

Service Manual

MT-7106-0411 R09

Riduttori per ambienti con atmosfere potenzialmente esplosive, secondo ATEX 2014/34/UE

Ex II 2G Ex h IIC T4 Gb

Ex II 2G Ex h IIB T4 Gb

II 2D Ex h IIIC T108°C Db

Ex II 3G Ex h IIC T4 Gc

II 3G Ex h IIB T4 Gc

Ex II 3D Ex h IIIC T108°C Dc

ESONERO DA RESPONSABILITÀ La lingua ufficiale scelta dal costruttore del prodotto è l'inglese. Dana non si assume nessuna responsabilità per le traduzioni in altre lingue non conformi al significato della lingua originale. Nel caso in cui le traduzioni del presente documento nelle diverse lingue risultino difformi tra di loro, sarà la lingua inglese originale a prevalere. Dana non sarà responsabile di errate interpretazioni del contenuto del presente documento. È possibile che foto e illustrazioni non rappresentino il prodotto esatto. © Copyright 2022 Dana Incorporated Tutti i contenuti sono soggetti al copyright di Dana e non possono essere riprodotti, neppure parzialmente, con nessun mezzo elettronico, o in alcun altro modo, senza previa approvazione scritta.

QUESTE INFORMAZIONI NON SONO DESTINATE ALLA VENDITA O ALLA RIVENDITA, E LE SUDDETTE AVVERTENZE DEVONO RISULTARE SU TUTTE LE COPIE.

SOMMARIO

1	NORM	MATIVE RISPETTATE E TIPO MANUALE	5
2	TRAC	CIABILITÀ VERSIONI	6
	2.1	COMPATIBILITÀ E MODELLI SUPPORTATI	6
3	INTRO	DDUZIONE	7
-	3.1	MODALITÀ DI CONSULTAZIONE DEL MANUALE	
	3.2	SCOPO DEL MANUALE	7
	3.3	GARANZIA / RESPONSABILITÀ	8
	3.3.1	LIMITI DI RIPRODUZIONE E COPYRIGHT	
	3.4	REVISIONI	
4	STATO	DI FORNITURA	9
5	IMBAL	LO, MOVIMENTAZIONE, RICEVIMENTO	10
	5.1	IMBALLO	
	5.2	MOVIMENTAZIONE	
	5.3	RICEVIMENTO	
_	5.4	MOVIMENTAZIONE DEL RIDUTTORE SENZA IMBALLO	
		CAGGIO	
7	TARG	HETTA DI IDENTIFICAZIONE	15
	7.1	CONDIZIONI D'IMPIEGO E LIMITI DI FUNZIONAMENTO	16
8	INSTA	LLAZIONE ED ACCESSORI	17
	8.1	MESSA A TERRA	20
	8.2	FISSAGGIO A FLANGIA CON ALBERO LENTO CAVO SCANALATO (FE)	
		FE - HIGH TORQUE PLANETARY GEARBOXES	
	8.3	FE - INDUSTRIAL PLANETARY GEARBOXESFISSAGGIO A FLANGIA CON ALBERO LENTO MASCHIO SCANALATO (MN - MR - MP)	22
	0.3	MP - HIGH TORQUE PLANETARY GEARBOXES	
		MN - INDUSTRIAL PLANETARY GEARBOXES	24
		MR - INDUSTRIAL PLANETARY GEARBOXES	
	8.4	FISSAGGIO A FLANGIA CON ALBERO LENTO MASCHIO CILINDRICO (MN1 - MR1 - MP1) MP1 - HIGH TORQUE PLANETARY GEARBOXES	
		MN1 - INDUSTRIAL PLANETARY GEARBOXES	
		MR1 - INDUSTRIAL PLANETARY GEARBOXES	26
	8.5	FISSAGGIO PENDOLARE CON ALBERO LENTO CAVO PER CALETTATORE (FS)	
		FS - HIGH TORQUE PLANETARY GEARBOXESFS - INDUSTRIAL PLANETARY GEARBOXES	
	8.5.1	INSTALLAZIONE DEL RIDUTTORE CON USCITA FS	
	8.5.2	MONTAGGIO BRACCIO DI REAZIONE SUL RIDUTTORE	
	8.5.3	DISINSTALLAZIONE DEL GIUNTO E DEL RIDUTTORE	34
	8.6	FISSAGGIO PENDOLARE CON ALBERO LENTO FEMMINA SCANALATO (FAR)	
	8.6.1	FAR - HIGH TORQUE PLANETARY GEARBOXESINDICAZIONE PER LA COSTRUZIONE E ANCORAGGIO DEL BRACCIO DI REAZIONE	პე ვგ
	8.7	FISSAGGIO PENDOLARE CON ALBERO LENTO CON CAVA PER LINGUETTA (FP)	
		FP - INDUSTRIAL PLANETARY GEARBOXES	37
	8.7.1	INSTALLAZIONE DEL RIDUTTORE CON USCITA FP	38
	8.7.2 8.7.3	INDICAZIONI PER LA COSTRUZIONE E ANCORAGGIO DEL BRACCIO DI REAZIONEDISINSTALLAZIONE DEL RIDUTTORE CON USCITA FP	
	8.8	NORME DI INSTALLAZIONE PER RIDUTTORE CON FISSAGGIO A PIEDE	40
	8.9	MONTAGGIO DI ACCESSORI SUGLI ALBERI D'USCITA E/O D'ENTRATA	40
	8.10	GUARNIZIONI A LABIRINTO TACONITE (ACCESSORIO OPZIONALE)	
	8.11	DISPOSITIVO ANTIRITORNO (ACCESSORIO OPZIONALE)	41
	8.12	FRENI LAMELLARI NEGATIVI DI STAZIONAMENTO IN BAGNO D'OLIO	
	8.13 8.13.1	ACCESSORI - SENSORI DI MONITORAGGIO DEL RIDUTTORESONDA TERMICA	
	8.13.2	INDICATORE DI LIVELLO OLIO "ON-OFF"	46
	8.14	NORME DI INSTALLAZIONE PER RIDUTTORE ROTAZIONE TIPO RPR-RPRC-SLS-SCS-ECS	47
	8.15	POSIZIONI DI MONTAGGIO RIDUTTORI	48

