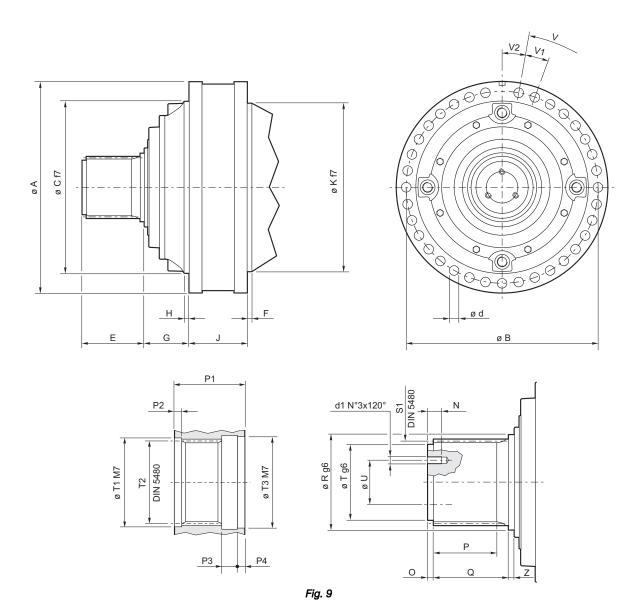
FE - Industrial Planetary Gearboxes

Bride et arbre creux rainuré

020-030-045

150-155-250-255-320




Tableau 7:

	M3	М	M1	M2	Y	S	Z2	Z3	Z1	E2	E3
010	34.7	5	24.7	5	0.5	A40x36 H10	50 f8	36 H11	B40x36 c9	2	>30
020	51.5	8	43.6	-	1.0	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>44
030	44	8	36	-	1.5	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>36
045	44	8	36	-	1.5	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>36
065-067	67	9	50	8	1.0	A70x64 H10	90 g7	72 H7	B70X64 c9	2	>58
090-091	75	5	62	8	1.0	A70X64 H10	90 h8	72 H7	B70X64 c9	2	>70
150-155	77	7	70	-	1.5	A80x74 H10	100 f7	88 H7	B80x74 c9	2	>70
250-255	85	7	78	-	1.5	A100x94 H10	130 f7	102 H7	B100x94 c9	2	>78
320	85	7	78	-	1.5	A100x94 H10	130 f7	102 H7	B100x94 c9	2	>78

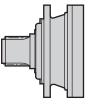
8.3 FIXATION PAR BRIDE AVEC ARBRE LENT MÂLE RAINURÉ (MN - MR - MP)

MP- High Torque Planetary Gearboxes

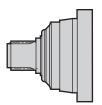
Sortie mâle rainurée

Tableau 8:

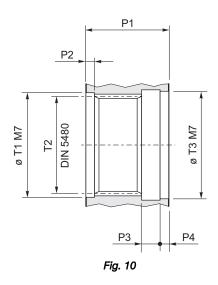
	Α	В	С	d	d1	E	F	G	Н	J	K	N	0	Р
S300	445	400	370	15.5	M14	130	12	117	10	132	365	27	10	85
S400	445	400	370	15.5	M14	140	12	145	10	124	365	27	13	90
S600	510	460	410	22	M14	150	12	152	12	145	415	27	12	95
S850	565	510	460	26	M14	170	10	163	11	156	450	27	15	115


Tableau 9:

	P1	P2	P3	P4	Q	R	S1	Т	T1	T2	T3	U	٧	V1	V2	Z
S300	130	10	15	21	105	120	W120x3x30x38x8f	100	121	N120x3x9H	120	75	n°35x10°	10°	10°	15
S400	140	13	20	18	109	130	W130x3x30x42x8f	110	131	N130x3x9H	130	85	n°35x10°	10°	10°	18
S600	150	12	18	27	123	151	W150x5x30x28x8f	120	151	N150x5x9H	151	95	n°28x12.857°	12.857°	6.428°	15
S850	170	15	17	25	140	171	W170x5x30x32x8f	140	171	N170x5x9H	171	112	n°28x12.857°	12.857°	6.428°	15



MN - Industrial Planetary Gearboxes Bride et arbre rainuré



010 - 091

150 - 255

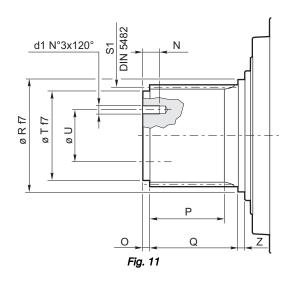
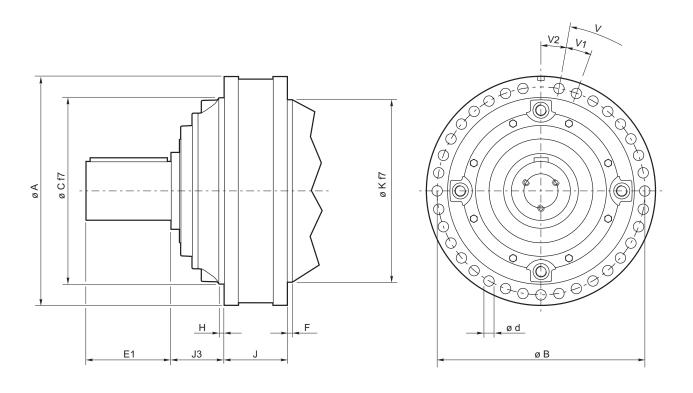


Tableau 10:


		d1	N	0	Р	P1	P2	P3	P4	Q	R	S1	T	T1	T2	T3	U	Z
010	MN-MR	M6	20	5	30	55	5	14	7	43	42 f7	B40x36 c9	35 f7	42 M7	A40x36	42 M7	24	7
020	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
030	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
040	MN	M10	20	8	50	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
045	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
046	MN	M10	20	8	50	80	8	16	7	73	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	7
065-067	MR	M10	20	10	50	90	10.5	21	10	80	72 f7	B70x64 c9	62 f7	72 M7	A70x64	72 M7	40	10
090-091	MN-MR	M10	25	10	50	90	10.5	22	10	80	85 f7	B80x74 c9	70 f7	80 M7	A80x74	85 M7	45	10
150-155	MN	M10	25	10	50	90	10.5	22	10	80	85 f7	B80x74 c9	70 h7	80 M7	A80x74	85 M7	45	10
100 100	MR	M14	30	12	65	110	12	22	15	98	105 f7	B100x94 c9	85 h7	105 M7	A100x94	105 M7	52	12
250-255	MN	M14	25	12	65	110	12	22	15	97	105 f7	B100x94 c9	85 f7	105 M7	A100x94	105 M7	52	13

8.4 FIXATION PAR BRIDE AVEC ARBRE LENT MÂLE CYLINDRIQUE (MN1 - MR1 - MP1)

MP1- High Torque Planetary Gearboxes

Sortie mâle cylindrique

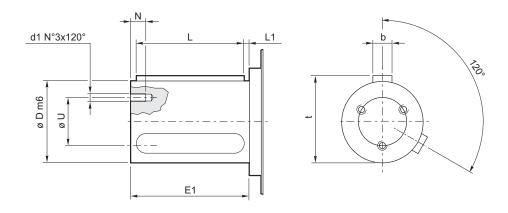
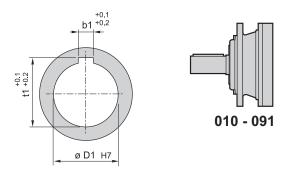
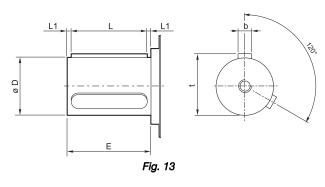


Tableau 11:

	Α	В	b	С	D	d	d1	E1	F	Н	J	J3	K	L	L1	N	t	U	V	V1	V2
S300	445	400	32	370	120	15.5	M14	210	12	10	132	117	365	200	5	27	127	75	n°35x10°	10°	10°
S400	445	400	32	370	130	15.5	M14	220	12	10	124	145	365	200	10	27	137	85	n°35x10°	10°	10°
S600	510	460	40	410	160	22	M14	240	12	12	145	152	415	220	10	27	169	120	n°28x12.857°	12.857°	6.428°
S850	565	510	40	460	170	26	M14	240	10	11	156	163	450	220	10	27	179	125	n°28x12.857°	12.857°	6.428°


Fig. 12



MN1 - Industrial Planetary Gearboxes Bride et arbre cylindrique

d2 DIN332

MR1 - Industrial Planetary Gearboxes Bride et arbre cylindrique renforcé

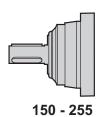


Fig. 14

Tableau 12:

		D	E	L	L1	t	b	d2	D1	t1	b1
010	MN1-MR1	42 k6	82	70	6	45	12	M16	42	45	12
020	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
030	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
040	MN1	65 m6	105	90	7.5	69	18	M20	65	69	18
045	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
046	MN1	65 m6	105	90	7.5	69	18	M20	65	69	18
065-067	MR1	80 m6	130	110	10	85	22	M20	80	85	22
090-091	MN1-MR1	90 m6	170	160	5	95	25	M24	90	95	25
150-155	MN1	100 m6	210	200	5	106	28	M24	100	106	28
130 133	MR1	100 m6	210	200	5	106	28	M24	100	106	28
250-255	MN1	110 m6	210	200	5	116	28	M24	100	116	28

8.5 FIXATION PENDULAIRE AVEC ARBRE CREUX POUR FRETTE DE SERRAGE (FS)

FS - High Torque Planetary Gearboxes

Sortie femelle pour joints de friction

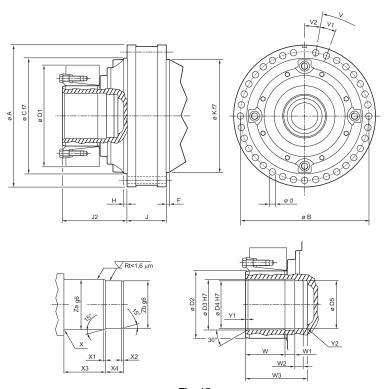
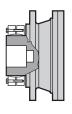


Fig. 15

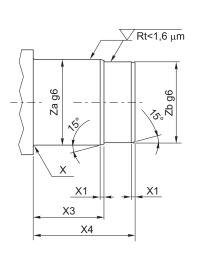
Tableau 13:

	Α	В	С	d	D1	D2	D3	D4	D5	F	Н	J	J2	K
S300	445	400	370	15.5	320	185	140	130	132	12	10	124	178	365
S400	445	400	370	15.5	320	185	140	130	132	12	10	124	208	365
S600	510	460	410	22	370	220	165	155	157	12	12	142	235	415
S850	565	510	460	26	405	240	180	170	172	10	11	156	257	450
S1200	635	575	520	26	460	280	220	210	212	15	12	175	315	520
S1800	710	650	595	26	485	300	240	230	232	16	14	185	322	595
S2500	810	735	665	33	570	340	260	250	252	15	12	195	358	665
S3500	885	810	740	33	590	360	290	280	282	14	14	235	368	740
S5000	980	900	810	39	680	420	340	330	332	14	14	265	438	810
S7500	1160	1070	970	40	850	500	400	390	392	20	20	285	530	970


Tableau 14:

	V	V1	V2	W	W1	W2	W3	X	X1	X2	ХЗ	X4	Y1	Y2	Za	Zb
S300	n°35x10°	10°	10°	83	27	30	150	R 2 max	4	4	87	57	4	R 3.5	140	130
S400	n°35x10°	10°	10°	110	25	22	167	R 2.5 max	4	4	114	47	5	R 3.5	140	130
S600	n°28x12.857°	12.857°	6.428°	132	28	25	200	R 4 max	5	5	137	53	6	R 5	165	155
S850	n°28x12.857°	12.857°	6.428°	140	35	30	220	R 4 max	5	5	145	65	5	R 6	180	170
S1200	n°32x11.25°	11.25°	5.625°	179	40	32	269	R 4 max	5	5	184	72	8	R 10	220	210
S1800	n°32x11.25°	11.25°	5.625°	181	40	32	271	R 4 max	5	5	186	72	8	R 10	240	230
S2500	n°32x11.25°	11.25°	5.625°	211	45	37	311	R 4 max	5	5	216	82	8	R 10	260	250
S3500	n°36x10°	10°	5°	218	45	40	323	R 4 max	5	5	223	85	8	R 12	290	280
S5000	n°32x11.25°	11.25°	5.625°	260	45	40	365	R 4 max	5	5	265	85	8	R 12	340	330
S7500	n°40x9°	9°	4.5°	230	100	55	410	R 4 max	5	5	235	160	10	R 12	400	390

FS - Industrial Planetary Gearboxes


Arbre creux pour frette de serrage

010 - 091

150 - 255

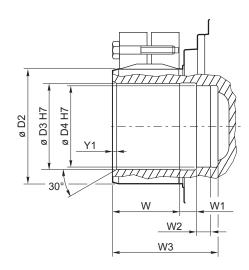


Fig. 16

Tableau 15:

	W	W1	W2	W3	D2	D3	D4	Y1	Х	X1	ХЗ	X4	Za	Zb
010	29	9	10	50	62 f7	50 H7	30 F7	2	R 2	3	33	48	50	30
020	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
030	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
045	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
065-067	80	20	33	135	125 f7	90 H7	50 F7	2	R 2	3	62	132	90	50
090-091	80	20	38	140	140 f7	100 H7	60 F7	2	R 2	3	69	135	100	60
150-155	79	6	47	135	165 f7	120 H7	80 F7	5	R 2	3	79	130	120	80
250-255	80	20	47	150	175 f7	130 H7	80 F7	2	R 1.5	5	81	145	130	80

8.5.1 INSTALLATION DU RÉDUCTEUR AVEC SORTIE FS

REMARQUE:

les joints de raccordement sont fournis prêts à être installés, ils ne doivent donc pas être démontés avant l'installation initiale.

- Serrez légèrement trois vis du joint de serrage placées à 120 ° jusqu'à ce que la bague intérieure puisse être juste tournée à la main (un serrage trop serré pourrait déformer la bague intérieure).
- Insérez-le sur l'arbre du réducteur dont la surface externe a été préalablement lubrifiée.
- Dégraissez la surface interne de l'arbre du réducteur et de l'arbre de la machine.
- Insérez le réducteur sur l'arbre de la machine ou vice versa (une force axiale excessive n'est pas nécessaire).
- Positionnez la ligne médiane du joint sur la ligne médiane de la section utile de l'arbre de la machine (voir Fig. 17 (p. 29)); pour cette opération suivez la dimension « a », qui variera en fonction de la taille du joint, selon les tableaux suivants.

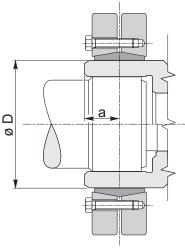


Fig. 17

- Serrez toutes les vis du joint avec une clé dynamométrique progressivement et dans un sens circulaire (pas dans un sens diamétralement opposé) jusqu'au serrage total avec un couple correspondant à une valeur indiquée dans Tableau 16: (p. 30) ou Tableau 17: (p. 31) selon la taille du réducteur : Ma = couple de serrage [N·m], T = couple de serrage [N·m].
- Vérifiez que les 2 bagues restent concentriques et parallèles, en gardant à l'esprit que l'erreur de parallélisme maximale autorisée est de 0.25 à 0.35% du diamètre extérieur des joints.

® REMARQUE:

Un tirage excessif peut provoquer une déformation permanente de la bague intérieure, respectez les couples indiqués dans le tableau.

Protégez la zone du joint avec un carter en tôle approprié, si des pierres, du sable ou d'autres matériaux sont susceptibles d'endommager le joint ou les joints d'étanchéité du réducteur.

Le carter de protection doit être correctement dimensionné pour répondre au test de choc requis par la norme EN ISO 80079-36.

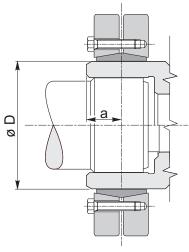


Fig. 18

Tableau 16:

	Dimensions		Vis			
	d. sh.	dxD	n°	Type	Ma [N·m]	a
010	50	62x110	10	M6x25	12	17
020-030-045	75	100x170	12	M8x35	30	30
065-067	90	125x215	12	M10x40	59	35
090-091	100	140x230	10	M12x45	100	40
150-155	120	165x290	8	M16x55	250	45
250-255	130	175x300	8	M16x55	250	45

Ma = couple de serrage N⋅m

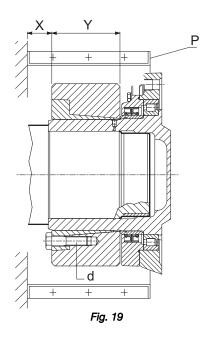


Tableau 17:

Tableau 17:							
	Type de joint	Y			X [mm] par type de clé		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		d	T [N·m]		0	O e e e
S300	185x320	85	M16	290	50	100	58
S400	185x320	112	M20	490	55	115	58
S600	220x370	134	M20	490	55	115	58
S850	240x405	144	M20	490	55	115	58
S1200	280x460	172	M24	840	65	120	70
S1800	300x485	176	M24	840	65	120	70
S2500	340x570	206	M27	1250	_	125	85
S3500	360x590	210	M27	1250	_	125	85
S5000	420x680	246	M27	1250	_	125	85
S7500	500x850	213	M30	1970	_	_	90

T = Couple de serrage N·m

8.5.2 MONTAGE DU BRAS DE RÉACTION SUR LE RÉDUCTEUR

Le bras de réaction et la bielle relative peuvent avoir des solutions de conception différentes de celles proposées dans les pages suivantes, mais il est impératif de respecter les précautions suivantes :

- Le bras de réaction doit être parfaitement droit.
- Si vous envisagez des pièces soudées, toute déformation doit être sablée, normalisée et corrigée par des machines-outils.
- La surface de contact du bras de réaction en correspondance du bridage avec le réducteur doit être parfaitement plane.
- Avant de connecter le bras de réaction au réducteur, retirez soigneusement toutes les traces de graisse des surfaces en contact.

AVERTISSEMENT

N'effectuez aucun travail de soudage impliquant le réducteur, même pas comme mise à la terre !

- Utilisez toujours la clé dynamométrique pour serrer les vis de connexion.
- Le dessin ne fournit qu'un exemple indicatif, car la configuration correcte dépend du sens du réducteur. En effet, lors des travaux, il est conseillé que la bielle soit en traction et non en compression. Par conséquent, l'assemblage du côté opposé peut être pratique, par rapport à la représentation. En cas de besoin, en raison de dimensions spécifiques, la bielle peut être montée vers le haut.
- Lors du montage à l'aide d'un joint de serrage à friction et d'un bras de réaction, il faut se rappeler que les poids du réducteur, du bras de réaction et de tous les éléments qui y sont connectés induisent des charges et des moments de renversement qui sont supportés par les roulements du porte satellites de stade sortie. Par conséquent, la position relative de toutes les masses qui contribuent à la transmission de puissance doit être évaluée lors de la conception afin de minimiser la valeur de la force résultante sur lesdits roulements. Pour les mêmes raisons, il est clair que le poids des composants reliés au réducteur doit être limité autant que possible, en évaluant soigneusement les épaisseurs des structures réellement nécessaires pour supporter les efforts et en décentralisant tous les éléments qui ne sont pas fonctionnels pour la transmission de puissance.

AVERTISSEMENT

Une conception incorrecte peut raccourcir la durée de vie des réducteurs, provoquant une défaillance prématurée des roulements et des engrenages en raison de toute déformation élastique excessive des étages et déterminer la possibilité de glissement et de grippage du joint de friction.

- Vérifiez que les centrages du réducteur et du bras de réaction sont propres, exempts de bosses et qu'il n'y a aucune trace de peinture.
- Lubrifiez les accouplements et insérez le bras de réaction sur le centrage du réducteur, puis insérez les broches de référence appropriées.
- Fixez le bras de réaction à l'aide de boulons de classe 8.8 minimum.
- Il est recommandé d'utiliser des vis de classe 10.9 ou 12.9 lorsque l'application implique des chocs importants, des démarrages ou arrêts fréquents, des inversions ou en cas de dépassement de 70% du couple maximal du réducteur.
- Vérifiez que le système d'ancrage du bras de réaction n'obstrue pas le réducteur, mais donne la possibilité au réducteur de se déplacer dans l'espace de manière à absorber les mouvements imprimés par l'arbre de la machine; pour les couples de serrage, voir Tableau 4: Couples de serrage (p. 19), en s'assurant qu'ils sont compatibles avec la contrepartie (écrous et structures de fixation).