SOMMARIO

9 LUB	RIFICAZIONE	50
9.1	LUBRIFICANTI PER USO GENERALE	51
10 MES	SSA IN SERVIZIO E MODALITÀ CAMBIO OLIO	52
10.1 10.2 10.3	LUBRIFICAZIONE RIDUTTORIRIEMPIMENTO E CONTROLLO LIVELLO OLIORIMOZIONE OLIO DAL RIDUTTORE E DAL FRENO LAMELLARE (SE PRESENTE)	52
11 AVV	IAMENTO	54
11.1 11.2	GENERALITÀ RILIEVO SUPERFICIALE DELLA TEMPERATURA	
12 CON	NTROLLI E MANUTENZIONE	55
12.1 12.2	ANELLI DI TENUTATABELLE FREQUENZA CONTROLLI E MANUTENZIONE	56 57
13 MAL	FUNZIONAMENTI	59
14 MES	SSA FUORI SERVIZIO DEL RIDUTTORE	60
15 FSF	MPIO CERTIFICATO DICHIARAZIONE DI CONFORMITÀ UE	61

1 NORMATIVE RISPETTATE E TIPO MANUALE

Manuale di installazione e manutenzione dei riduttori per ambienti con atmosfere potenzialmente esplosive, secondo

Tabella 1:

ATEX 2014/34/UE
EN ISO 80079-36:2016
EN ISO 80079-37:2016
EN 1127-1:2011

2 TRACCIABILITÀ VERSIONI

Tabella 2:

Nome file	Revisione	Data	Descrizioni modifiche
MT-7106-0411_IT_EN_rev_00	00	01/03/2011	Primo rilascio
MT-7106-0411_IT_EN_rev_01	01	01/10/2011	Completamente rivisto
MT-7106-0411_IT_EN_rev_02	02	02/08/2013	Aggiunto freni lamellari
MT-7106-0411_IT_EN_rev_03	03	20/04/2016	Aggiornamento a 2014/34/UE
MT-7106-0411_IT_EN_rev_04	04	27/04/2017	Aggiornamento Ragione Sociale, Logo e Dichiarazione di Conformità
MT-7106-0411_IT_EN_rev_05	05	14/02/2018	Aggiornamento Ragione Sociale, Logo e Dichiarazione di Conformità
MT-7106-0411_IT_EN_rev_06	06	15/11/2018	Aggiornamento Ragione Sociale
MT-7106-0411_IT_EN_rev_07	07	24/01/2019	Aggiornamento layout targhetta
IMM-0010IT_Rev.08 MT-7106-0411	08	16/03/2020	Aggiornamento Layout e completa revisione
IMM-0010IT_Rev.09 MT-7106-0411	09	24/10/2022	Aggrionamento Tabella 15: (pag. 28) Aggiornamento Tabella 16: (pag. 30)

2.1 COMPATIBILITÀ E MODELLI SUPPORTATI

Tabella 3:

Modelli
Industrial Planetary Gearboxes
High Torque Planetary Gearboxes
Slewing Drives

3 INTRODUZIONE

3.1 MODALITÀ DI CONSULTAZIONE DEL MANUALE

La consultazione di questo manuale è facilitata dall'inserimento in prima pagina dell'indice generale che consente la localizzazione in maniera immediata dell'argomento di interesse. I capitoli sono organizzati con una strutturata progressione descrittiva che facilita la ricerca dell'informazione desiderata.

3.2 SCOPO DEL MANUALE

Il presente manuale fornisce all'utilizzatore del Riduttore le informazioni necessarie alla corretta installazione, uso e manutenzione ed eventuale stoccaggio dello stesso nel rispetto dei limiti di sicurezza dettati dalle norme vigenti.

Questo Manuale è realizzato da Dana Motion Systems Italia S.r.l. in lingua inglese; a richiesta il Manuale può essere reso disponibile anche in altre lingue per soddisfare le esigenze legislative e/o commerciali della Nazione Europea di fornitura del prodotto.

Non si assumono responsabilità per traduzioni, in altre lingue, non conformi al significato originale.

Per migliorare la comprensione di questo manuale precisiamo di seguito i termini e le simbologie in esso utilizzati:

Zona Pericolosa

Zona all'interno o in prossimità della macchina in cui la presenza di una persona esposta costituisce un rischio per la sicurezza e la salute della persona stessa.

Persona esposta

Qualsiasi persona che si trovi interamente o in parte in una zona pericolosa.

Operatore

Persona incaricata di installare, di far funzionare, di regolare, di eseguire la manutenzione ordinaria e di pulire la macchina nel suo complesso.

Tecnico qualificato

Persona specializzata, destinata ad effettuare interventi di manutenzione straordinaria o riparazioni che richiedono una particolare conoscenza della macchina, del suo funzionamento, delle sicurezze e delle loro modalità di intervento.

AVVERTENZA

Esiste la possibilità di arrecare danno alla macchina e/o ai componenti della stessa.

ATTENZIONE

Norme antinfortunistiche per l'Operatore e il Tecnico Qualificato.

Note specifiche relative alla sicurezza contro il pericolo di esplosioni.

IMPORTANTE:

ULTERIORI NOTIZIE INERENTI L'OPERAZIONE IN CORSO.

NOTA:

Fornisce informazioni utili.

Questo "Manuale di installazione e manutenzione dei riduttori per ambienti con atmosfere potenzialmente esplosive, secondo ATEX 2014/34/UE.

- II 2G Ex h IIC T4 Gb
- II 2G Ex h IIB T4 Gb
- II 2D Ex h IIIC T108°C Db

- II 3G Ex h IIC T4 Gc
- II 3G Ex h IIB T4 Gc
- II 3D Ex h IIIC T108°C Dc

ed il suo dedicato "Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità", devono essere conservati nelle immediate vicinanze del riduttore e facilmente consultabili.