Indications pour la construction et l'ancrage du bras de réaction

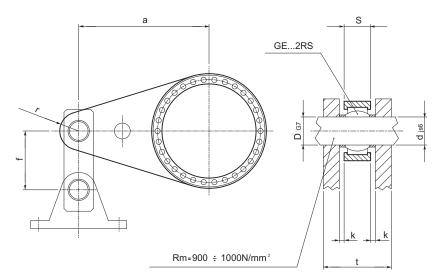


Fig. 20

Tableau 18:

	a min [mm]	s [mm]	r min. [mm]	f min [mm]	type de nœud sphérique GE-UK-2RS	D d [mm]	k [mm]	t min [mm]
S300	600	30	45	150	35	35	4	70
S400	700	32	50	160	40	40	4	72
S600	800	35	50	230	40	40	6.5	86
S850	1000	40	55	250	45	45	7.5	92
S1200	1000	45	65	270	50	50	7.5	108
S1800	1200	55	75	300	60	60	8.5	120
S2500	1400	60	85	350	70	70	9.5	137
S3500	1600	65	95	400	80	80	10.5	144
S5000	2000	70	105	450	90	90	9.5	147
S7500	2500	80	120	550	100	100	19	178

Tableau 19:

	a min [mm]	s [mm]	r min [mm]	f min [mm]	GE2RS	D d [mm]	k [mm]	t min [mm]
010	200	15	30	80	20	20	2	35
020	300	15	30	80	20	20	2	35
030-045	300	20	35	100	25	25	3	46
065-067	400	20	35	100	25	25	3	46
090-091	500	25	40	150	30	30	3	55
150-155	600	25	40	150	30	30	3	55
250-255	700	30	45	150	35	35	4	66

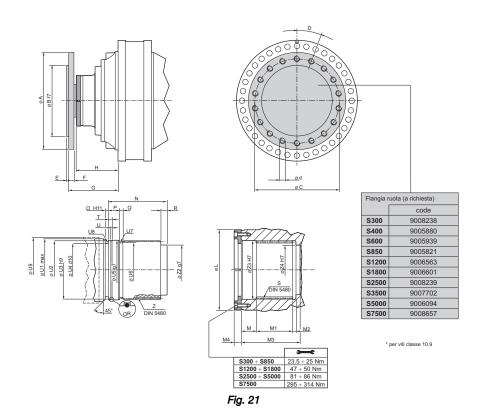
- 1 Le point d'ancrage du bras de réaction doit flotter dans toutes les directions. Par conséquent, l'utilisation de joints à rotule dans toutes les connexions est recommandée.
- 2 Nous recommandons l'utilisation de joints à rotule « longue durée de vie » avec des surfaces de friction protégées par du PTFE. Alternativement, des joints « acier sur acier » peuvent être utilisés, prévoyant la possibilité d'une opération de graissage périodique.
- **3 -** La bielle d'ancrage doit être parallèle au bras de réaction pour garantir, à vide, le jeu latéral K qui garantit la liberté de mouvement de la structure en cas de déformation.
- 4 Le support fixe auquel est reliée la seconde extrémité de la bielle doit assurer un ancrage adéquat à la charge.

Vérifiez l'équipotentialité entre le réducteur et le bras de réaction.

8.5.3 DÉMONTAGE DU JOINT ET DU RÉDUCTEUR

- Desserrez progressivement les vis de fixation dans un sens circulaire.
- Au départ, chaque vis ne doit être desserrée que d'un quart de tour pour éviter l'inclinaison et le blocage des éléments de fixation.

Voir Tableau 16: (p. 30) Ma = couple de serrage $[N \cdot m]$, ou Tableau 17: (p. 31) T = couple de serrage $[N \cdot m]$, selon la taille du réducteur.


- Retirez le réducteur de l'arbre récepteur. À cet effet, un trou a été prévu sur l'arbre du réducteur à travers lequel il est également possible de pomper de l'huile à basse pression pour obtenir une extraction progressive.
- Retirez le joint de l'arbre du réducteur.

8.6 FIXATION PENDULAIRE AVEC ARBRE LENT FEMELLE RAINURÉ (FAR)

FAR - High Torque Planetary Gearboxes

Sortie femelle rainurée

Tableau 20:

	Α	В	С	d*	D	E	F	G	Н	L	М	M1	M2	МЗ	M4	N	0	OR
S300	360	220	300	M30	12x30°	10	30	177	137	165	15	90	_	117	20	115	9	113.97x2.62
S400	360	220	300	M30	14x25.71°	10	30	200	160	185	15	90	10	135	20	133	9	133.02x2.62
S600	400	260	340	M30	18x20°	10	30	220	180	218	45	85	10	157	20	155	9	145.72x2.62
S850	450	310	395	M30	22x16.36°	10	35	260	194	235	45	105	10	173	20	171	9	164.77x2.62
S1200	510	375	450	M30	22x16.36°	10	35	280	225	275	45	120	15	198	20	196	9	190.9x3.53
S1800	585	445	530	M30	30x12°	10	40	294	233	300	45	130	15	208	20	206	9	202.79x3.53
S2500	655	480	580	M36	24x15°	10	40	317	257	324	50	140	15	227	30	225	11	234.54x3.53
S3500	730	545	650	M36	30x12°	10	50	360	290	358	50	170	17	259	30	257	12	266.29x3.53
S5000	800	620	730	M36	36x10°	10	50	425	368	430	60	200	17	320	30	318	13	304.39x3.53
S7500	960	650	880	M39	30x12°	10	60	533	449	540	60	235	15	350	36	348	20	380.37x5.33

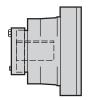
Tableau 21:

	Р	Q	R	S	Т	U	U1	U2	U3	U4	U5	U6	U7	U8	U9	Z	Z 2	Z3	Z4
S300	14	8	11.5	N120x5x30x22x9H	8.6	3.6	120	115	117.8	102	122	107	R 1.2	R 1.2	123	W120x5x30x22	105	122	105
S400	14	10	26	N140x5x30x26x9H	8.6	3.6	140	130	137.8	122	142	127	R 1.2	R 1.2	143	W140x5x30x26	120	142	120
S600	33	10	22	N150x5x30x28x9H	11	3.6	160	150	147.8	134	152	137	R 1.2	R 1.2	160	W150x5x30x28	122	152	122
S850	33	10	18	N170x5x30x32x9H	11	3.6	180	170	167.8	154	172	157	R 1.2	R 1.2	180	W170x5x30x32	145	172	145
S1200	33	10	28	N200x5x30x38x9H	12	4.8	220	206	196.4	189	202	187	R 1.2	R 1.2	220	W200x5x30x38	170	202	170
S1800	33	10	28	N210x5x30x40x9H	12	4.8	240	226	206.4	199	212	197	R 1.2	R 1.2	240	W210x5x30x40	180	212	180
S2500	38	10	36	N240x5x30x46x9H	12	4.8	260	246	236.4	228	242	227	R 1.2	R 1.2	260	W240x5x30x46	220	242	220
S3500	38	10	34	N280x8x30x34x9H	12	4.8	300	280	276.4	264	282	260	R 1.2	R 1.2	300	W280x8x30x34	235	282	235
S5000	45	15	58	N340x8x30x41x9H	14	4.8	360	340	336.4	320	342	320	R 1.2	R 1.2	360	W340x8x30x41	320	342	320
S7500	45	15	53	N400x8x30x48x9H	20	7.2	420	405	393.3	370	402	380	R 4.0	R 4.0	420	W400x8x30x48	380	402	380

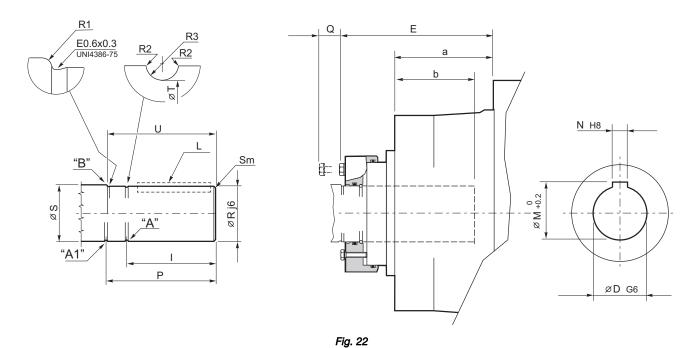
8.6.1 INDICATION POUR LA CONSTRUCTION ET L'ANCRAGE DU BRAS DE RÉACTION

• REMARQUE:

Pour les instructions de montage du bras de réaction, reportez-vous au point Montage du bras de réaction sur le réducteur (p. 32).



Vérifiez l'équipotentialité entre le réducteur et le bras de réaction.

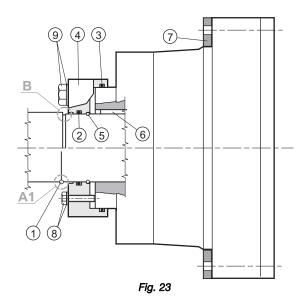

8.7 FIXATION PENDULAIRE AVEC ARBRE LENT AVEC RAINURE DE CLAVETTE (FP)

FP - Industrial Planetary Gearboxes

Arbre creux avec rainure de clavette

020 - 255

- «A» fissure obligatoire pour le blocage
- «A1» ou «B» fissures alternativement pour l'extraction


Tableau 22:

	D	М	N	R	R1	R2	R3	S	Т	I	P	L	U	E	Q	а	b	Sm
020	50	53.8	14	50	1.3	0.4		53 -0.3 / -0.5	47.5	97.5	119.5	14x9x70	118	130	70	87	72	1.5-2
030	65	69.4	18	65	1.6	0.4		68 +0.2 / +0.1	63.8	107.5	131.5	18x11x90	130	143	70	90	80	1.5-2
045	65	69.4	18	65	1.6	0.4		68 +0.2 / +0.1	63.8	107.5	131.5	18x11x91	130	143	70	90	80	1.5-3
065-067	80	85.4	22	80	1.6	0.4		83 +0.2 / -0.1	76.8	138	162.5	22x14x110	161	173	70	101	94	2
090-091	90	95.4	25	90	1.6	0.4		93 +0.2 / +0.1	86.8	158	183.5	25x14x125	182	196	70	121.5	114	2
150-155	100	106.4	28	100	1.6	0.4		103 +0.2 / +0.1	96.8	180	206	28x16x140	204	236.5	80	149	122	2
250-255	110	116.4	28	110	3	0.3	3.4	116 +0.2 / +0.1	104	159	186	28x16x125	183	253	80	192	130	2

8.7.1 INSTALLATION DU RÉDUCTEUR AVEC SORTIE FP

- Insérez, le cas échéant, la bague d'arrêt dans son logement pos. n ° 1.
- Graissez les logements des joints toriques pos. n°2 et 3 sur le couvercle pos. n°4; puis insérez les joints toriques respectifs dans leurs logements; puis insérez le couvercle sur l'arbre.

- Insérer l'autre bague d'arrêt pos. n ° 5, puis la clavette pos. n ° 6 dans les logements respectifs sur l'arbre.
- Montez le bras de réaction pos. n ° 7 sur le réducteur (voir les informations ci-dessous pour le bras de réaction).
- Lubrifiez adéquatement l'arbre et son logement (arbre réducteur femelle) ; effectuez ensuite l'accouplement entre l'arbre et le réducteur (il ne doit pas être forcé).
- Positionnez le couvercle pos. n ° 4, serrez-le avec les vis et les rondelles Dowty respectives pos. n ° 8 (fournies avec tous les accessoires), en veillant à serrer les vis progressivement et dans le sens circulaire (pas dans le sens diamétralement opposé) jusqu'au serrage total en appliquant un couple conformément à Tableau 4: Couples de serrage (p. 19) (classe de vis 8.8), à l'aide d'un frein-filet moyen.
- Montez toutes les autres vis et rondelles Dowty pos. n ° 9 (sauf une en position haute), insérez un autre lubrifiant depuis ce trou laissé ouvert ; puis montez également la dernière vis fermant ainsi l'accouplement dans une chambre étanche lubrifiée, à l'aide d'un frein-filet moyen.

8.7.2 INDICATIONS POUR LA CONSTRUCTION ET L'ANCRAGE DU BRAS DE RÉACTION

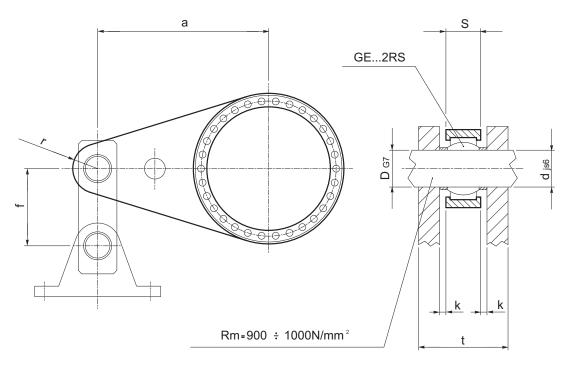


Fig. 24

Tableau 23:

	a min [mm]	s [mm]	r min [mm]	f min [mm]	GE2RS	D, d [mm]	k [mm]	t min [mm]
010	200	15	30	80	20	20	2	35
020	300	15	30	80	20	20	2	35
030-045	300	20	35	100	25	25	3	46
065-067	400	20	35	100	25	25	3	46
090-091	500	25	40	150	30	30	3	55
150-155	600	25	40	150	30	30	3	55
250-255	700	30	45	150	35	35	4	66

® REMARQUE:

Pour les instructions de montage du bras de réaction, reportez-vous au point Montage du bras de réaction sur le réducteur (p. 32).

Vérifiez l'équipotentialité entre le réducteur et le bras de réaction.

8.7.3 DÉSINSTALLATION DU RÉDUCTEUR AVEC SORTIE FP

- Libérez le bras de réaction du réducteur en soutenant adéquatement le réducteur lui-même.
- Retirez les vis pos. n ° 9 en les remplaçant par des vis plus longues, compatibles avec l'espace disponible.
- Retirez les vis pos. n ° 8 ; puis serrez les vis pos. n ° 9 progressivement et dans un sens circulaire (pas dans un sens diamétralement opposé) jusqu'à ce que le réducteur soit libéré.

AVERTISSEMENT

Lors du remontage, après toute réparation ou autre opération, les rondelles de type « Dowty » en pos. les n°8 et 9 ne sont pas réutilisables ; elles doivent être remplacées par de nouvelles rondelles.

8.8 RÈGLES D'INSTALLATION POUR RÉDUCTEUR AVEC FIXATION À PIEDS

- Assurez-vous que les pieds de montage reposent sur une surface plane ; sinon, calez-les afin que toutes soient posées correctement.
- Un mauvais support des pieds peut les casser.
- Pour la fixation, utilisez des vis de classe 8.8 minimum serrées au couple conformément au tableau Tableau 4: Couples de serrage (p. 19).

8.9 MONTAGE D'ACCESSOIRES SUR LES ARBRES DE SORTIE ET/OU D'ENTRÉE

Pour l'assemblage des pignons, poulies ou joints, utilisez un équipement adapté afin d'éviter le grippage ; chauffez alternativement la pièce à 80 ° - 100 ° C.

Lubrifiez les rainures avec une fine couche de graisse ou de lubrifiant anti-grippant et serrez les vis de fixation en appliquant un couple de serrage adapté à la classe de vis utilisée. Pour le serrage, il est recommandé de consulter Tableau 4: Couples de serrage (p. 19).

AVERTISSEMENT

Pour l'assemblage des pignons, poulies ou joints et autres accessoires, n'utilisez pas de marteaux ou d'autres outils, afin de ne pas endommager les arbres ou les supports du réducteur.

8.10 JOINTS À LABYRINTHE TACONITE (ACCESSOIRE EN OPTION)

Les labyrinthes d'étanchéité Taconite ont été conçus principalement pour une utilisation dans des environnements poussiéreux. La pénétration de la poussière est entravée par un labyrinthe entre la partie fixe et la partie tournante unie à l'arbre, rempli de graisse.

AVERTISSEMENT

Les labyrinthes Taconite doivent être lubrifiés périodiquement chaque année (comme indiqué dans Tableaux de la fréquence des contrôles et de la maintenance (p. 57)) avec de la graisse contenant du PTFE, NLGI degré de consistance n ° 2, comme la graisse Polymer 400 ou similaire. Les dessins dimensionnels SI montrent les positions des graisseurs à utiliser.

8.11 DISPOSITIF ANTI-RETOUR (ACCESSOIRE EN OPTION)

Sur demande, pour certaines applications, le réducteur peut être intégré à un dispositif anti-retour. Ce dispositif permet la rotation de l'arbre dans une seule direction pendant le cycle de travail, le bloquant dans la direction opposée. Le sens de rotation est indiqué par une flèche, sur une plaque positionnée à proximité de l'arbre d'entrée du réducteur. Le dispositif anti-retour est intégré dans le réducteur et lubrifié avec la même huile.

AVERTISSEMENT

Pour éviter d'endommager le dispositif anti-retour ou le réducteur lui-même, le moteur ne doit pas tourner dans le sens de blocage du dispositif. Respectez l'indication de rotation libre indiquée sur le réducteur.

® REMARQUE:

Avant de connecter le moteur électrique, déterminez le sens de rotation à partir des trois phases de courant, à l'aide d'un indicateur de phase de courant, et connectez le moteur pour avoir le bon sens de rotation requis par le dispositif anti-retour.

8.12 FREINS DE STATIONNEMENT MULTIDISQUES NÉGATIFS EN BAIN D'HUILE

Ces freins agissent sous la poussée d'une série de ressorts sur des paires de disques fixes et mobiles alternés ; la libération se produit en raison de la pression hydraulique dans le piston. Ils ont donc un fonctionnement « négatif » ; ils doivent être utilisés comme freins de stationnement, pas pour le freinage dynamique. Ces performances, avec une marge de précision de +/- 10%, sont toujours calculées avec une contre-pression nulle ; sinon, le couple de freinage est réduit en pourcentage dans le rapport de contre-pression/pression min. ouverture.

La sélection du frein s'effectue lors de la phase de conception et les données techniques du frein utilisé sont indiquées sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

® REMARQUE:

Le frein de stationnement multidisque est utilisé uniquement en tant que frein de stationnement, ou dans des conditions particulières en tant que frein d'urgence.

Différentes tailles de freins montés sur l'entrée des réducteurs sont disponibles selon les tableaux suivants :

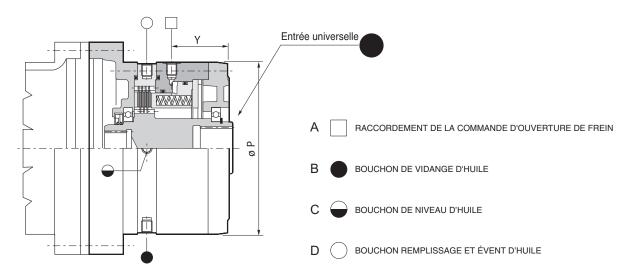


Fig. 25

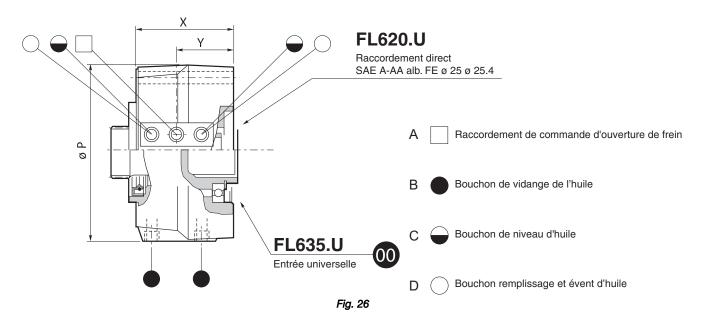
Tableau 24:

	Р	V	Raccordemen	Raccordements				
		'	Α	В	С	D	Kg	
FL250	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	24	
FL350	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	24	
FL450	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	26	
FL650	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	36	
FL750	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	37	
FL960	225	72.5	M12X1.5	R 1/4	R 1/4	R 1/4	42	

Tableau 25:

		Т	Р	Pmax	Vo [i]		Va [cm ³]
		[N·m]	[bar]	[bar]	horizontal	vertical	nouvelles lamelles
FL250	FL 250.4C	181	13.28	315	0.3	0.6	15
FL230	FL 250.6C	278	13.28	315	0.3	0.6	15
FL350	FL 350.6C	417	19.92	315	0.3	0.6	15
FL330	FL 350.8C	571	19.92	315	0.3	0.6	15
FL450	FL 450.6C	540	25.59	315	0.3	0.6	15
FL450	FL 450.8C	737	25.59	315	0.3	0.6	15
	FL 650.10C	642	19.92	315	0.5	1.0	15
FL650	FL 650.12C	792	19.92	315	0.5	1.0	15
	FL 650.14C	949	19.92	315	0.5	1.0	15
	FL 750.10C	834	25.59	315	0.5	1.0	15
FL750	FL 750.12C	1027	25.59	315	0.5	1.0	15
	FL 750.14C	1229	25.59	315	0.5	1.0	15
	FL 960.12C	1528	21.98	315	1.2	2.4	22
FI 000	FL 960.14C	1783	21.98	315	1.2	2.4	22
FL960	FL 960.16C	2038	21.98	315	1.2	2.4	22
	FL 960.18C	2293	21.98	315	1.2	2.4	22

T : Couple statique moyenne


P: Pression d'ouverture du frein

P [5: max]: Pression max.