Per eventuali dubbi ed in caso di danneggiamento o di perdita del manuale, non esitare a contattare il Servizio Tecnico Dana Motion Systems Italia S.r.l.

INTRODUZIONE

3.3 GARANZIA / RESPONSABILITÀ

Al momento della consegna, i prodotti saranno esenti da difetti di materiale e di lavorazione e conformi alle specifiche tecniche concordate. Il periodo di garanzia durerà (i) 12 mesi o 2000 ore di funzionamento (qualunque cosa accada prima) per i prodotti di trasmissione a marchio Spicer®, o (ii) 12 mesi per tutti gli altri prodotti, a partire in ogni caso dalla data della fattura del Cliente all'utente finale o al rivenditore, a condizione che il periodo di garanzia termini in ogni caso entro 18 mesi dalla data della fattura di Dana al Cliente. In caso di difetti, Dana potrà (i), se la riparazione viene eseguita dal Cliente con il previo consenso scritto di Dana, o rimborsare al Cliente i costi dei pezzi di ricambio secondo l'elenco ufficiale dei pezzi di ricambio fornito da Dana, incluso lo sconto applicato, ed entro il limite del prezzo di acquisto del Prodotto in questione, o (ii) riparare il prodotto gratuitamente presso la propria sede o in un Centro di Assistenza autorizzato, purché il Cliente invii il prodotto difettoso, a proprie spese, al luogo di riparazione scelto da Dana a sua esclusiva discrezione. Le richieste di garanzia saranno gestite conformemente alle Condizioni di Garanzia Standard di Dana, aggiornate di volta in volta, che sono disponibili su richiesta contattando dana_oh_product_service_support@dana.com. Ogni ulteriore reclamo e rimedio relativi ai difetti dei Prodotti, indipendentemente dalla loro natura, importo o fontamento giuridico, sono qui espressamente esclusi salvo in caso di grave negligenza e dolo da parte di Dana. Ad eccezione di quanto indicato nel presente documento, non ci sono dichiarazioni o garanzie, esplicite o implicite, in relazione ai Prodotti.

La garanzia non copre (a) Prodotti o relativi componenti non acquistati direttamente da Dana; (b) prodotti forniti prima dell'approvazione della produzione; o (c) Prodotti che hanno subito (i) manutenzione e/o riparazioni non eseguite in conformità al manuale di assistenza ufficiale di Dana su richiesta contattando dana_oh_product_service_support@dana.com, (ii) condizioni di magazzinaggio e trasporto che non sono conformi ai requisiti di Dana disponibili su richiesta contattando dana_oh_product_service_support@dana.com, (iii) installazione non professionale dei Prodotti o di accessori, (iv) danni causati da normale usura, (v) danni causati durante il riassemblaggio o l'installazione, (vi) funzionamento del Prodotto o applicazione non conforme ai requisiti di messa in atto concordati o alle specifiche del Prodotto stabilite e/o (vii) l'utilizzo di componenti, lubrificanti o prodotti ausiliari non approvati da Dana.

Nella misura consentita dalla legge, nessuna delle parti sarà in alcun caso responsabile nei confronti dell'altra, sia in virtù del contratto, per fatto illecito o risarcimento, sia per violazione di obblighi di legge o per falsa dichiarazione, o altrimenti, per qualsiasi perdita di profitto, perdita di clientela, perdita di affari, perdita di opportunità commerciali, perdita di risparmi previsti, danni speciali, indiretti o consequenziali subiti dall'altra parte che insorgono in base o in relazione al rapporto contrattuale tra le parti. Nessuna disposizione del presente documento limiterà o escluderà la responsabilità di entrambe le parti per morte o lesioni personali, o per danni derivanti da grave negligenza, violazione volontaria o dolo.

3.3.1 LIMITI DI RIPRODUZIONE E COPYRIGHT

Tutti i diritti sono riservati a Dana Motion Systems Italia S.r.l.

La struttura e il contenuto di questo manuale non possono essere riprodotti, né parzialmente né totalmente, senza l'esplicita autorizzazione scritta di **Dana Motion Systems Italia S.r.I**.