Vo: Volume d'huile

Va : Volume d'huile pour la commande d'ouverture de frein

Tableau 26:

	P	x	v	Raccordeme	ents			Kg Code	
	•	^		Α	В	С	D	''y	0000
FL620.U	161	104.5	46	M10x1	R 1/8	R 1/8	R 1/8	8	C1103704120 (alb. FE ø 25) C1103704130 (alb. FE ø 25.4)
FL635.U	165	91	59	M12x1.5	R 1/4	R 1/4	R 1/4	9	C1109200160

Tableau 27:

	Т	Р	Pmax	Vo [i]	Va [cm ³]	
	[N·m]	[bar]	[bar]	horizontal	vertical	nouvelles lamelles
FL620.U	271	24.9	210	0.1	0.2	10
FL635.U	377	13.6	315	0.1	0.2	10

T: Couple statique moyenne P: Pression d'ouverture du frein P [5: max]: Pression max.

Vo: Volume d'huile

Va : Volume d'huile pour la commande d'ouverture de frein

AVERTISSEMENT

Des vitesses de rotation élevées des arbres moteur peuvent provoquer un échauffement rapide du frein. Lors de la sélection du réducteur à frein, avec des moteurs hydrauliques et électriques censés fonctionner à des vitesses élevées, il est nécessaire d'inclure une sonde thermique montée sur le frein, capable d'arrêter le réducteur lorsque la température de consigne est dépassée.

• REMARQUE:

La mise en place d'une sonde thermique sur le frein doit être indiquée lors de la commande.

• REMARQUE:

Lorsque la sonde thermique est fournie sur le frein, reportez-vous au chapitre Accessoires - capteurs de surveillance du réducteur (p. 46).

AVERTISSEMENT

Des pressions de service pour la commande de frein inférieures à celles indiquées dans le tableau pour les freins (pression d'ouverture du frein), peuvent provoquer un échauffement rapide du frein. Pour éviter ce danger, incluez un pressostat de contrôle sur la conduite hydraulique de commande de frein.

AVERTISSEMENT

Des pressions de service pour la commande de frein supérieures à celles indiquées dans le tableau pour les freins (Pression max.), peuvent endommager rapidement les joints de piston de frein. Pour éviter ce danger, incluez un pressostat de contrôle sur la conduite hydraulique de commande de frein.

8.13 ACCESSOIRES - CAPTEURS DE SURVEILLANCE DU RÉDUCTEUR

Lorsque l'utilisation d'une sonde thermique (PT100) et/ou d'un capteur de niveau d'huile « ON-OFF » est prévue et nécessaire dans réducteur et/ou le frein, ces accessoires peuvent être inclus dans la fourniture Dana du réducteur, ou sont mis en place par le Client. Dans ce dernier cas, le Client est responsable du bon choix de la sonde thermique et/ou du capteur de niveau d'huile « ON-OFF » montés sur le réducteur.

La sonde de température et/ou le capteur de niveau d'huile « ON-OFF », choisis par le Client, doivent être conformes aux réglementations ATEX, pour le Groupe, la Catégorie et le type d'atmosphère du projet, spécifiquement homoloqués et marqués. Le marquage des capteurs conformément à l'ATEX doit correspondre aux spécifications de conception de l'installation ou de la machine.

AVERTISSEMENT

sélection d'un capteur électrique inadéquat peut ne pas effectuer le contrôle correct pour lequel il est envisagé, causant des dommages ou des ruptures au réducteur et/ou au frein multidisque de stationnement.

IMPORTANT:

LES CONNEXIONS ÉLECTRIQUES DOIVENT ÊTRE EFFECTUÉES CONFORMÉMENT À LA NORME EN 60079-14.

8.13.1 SONDE THERMIQUE

La sonde thermique électrique sélectionnée (PT100) doit avoir 2 seuils de déclenchement :

- Alarme qui signale une augmentation anormale de la température.
- Bloc de la Machine en atteignant la température maximale détectée de 80 +/- 3 ° C.

• REMARQUE:

Le capteur de température doit être installé dans la zone la plus chaude du réducteur et/ou au niveau du frein de stationnement multidisque, détectée lors des premiers tests de démarrage.

REMARQUE:

Vérifiez que le capteur de température est monté comme indiqué sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

8.13.2 INDICATEUR DE NIVEAU D'HUILE « ON-OFF »

L'indicateur de niveau d'huile sélectionné doit être installé entre le bouchon de remplissage et vidange d'huile du réducteur, positionné à la bonne hauteur, pour garantir le niveau d'huile correct à l'intérieur du réducteur.

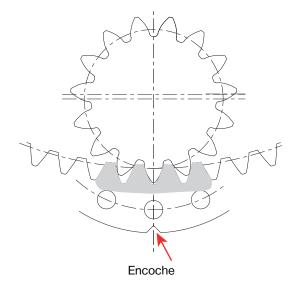
L'indicateur de niveau doit indiquer une baisse du niveau d'huile de plus de 5-10 mm, du niveau d'huile nécessaire au bon fonctionnement du réducteur.

REMARQUE:

La position des bouchons de remplissage et de vidange d'huile et le niveau d'huile du réducteur requis sont indiqués sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

8.14 RÈGLES D'INSTALLATION POUR LE RÉDUCTEUR DE ROTATION TYPE RPR-RPRC-SLS-SCS-ECS

- La structure à laquelle ils doivent être fixés doit être rigide, la surface d'appui bien nettoyée, orthogonale à l'axe entraîné et sans résidus de soudage.
- Les centrages et les surfaces d'accouplement du réducteur doivent être propres et exempts de bosses.


Les contrôles décrits ci-dessus sont particulièrement importantes pour obtenir un engrènement parfait entre le pignon du réducteur et la couronne d'orientation. Généralement, les fabricants de couronnes d'orientation marquent en vert 3 dents de la couronne ; point de plus grande ovalisation du diamètre primitif de la couronne elle-même, point qui servira à positionner le réducteur.

ATTENTION

S'il n'y a pas de dent colorée (généralement verte) ou d'autres marques sur la couronne d'orientation, nous vous recommandons de contacter le fabricant de la couronne d'orientation.

Si le type de réducteur a un support avec un excentrique pour régler le jeu entre le pignon et la couronne d'orientation, il y a une encoche sur le réducteur lui-même (voir dessin), qui indique le point de plus grande excentricité, correspondant au max. d'engrenage pouvant être obtenu entre le pignon et la couronne d'orientation ; si le réducteur est placé à l'intérieur ou à l'extérieur de la couronne d'orientation elle-même (voir dessin).

La valeur du jeu entre les côtés des dents entre le pignon et la couronne d'orientation est obtenue en multipliant la valeur du module de denture par deux valeurs fixes 0,03 et 0,04 ;

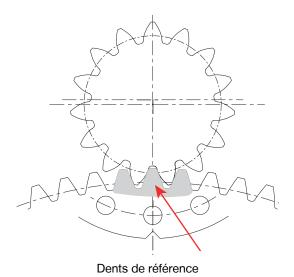


Fig. 27

Exemple:

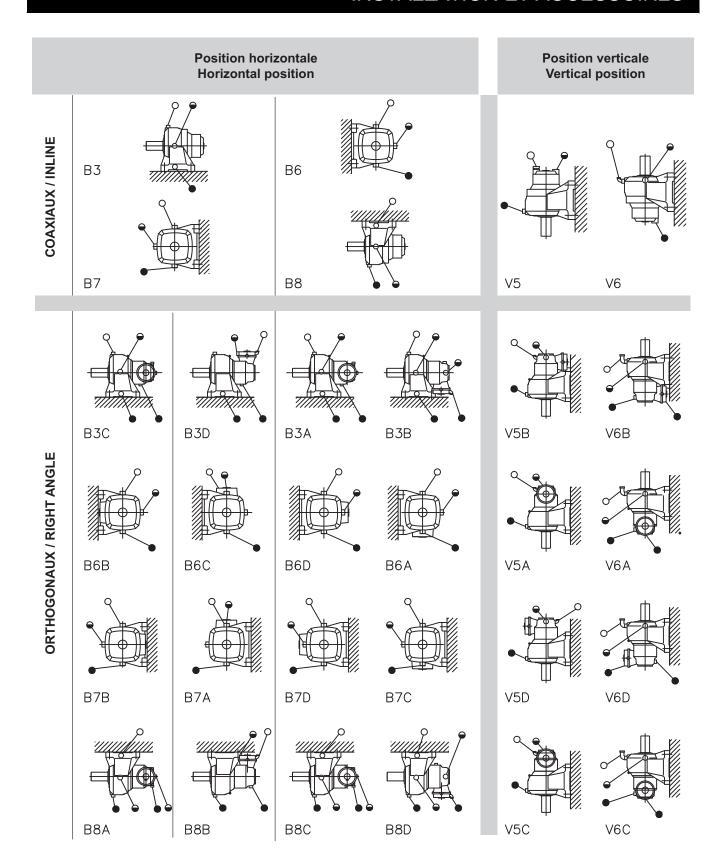
Si nous avons un ensemble de dents avec m = 20, il suffit d'effectuer $20 \times 0.03 = 0.6$ et $20 \times 0.04 = 0.8$, obtenant ainsi deux valeurs de 0.6 et 0.8; cela signifie que le jeu entre les côtés des dents, pour un engrenage parfait, doit être compris entre 0.6 \div 0.8 mm, puis positionnez le réducteur avec l'encoche en correspondance des 3 dents colorées (généralement vertes) de la couronne d'orientation, tournez le réducteur en le rapprochant ainsi de la couronne, en insérant la valeur d'épaisseur obtenue à partir du calcul décrit ci-dessus sur les côtés de la dent qui engrène ; puis serrez le réducteur.