Non è inoltre consentita la registrazione su nessun tipo di supporto (magnetico, magnetico-ottico, ottico, microfilm, fotocopia, ecc.).

3.4 REVISIONI

Dana Motion Systems Italia S.r.l. si ritiene esonerata da qualunque tipo di errore di stampa presente nel manuale. Si ritiene il presente manuale valido alla data di fatturazione del prodotto a cui è destinato. Il manuale è riferito al livello di revisione stampato sullo stesso. Dana Motion Systems Italia S.r.l., in caso di nuova revisione del presente manuale, nelle parti di rispetto di normative e di parti ricambio, avrà cura di aggiornare e indicare nuovo indice di revisione del manuale ribadendo la non responsabilità, diretta o indiretta, dell'utilizzo improprio del manuale con indice di revisione non concorde tra numero di serie, data di fatturazione e data di revisione del manuale.

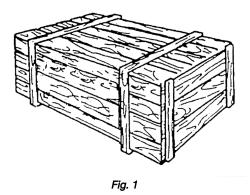
MOTA:

Immagini, documenti e disegni vengono introdotti per scopi di istruzione, per effettuare in modo sicuro e corretto la movimentazione dei prodotti e le operazioni di manutenzione. Piccole differenze dai disegni su questo manuale possono essere presenti sul prodotto consegnato. Tuttavia, queste differenze non sono rilevanti per le caratteristiche principali del prodotto, o istruzioni di manutenzione.

4 STATO DI FORNITURA

I riduttori vengono forniti sottoposti ad un ciclo di verniciatura specifico ATEX per evitare cariche elettrostatiche e pertanto non devono essere riverniciati; nel caso di fornitura di riduttori non verniciati secondo specifica ATEX (condizione possibile solo per riduttori in Categoria 3), il cliente si dovrà prendere carico della verniciatura.

Tutti i riduttori, salvo diverse indicazioni contrattuali, vengono forniti senza lubrificante.


Le parti esterne lavorate del riduttore come le estremità degli alberi cavi e non, piani di appoggio, centraggi ecc. vengono protetti con olio (tectyl) antiossidante.

O NOTA:

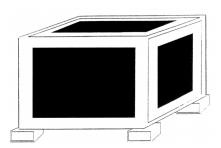
Evitare danneggiamenti della verniciatura, sia di tipo meccanico (es. graffi) sia di tipo chimico (es. attacco con solventi acidi) o termico (es. fiamme o scintille), per non comprometterne l'effetto protettivo.

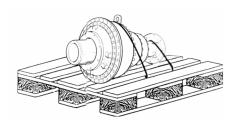
5.1 IMBALLO

MOTA:

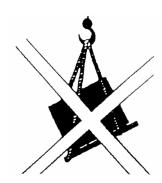
Il prodotto può essere imballato, a seconda di quanto concordato con il cliente all'atto di vendita, tramite cassa di legno, imballo di cartone completamente chiusa, o su pallet.

Per garantire che, durante il trasporto, nessun elemento all'interno dell'imballo possa in alcun modo danneggiarsi, si è provveduto a bloccare con fissaggi le parti mobili ed a proteggere maggiormente le parti più delicate.


Al fine del trasporto può essere protetta, nelle sue parti più esposte, con materiali impermeabili, oppure posizionata su un pallet di legno e fissata ad esso tramite fascette o legacci in modo da ottenere un unico corpo rigido.


5.2 MOVIMENTAZIONE

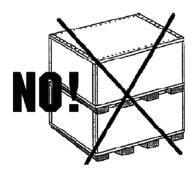
0 NOTA:


il peso dei prodotti imballati sono riportati sui Documenti di Trasporto o Packing List.

Se necessario mettere adeguati cunei di legno sotto al collo per facilitarne il sollevamento.

Per lo spostamento dei colli utilizzare mezzi di sollevamento idonei al tipo di imballo e di portata adeguata esposta sullo stesso.

Non inclinare o capovolgere durante il sollevamento ed il trasporto.