Vérifiez à nouveau le jeu entre les côtés en divers points, sur toute la circonférence de la couronne d'orientation.

Après avoir positionné le réducteur et effectué les vérifications nécessaires, serrez les vis de fixation (classe minimale recommandée 8.8) en appliquant un couple de serrage selon le tableau Tableau 4: Couples de serrage (p. 19), en vous assurant qu'elles sont compatibles avec la contrepartie (écrous et/ou structures de fixation).


ATTENTION

En présence de réducteur avec excentrique, après sa mise en place, tous les trous de niveau, de charge d'huile, de commande du moteur, de frein multidisque, etc. peuvent sortir de leur position par rapport au Dessin Dimensionnel spécifique, SI.



8.15 POSITIONS DE MONTAGE DU RÉDUCTEUR

Ci-dessous, les différents noms des positions de montage possibles des réducteurs.

® REMARQUE:

Les positions de montage des réducteurs inclinés par rapport à l'axe horizontal doivent être considérées comme des montages verticaux.

9 LUBRIFICATION

Les paramètres importants à considérer lors du choix du type d'huile sont :

- la viscosité dans des conditions nominales de fonctionnement
- · les additifs
- la température d'inflammabilité

La même huile doit lubrifier à la fois les roulements et les engrenages et tous ces composants coexistent à l'intérieur du même boîtier, dans des conditions de fonctionnement différentes. Examinons les paramètres individuels.

Viscosité

La viscosité nominale se réfère à une température de 40 ° C, mais diminue rapidement avec l'augmentation de la température. En envisageant une température de fonctionnement proche de 100 ° C, une viscosité nominale peut être choisie selon le tableau indicatif suivant.

Tableau 28:

Tours en sortie	
> 5 (min-1)	VG 150
< 5 (min-1)	VG 220

Additifs

En plus des additifs anti-mousse et antioxydants normaux, il est important d'utiliser des huiles lubrifiantes avec des additifs capables de conférer des propriétés EP (extreme-pressure) et anti-usure, selon ISO 6743-6 L-CKC ou DIN 51517-3 CLP.

Il est donc clairement nécessaire de rechercher des produits avec des caractéristiques EP plus forts (tels que MOBILGEAR SHC) plus la vitesse du réducteur est lente.

E ne faut pas oublier que les composés chimiques de substitution de la lubrification hydrodynamique, sont formés au détriment de la charge de EP originale.

Par conséquent, en présence de vitesses très faibles et de charges élevées, il est important de respecter les intervalles de maintenance afin de ne pas déprimer excessivement les caractéristiques de lubrification de l'huile.

Types d'huiles

Les huiles disponibles appartiennent généralement à trois grandes familles.

- 1 Huile minérale
- 2 Huiles synthétiques Poly-Alpha-Oléfine
- 3 Huiles synthétiques Poly-Glycol

Le choix le plus approprié est généralement lié aux conditions d'utilisation.

Les réducteur qui ne sont pas particulièrement chargées et avec un cycle d'utilisation discontinu, sans changements de température importants, peuvent certainement être lubrifiées avec de l'huile minérale.

En cas d'utilisation intensive, lorsque les réducteurs sont censées être fortement et continuellement chargées, avec l'augmentation prévisible de la température qui en résulte, il est conseillé d'utiliser des lubrifiants synthétiques polyalphaoléfines (PAO).

Les huiles polyglycoliques (PG) sont à utiliser strictement dans le cas d'applications à fort glissement entre les contacts, par exemple dans les vis sans fin.

Elles doivent être utilisées avec grand soin car elles ne sont pas compatibles avec d'autres huiles et sont au contraire complètement miscibles avec l'eau.

Ce phénomène est particulièrement dangereux car il n'est pas remarqué, mais déprime rapidement les caractéristiques lubrifiantes de l'huile.

En plus de ceux déjà mentionnés, n'oubliez pas l'existence des huiles pour l'industrie alimentaire, car ce sont des produits spéciaux qui ne sont pas nocifs pour la santé.

Pour une meilleure protection de l'environnement, nous soulignons l'existence de certains types d'huiles biodégradables.

Différents producteurs fournissent des huiles appartenant à toutes les familles avec des caractéristiques très similaires.

AVERTISSEMENT

Pour les réducteur certifiées ATEX, Dana Motion Systems Italia S.r.I., demande l'utilisation d'huiles Polyalphaoléfines (PAO), voir le tableau au chapitre Lubrifiants à usage général (p. 51).

LUBRIFICATION

9.1 LUBRIFIANTS À USAGE GÉNÉRAL

Tableau 29:

Producteur	Huiles Synthétiques de Polyalphaoléfines (PAO) Pour réducteurs						
	ISO VG 150	ISO VG 220	ISO VG 320				
MOBIL	Mobil SHC Gear 150	Mobil SHC Gear 220	Mobil SHC Gear 320				
SHELL	Omala S4 GXV 150	Omala S4 GXV 220	Omala S4 GXV 320				
TOTAL	Carter SH 150	Carter SH 220	Carter SH 320				

Tableau 30:

Producteur	Huiles Polyalphaoléfines (PAO) Pour freins multidisques négatifs						
	ISO VG 32	ISO VG 46	ISO VG 68				
MOBIL	Mobil DTE24	Mobil DTE25	-				
SHELL	Shell Tonna S 32	-	Shell Tonna S 68				
TOTAL	Azolla ZS 32	Azolla ZS 46	Azolla ZS 68				

Tableau 31:

Producteur	Graisse synthétique - pour roulements de support de sortie
	Viscosité de l'huile de base, ASTM D 445 cSt à 40 ° C : 460
SHELL	Shell Gadus S3 460 2

® REMARQUE:

L'utilisateur peut choisir des huiles d'autres producteurs avec des caractéristiques de lubrification correspondantes, en s'assurant que l'huile choisie a un point d'éclair supérieur à 200 ° C.

® REMARQUE:

L'utilisateur peut choisir des graisses d'autres producteurs, avec des caractéristiques de lubrification et de compatibilité correspondantes et adéquates, en s'assurant que la graisse choisie a un point d'éclair supérieur à 200 ° C.

AVERTISSEMENT

N'utilisez pas d'huiles et graisses dont le point d'éclair est inférieur à 200 ° C.

AVERTISSEMENT

Ne mélangez pas les huiles et les graisses de différents types et caractéristiques.

AVERTISSEMENT

Remplissez le réducteur avec de l'huile neuve indiquée dans le tableau, en utilisant un filtre de max. 25 µm.

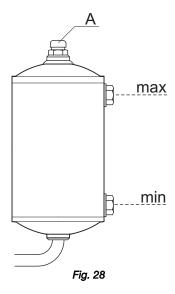
10 MISE EN SERVICE ET MODE DE CHANGEMENT D'HUILE

10.1 LUBRIFICATION DES RÉDUCTEURS

Sauf indication contraire dans le contrat, tous les réducteurs sont livrés sans lubrifiant.

L'opérateur est donc tenu de choisir le type d'huile le plus approprié parmi ceux indiqués (ou présentant des caractéristiques similaires) et d'effectuer le remplissage et la vérification du niveau d'huile avant de démarrer, comme indiqué au point Remplissage et contrôle du niveau d'huile (p. 52).

10.2 REMPLISSAGE ET CONTRÔLE DU NIVEAU D'HUILE


Mode:

- Vérifiez la position exacte des bouchons et assurez-vous que le bouchon de niveau d'huile est dans une position qui permet de procéder facilement aux opérations d'inspection.
- Identifiez sur le Dessin Dimensionnel SI spécifique, mentionné sur le Certificat de Déclaration de Conformité, la position des bouchons de remplissage + évent et de niveau.
- Dévissez les deux bouchons, insérez de l'huile jusqu'à ce qu'elle sorte du trou de niveau, remontez le bouchon de niveau, attendre que les bulles d'air aient le temps de s'échapper puis remontez le bouchon de remplissage, démarrez le réducteur afin d'éliminer le dernier poches d'air, puis vérifiez à nouveau le niveau, en ajoutant éventuellement de l'huile pour atteindre le niveau.

® REMARQUE:

Lorsque le frein multidisque est présent, effectuez la même opération de remplissage d'huile que celle décrite ci-dessus.

En présence du vase d'expansion (réservoir), procédez comme suit :

- Identifiez sur le Dessin Dimensionnel SI spécifique, mentionné sur le Certificat de Déclaration de Conformité, la position des bouchons de remplissage + évent et de niveau.
- Retirez les deux bouchons de remplissage + évent « A » et niveau « min. ».
- Pour faciliter la ventilation du réducteur (uniquement pendant la phase de remplissage), l'un des bouchon peut être retiré du haut du réducteur.
- Au fur et à mesure que l'huile monte vers le haut du bouchon ouvert sur le dessus du réducteur, réinsérez le bouchon.
- Continuez à remplir jusqu'à ce que l'huile atteigne le bouchon de niveau « min. » sur le réservoir, remontez le bouchon de niveau «min.».
- Réinsérez le bouchon « A ».
- Avec le niveau n'atteignez jamais le niveau max, pour faire place à l'expansion de l'huile.
- Laissez le réducteur fonctionner pendant quelques minutes afin d'éliminer les poches d'air internes, puis vérifiez à nouveau le niveau, en ajoutant de l'huile pour atteindre le niveau « min. », si nécessaire.

REMARQUE:

Vérifiez que le vase d'expansion a été positionné dans la partie la plus haute du réducteur comme indiqué sur le Dessin Dimensionnel SI mentionné sur le Certificat de Déclaration de Conformité.

MISE EN SERVICE ET MODE DE CHANGEMENT D'HUILE

10.3 ÉLIMINATION DE L'HUILE DU RÉDUCTEUR ET DU FREIN MULTIDISQUE (SI PRÉSENT)

- Sur le Dessin Dimensionnel SI spécifique, mentionné sur le Certificat de Déclaration de Conformité, repérez le bouchon de vidange d'huile du réducteur et le frein multidisque (si présent),
- dévissez le bouchon de vidange et le bouchon de charge pour faciliter la sortie d'huile du réducteur et du frein multidisque (si présent),
- une fois vidé d'huile, remontez le bouchon de vidange du réducteur et le frein multidisque (si présent).

11 DÉMARRAGE

11.1 GÉNÉRALITÉS

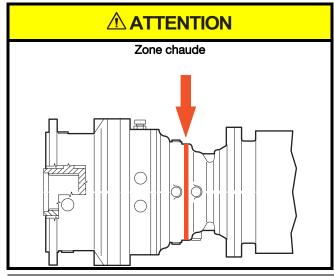
11.2 DÉTECTION DE LA TEMPÉRATURE EN SURFACE

∴ WARNING

Avant de démarrer sous charge, vérifiez que :

- Lors du démarrage du moteur, l'arbre de sortie du réducteur tourne ;
- Que le sens de rotation est celui prévu lors de la phase de conception ;
- Pour les réducteurs équipés de butée arrière, avant de démarrer, vérifiez qu'il existe une correspondance entre le sens de rotation libre et les sens de rotation de la machine à actionner et du moteur ;
- Pour les réducteurs équipés d'un frein de stationnement multidisque négatif, assurez-vous avant de démarrer que le tube de commande de frein est connecté et que la purge d'air a été effectuée correctement dans le circuit hydraulique.

REMARQUE:


La présence d'air dans le circuit hydraulique peut provoquer une ouverture incomplète des freins qui entraîne un échauffement rapide du frein.

- Qu'il n'y a pas de fuite de lubrifiant des bouchons ou des joints (dans les premières heures de fonctionnement, une légère fuite de graisse des bagues d'étanchéité peut se produire, ce qui n'affecte pas le bon fonctionnement);
- Que le bouchon d'évent ne soit pas bloqué par la saleté ou la peinture ;
- Qu'aucun bruit et/ou vibration anormal n'est présent ;
- Que le réducteur est suffisamment ventilé et qu'il n'y a pas de source de chaleur importante à l'extérieur ;
- La température ambiante et l'air de refroidissement ne doivent pas dépasser 40 ° C ;
- Que tous les accessoires montés ou connectés aux réducteurs sont certifiés ATEX, adaptés au domaine d'utilisation ;
- Vérifiez que tous les dispositifs conçus pour la protection entre opérateurs et pièces tournantes sont efficaces.

Au démarrage, il est essentiel d'effectuer un contrôle de la température de surface dans des conditions de fonctionnement normales.

Le test permet de s'assurer que les conditions relatives au comportement de l'installation telles qu'établies lors de la phase de conception sont respectées.

- La zone d'entrée du réducteur a été identifiée comme la plus chaude et doit être vérifiée avec un thermomètre à l'endroit indiqué dans la figure suivante ou en tout cas en dehors du bridage entre le moteur et le réducteur, sur le côté du réducteur.
- Si un frein de stationnement multidisque négatif est présent, mesurer également la température sur le corps du frein.
- La mesure de la température doit être effectuée dans les conditions de charge maximale pendant une durée d'au moins 3 heures.
- Si la température mesurée dépasse de plus de 68 ° C la température ambiante (par exemple avec 30 ° C de température ambiante, elle ne doit pas dépasser 30 ° C + 68 ° C = 98 ° C) arrêtez le test et contactez le Service Client Dana Motion Systems Italia S.r.l.

ATTENTION

Les opérations d'inspection/de maintenance doivent être effectuées par un technicien de maintenance expert qui intervient dans le respect des réglementations de prévention des accidents, pour garantir sa propre sécurité et celle des personnes présentes à proximité.

Avant d'effectuer tout travail sur le réducteur, assurez-vous que la machine est éteinte et que le démarrage accidentel est empêché.

AVERTISSEMENT

Nettoyez périodiquement la surface externe du réducteur contre les dépôts de poussière ou les incrustations. En cas d'utilisation dans un environnement poussièreux, la couche de poussière accumulée ne doit pas dépasser 5 mm. N'utilisez pas d'air comprimé, mais utilisez un équipement adapté à la zone d'installation.

ATTENTION

Il est conseillé de remplacer l'huile chaude pour faciliter l'élimination de tout dépôt ou boue interne. Dans ce cas, cependant, ne pas dépasser 40 ° C et toujours travailler avec les moyens de protection EPI nécessaires.

AVERTISSEMENT

Ne mélangez pas les huiles de différents types et caractéristiques.

AVERTISSEMENT

Nettoyez périodiquement le bouchon à soupape métallique de remplissage/évent. Il faut le dévisser du réducteur (protégeant le réducteur de la pénétration de poussières et de corps étrangers, etc.), contrôler l'ouverture de la soupape à ressort (elle ne doit en aucun cas être bloquée), nettoyer à l'air comprimé et enfin le remonter.

AVERTISSEMENT

Vérifiez la température de surface dans la zone du réducteur identifiée comme la plus chaude pendant la phase de démarrage. La température maximale enregistrée doit être inférieure à celle indiquée sur la plaque.

Si la température mesurée dépasse 108 ° C, arrêtez la machine et contactez le Service Client Dana Motion Systems Italia S.r.l.

AVERTISSEMENT

Vérifiez à chaque vidange d'huile qu'il n'y a aucune trace considérable de matériau ferreux sur l'aimant du bouchon de vidange. Dans ce cas, il est nécessaire de programmer immédiatement un temps d'arrêt de la machine pour une intervention de maintenance.

AVERTISSEMENT

Ex II es

Il est interdit d'ouvrir les réducteurs pour toute opération qui ne fait pas partie des activités de contrôle et de maintenance mentionnées ci-dessous.

Nous déclinons toute responsabilité pour les interventions effectuées et non incluses dans ce manuel, qui ont causé des dommages aux personnes ou aux biens.

Si nécessaire, contactez le Service Client de Dana Motion Systems Italia S.r.l.

12.1 BAGUES D'ÉTANCHÉITÉ

La durée de vie des bagues d'étanchéité est influencée par de nombreux facteurs, tels que la température de fonctionnement, la vitesse de glissement, le nettoyage de l'huile, les conditions environnementales, etc. ; pour cette raison, elles doivent être remplacées périodiquement, pour éviter les fuites d'huile qui pourraient affecter les composants internes du réducteur, jusqu'à des augmentations de la température du boîtier supérieure à celles du projet.

Pour des raisons de sécurité, un remplacement plus fréquent des bagues d'étanchéité pour les réducteurs montés en position de montage verticale et oblique (complètement ou presque plein d'huile) et moins fréquent pour les réducteurs montés en position de montage horizontale (rempli d'huile à moitié) est demandé.

Pour les positions de montage, reportez-vous à Positions de montage du réducteur (p. 48).

Pour la fréquence de remplacement des bagues d'étanchéité, reportez-vous à Tableaux de la fréquence des contrôles et de la maintenance (p. 57).

AVERTISSEMENT

Le fait de ne pas remplacer les bagues d'étanchéité à la fréquence indiquée dans Tableaux de la fréquence des contrôles et de la maintenance (p. 57), pourrait entraîner des fuites d'huile qui pourraient compromettre complètement le fonctionnement du réducteur, avec le risque d'atteindre des températures élevées sur le réducteur lui-même.

12.2 TABLEAUX DE LA FRÉQUENCE DES CONTRÔLES ET DE LA MAINTENANCE

Tableau 32:

Contrôle et opération	Intervalle de temps	Remarques
Vérification niveau d'huile	Tous les jours et avant chaque départ	Voir Mise en service et mode de changement d'huile (p. 52).
Vérification des fuites d'huile	Tous les jours	Voir Dysfonctionnements (p. 59) si présent.
Première vidange d'huile	Après 100 heures de fonctionnement	Voir Mise en service et mode de changement d'huile (p. 52).
Vidanges d'huile suivants	Toutes les 2000 heures de fonctionnement ou en tout cas une fois par an	Voir Mise en service et mode de changement d'huile (p. 52).
Contrôler le serrage correct des vis	Après les 100 premières heures de fonctionnement	Pour plus de détails, voir Tableau 4: Couples de serrage (p. 19).
Contrôler le serrage correct des vis	Toutes les 2000 heures de fonctionnement ou en tout cas une fois par an	Pour plus de détails, voir Tableau 4: Couples de serrage (p. 19).
Présence d'eau dans l'huile	Une fois par an ou en tout cas à chaque vi- dange d'huile	Le cas échéant, remplacez les joints tour- nants et le bouchon d'évent.
Nettoyer le bouchon magnétique de vidange d'huile	À chaque vidange d'huile	Avec des pièces métalliques inhabituelles sur l'aimant, voir Contrôles et maintenance (p. 55).
Nettoyer le bouchon d'évent	Tous les 3 mois	Voir Contrôles et maintenance (p. 55).
Contrôle de l'absorption du moteur	Tous les 3 mois en l'absence d'un système continu	-
Contrôle de la température de surface	Tous les 3 mois	Voir Contrôles et maintenance (p. 55).
Vérification du bruit du réducteur	Tous les 3 mois	Voir Dysfonctionnements (p. 59) si anormal.
Vérification des vibrations du réducteur	Tous les 3 mois	Voir Dysfonctionnements (p. 59) si anormal.
Liaison équipotentielle	Tous les 3 mois	Voir Installation et accessoires (p. 17).
Nettoyer le réducteur	Périodiquement	Voir Contrôles et maintenance (p. 55).
Lisibilité de la plaque	Chaque année	Voir Plaque d'identification (p. 15).
Graisser les joints Taconite	Toutes les 2000 heures de fonctionnement ou en tout cas une fois par an	Voir Joints à Labyrinthe Taconite (accessoire en option) (p. 40) et Dessin Dimensionnel SI.
Graisser les joints de support de sortie	Toutes les 2 000 heures de fonctionnement ou en tout cas une fois par an	Voir Lubrification (p. 50) et Dessin Dimension- nel SI
Vérifier le couple de freinage du frein de sta- tionnement multidisque	Toutes les 2000 heures de fonctionnement ou en tout cas une fois par an	Voir Freins de stationnement multidisques négatifs en bain d'huile (p. 42) et Dessin Dimensionnel SI.
Remplacement des joints du réducteur et du frein de stationnement multidisque (si présent) montage horizontal, à effectuer par le Service Client Dana Motion Systems Italia	Toutes les 6000 heures de fonctionnement ou en tout cas une fois tous les 3 ans	Position de montage : B3, B3C, B3A, B6, B7, B8, B6B, B6D, B7B, B7D, B8A, B8C.
Remplacement des joints du réducteur et du frein de stationnement multidisque (si présent) montage verticale ou oblique, à effectuer par le Service Client Dana Motion Systems Italia	Toutes les 2000 heures de fonctionnement ou en tout cas une fois par an	Position de montage : V5, V6, V5B, B3D, B3B, V6B, B6C, B6A, B7A, B7C, B8B, B8D, V6B, V5A, V6A, V5D, V6D, V5C, V6C
Vérification de l'état d'usure des arbres d'entrée et de sortie du réducteur	Une fois par an	Voir Installation et accessoires (p. 17) pour un re-graissage.

Les vérifications et la maintenance des réducteurs et/ou des freins de stationnement multidisques, y compris les Capteurs de contrôle électriques, tels que les sondes thermiques et/ou les indicateurs de niveau d'huile « ON-OFF », diffèrent de ceux indiqués ci-dessus, en ce qui concerne le remplacement du joint, tel que décrit ci-dessous :

Tableau 33:

Contrôle et opération	Intervalle de temps	Remarques concernant les Manuels
Remplacement des joints du réducteur et du frein de stationnement multidisque (si présent) montage horizontal, à effectuer par le Service Client Dana Motion Systems Italia	Toutes les 6.000-10.000 heures de fonctionnement ou en tout cas tous les 3 à 5 ans et lorsque le réducteur est révisé	Positions de montage : B3, B3C, B3A, B6, B7, B8, B6B, B6D, B7B, B7D, B8A, B8C.
Remplacement des joints du réducteur et du frein de stationnement multidisque (si présent) montage verticale ou oblique, à effectuer par le Service Client Dana Motion Systems Italia	Toutes les 6.000-10.000 heures de fonctionnement ou en tout cas tous les 3 à 5 ans et lorsque le réducteur est révisé	Positions de montage : V5, V6, V5B, B3D, B3B, V6B, B6C, B6A, B7A, B7C, B8B, B8D, V6B, V5A, V6A, V5D, V6D, V5C, V6C
Contrôle des Capteurs de température et des indicateurs de niveau d'huile	Tous les 3 mois	Voir Remarque ci-dessous

• REMARQUE:

Il est de la responsabilité de l'utilisateur de vérifier avec la bonne fréquence que les circuits de contrôle électrique utilisés par les Capteurs fonctionnent toujours et sont correctement calibrés pour intervenir sur les paramètres prédéfinis.

AVERTISSEMENT

Les réducteurs sont sélectionnés pour atteindre la durée de vie demandée par le client pour chaque projet spécifique, avec le cycle de travail indiqué, comme indiqué sur le Dessin Dimensionnel SI, mentionné sur le Certificat de Déclaration de Conformité.

Une fois les heures de travail indiquées dans la Documentation atteintes, le réducteur doit être remplacé par un neuf ou envoyé à un Service Client Dana Motion Systems Italia S.r.l. pour une révision complète.

13 DYSFONCTIONNEMENTS

En cas de fonctionnement anormal, reportez-vous au tableau suivant. Si les anomalies persistent, consultez un Centre Après-vente Dana Motion Systems Italia S.r.l.

Tableau 34:

Anomalie	Cause probable	Solution
Moteur tournant, l'arbre de sortie ne tourne pas	Mauvais assemblage du moteur	Vérifiez l'accouplement entre le réducteur et le moteur
	Frein de stationnement bloqué/fermé	Vérifiez le système hydraulique connecté au frein
	Anomalie interne	Adressez-vous au Service Après-vente
Fuites d'huile de l'évent pendant le fonctionnement	Niveau trop élevé	Baissez le niveau d'huile
	Évent dans la mauvaise position	Vérifiez la position de l'évent
	Usure possible du joint de l'évent	Adressez-vous au Service Après-vente
Fuites d'huile des joints	Bouchon d'évent bloqué	Dévissez et remplacez le bouchon
	Raidissement des joints dû au stockage pro- longé	Nettoyez la zone et vérifiez à nouveau la fuite après quelques jours. Si la fuite persiste, con- tactez un Service Après-vente
	Endommagement ou usure des joints	Adressez-vous au Service Après-vente
Bruit excessif	Anomalie interne	Adressez-vous au Service Après-vente
	Réducteur pas installé correctement	Vérifiez les fixations et la coaxialité
Vibrations excessives	Structure d'accouplement trop faible	Renforcez la structure
	Anomalie interne	Adressez-vous au Service Après-vente
Chauffage excessif	Manque de ventilation	Vérifiez qu'il n'y a pas de capotage ou d'obstacles à la circulation de l'air. Vérifiez le nettoyage extérieur
	Ouverture de frein incomplète	Vérifiez la pression d'ouverture minimale du frein
	Cycle de travail supérieur à celui de projet in- diqué sur le Dessin Dimensionnel SI	Vérifiez les charges et la puissance deman- dées par la machine
	Température ambiante supérieure à 40 ° C	Arrêtez la machine jusqu'à ce que la température ambiante redevienne inférieure à 40 ° C
	Anomalie interne	Adressez-vous au Service Après-vente
Le frein multidisque négatif ne s'ouvre pas/ débloque	Manque de pression du frein	Vérifiez la connexion hydraulique au frein
	Disques collée en raison d'une période d'arrêt	Appliquez une pression sur le frein, en faisant tourner l'entrée du frein/réducteur
	Joints de frein avec fuites d'huile	Adressez-vous au Service Après-vente
Le frein multidisque négatif ne s'ouvre pas/est bloqué	Il y a une contre-pression dans le circuit de freinage	Vérifiez le circuit hydraulique
	Lamelles de frein usées	Adressez-vous au Service Après-vente

14 MISE HORS SERVICE DU RÉDUCTEUR

Les opérations de mise hors service du réducteur doivent être effectuées par du personnel expert, dans le respect des lois en vigueur en matière de sécurité au travail.

Il est suggéré de travailler de la manière suivante :

- Éliminez complètement les huiles à l'intérieur du réducteur.
- Déconnectez la motorisation à l'entrée du réducteur.
- Démontez le réducteur.

Il est recommandé d'effectuer les opérations d'élimination, conformément aux lois en vigueur sur la protection de l'environnement, en évitant la contamination des sols et de l'eau par des produits non biodégradables.

15 EXEMPLE DE CERTIFICAT DE DÉCLARATION DE CONFORMITÉ UE

Dana Incorporated

Dana Motion Systems Italia S.r.I. (a socio unico) - Power – Transmission Division Via Luciano Brevini 1/A, 42124 Reggio Emilia – Italy Tel: +39.0522.9281 Fax: +39.0522.928300 P.I. / VAT 0026275 035 9 REA N° RE75379

DICHIARAZIONE DI CONFORMITA' UE EU DECLARATION OF CONFORMITY

Dana Motion Systems S.r.l.

Dichiara sotto la propria responsabilità che il riduttore epicicloidale sotto indicato, è progettato e costruito in conformità alla **Direttiva 2014/34/UE** e idoneo all'impiego in ambienti con atmosfera potenzialmente esplosiva secondo **Gruppo II**, **categoria 2G**.

Declares in sole responsibility, that the planetary gear unit below mentioned, is designed and manufactured in compliance with the **Directive 2014/34/EU** and is suitable for use in potentially explosive atmosphere, according **Group II**, category 2G.

Marcatura / Marking : 🐿 II 2G Ex h IIC T4 Gb

Cliente: Customer:	Conferma d'ordine N°: Order confirmationN°:	
Riduttore tipo:	Matricola N°:	
Gearbox type:	Serial N°:	
Codice prodotto:	Disegno dimensionale N°:	SI
Product code:	Dimensional drawing N°:	JI

Norme di riferimento / Applicable standards:

EN ISO 80079-36:2016 EN ISO 80079-37:2016 EN 1127-1:2011

Dana Motion Systems S.r.l.

ha depositato i documenti previsti secondo l'allegato VIII della Direttiva ATEX 2014/34/UE, con numero deposito fascicolo tecnico nr. 0206243, presso:

have archived required documents according to the Annex VIII of the Directive ATEX 2014/34/EU, with identification number no. 0206243, at the following location:

TÜV Cyprus, EU Code 2261

General Manager Power - Transmission Matteo Foletti **Head of Engineering Power - Transmission** Alessandro Vighi

Reggio Emilia, data/date: 17/02/2020

Doc. QCATEX0000 date: 01/11/2019

EXEMPLE DE CERTIFICAT DE DÉCLARATION DE CONFORMITÉ

Dana Incorporated

Dana Motion Systems Italia S.r.l. (a socio unico) - Power – Transmission Division
Via Luciano Brevini 1/A, 42124 Reggio Emilia – Italy
Tel: +39.0522.9281 Fax: +39.0522.928300
P.I. / VAT 0026275 035 9 REA N° RE75379

DICHIARAZIONE DI CONFORMITA' UE EU DECLARATION OF CONFORMITY

Dana Motion Systems S.r.l.

Dichiara sotto la propria responsabilità che il riduttore epicicloidale sotto indicato, è progettato e costruito in conformità alla **Direttiva 2014/34/UE** e idoneo all'impiego in ambienti con atmosfera potenzialmente esplosiva secondo **Gruppo II**, **categoria 3G**.

Declares in sole responsibility, that the planetary gear unit below mentioned, is designed and manufactured in compliance with the **Directive 2014/34/EU** and is suitable for use in potentially explosive atmosphere, according **Group II**, category 3G.

Marcatura / Marking : 😥 II 3G Ex h IIC T4 Gc

Cliente:	Conferma d'ordine N°:	
Customer:	Order confirmationN°:	
Riduttore tipo:	Matricola N°:	
Gearbox type:	Serial N°:	
Codice prodotto:	Disegno dimensionale N°:	SI
Product code:	Dimensional drawing N°:	3i
		

Norme di riferimento / Applicable standards:

EN ISO 80079-36:2016 EN ISO 80079-37:2016 EN 1127-1:2011

> General Manager Power - Transmission Matteo Foletti

Head of Engineering Power - TransmissionAlessandro Vighi

Reggio Emilia, data/date: 17/02/2020

Doc. QCATEX0010 date: 01/11/2019

© Copyright 2022 Dana Incorporated
All content is subject to copyright by Dana and may not
be reproduced in whole or in part by any means,
electronic or otherwise, without prior written approval.
THIS INFORMATION IS NOT INTENDED FOR SALE OR
RESALE, AND THIS NOTICE MUST REMAIN ON ALL
COPIES.

For product inquiries or support, visit www.dana.com.
For other service publications, visit www.danaaftermarket.com/literature-library For online service parts ordering, visit www.danaaftermarket.com

Motion Systems