Se i colli vengono scaricati da un carrello elevatore assicurarsi che il peso sia bilanciato anche sulle forche.

Se i colli vengono scaricati con un paranco e comunque tramite gancio assicurarsi che il carico sia bilanciato e nell'imbracatura utilizzare accessori per il sollevamento omologati e norma di legge. Per o colli spediti su pallets fare attenzione che gli accessori di sollevamento non danneggino i prodotti.

Fare attenzione, durante il sollevamento ed il posizionamento del collo, onde evitare violenti impatti.

IMPORTANTE:

GLI IMBALLI NON SONO IMPILABILI.

5.3 RICEVIMENTO

Fig. 2

MOTA:

all'arrivo dei colli a destinazione verificare, in presenza del trasportatore, sia l'integrità degli stessi che del loro contenuto. Controllare l'esatta fornitura mediante il foglio di packing list unito al prodotto (documenti di trasporto), verificando che la fornitura corrisponda alle specifiche dell'ordine.

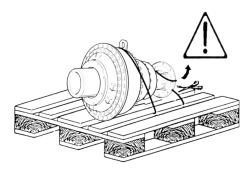


Fig. 3

ATTENZIONE

La reggia del fissaggio del prodotto all'imballo è tagliente; durante la fase sballaggio può colpire l'operatore. La demolizione dell'imballo deve essere effettuata come segue:

- Tagliando con cesoie le reggette (fare attenzione alle estremità che potrebbero colpire l'operatore).
- Tagliando o sfilando l'imballo di contorno.
- Tagliando la reggia interna (fare attenzione alle estremità che potrebbero colpire l'operatore).
- Rimuovendo il riduttore dai pallets.

Nel caso vengono riscontrati danni, difetti o mancanze, avvertire immediatamente il Servizio Assistenza Dana Motion Systems Italia S.r.l.

AVVERTENZA

Non mettere in servizio riduttori danneggiati, anche solo lievemente, o se non ritenuti adeguati all'utilizzo previsto; in questo caso interpellare Dana Motion Systems Italia S.r.I.

5.4 MOVIMENTAZIONE DEL RIDUTTORE SENZA IMBALLO

IMPORTANTE:

IL PESO DEI RIDUTTORI DA MOVIMENTARE PUÒ ESSERE RILEVATO SUL DISEGNO DIMENSIONALE SI MENZIONATO SUL CERTIFICATO DI DICHIARAZIONE DI CONFORMITÀ.

ATTENZIONE

Le operazioni di sollevamento, trasporto e movimentazione sono di esclusiva competenza del tecnico della manutenzione e da personale addestrato (imbracatori, gruisti ecc.) coordinati da una persona al suolo, esperta per tale compito, in grado di fare le dovute segnalazioni.

ATTENZIONE

Accertare che il dispositivo di sollevamento, trasporto e movimentazione che si intende utilizzare abbia una portata adeguata al peso totale del riduttore, riportato sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità. Ogni altro sistema utilizzato per il sollevamento, trasporto e movimentazione del riduttore che non rientri tra quelli consigliati dal costruttore, vanifica di fatto la garanzia assicurativa per eventuali danni riportati dal riduttore e/o dai gruppi opzionali ad essa legati.

Se le dimensioni del riduttore impediscono all'operatore una perfetta visuale durante le operazioni di sollevamento, trasporto e movimentazione, utilizzare due operatori che controllino a terra possibili pericoli o impedimenti contro cui essa potrebbe urtare. Assicurarsi anche che non vi sia personale non addetto nella zona di trasporto e che accessori, collegati al riduttore, non impediscano movimenti o rendano pericolosi i movimenti di trasporto.

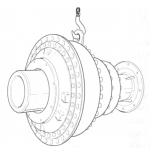


Fig. 4

ATTENZIONE

I riduttori sono componenti che non sono perfettamente bilanciati e vanno sollevati con adeguati dispositivi.

Prima di rimuovere il riduttore dal proprio imballo assicurarlo con gli accessori di sollevamento in modo che non possa scivolare o ribaltarsi. Prima di movimentare il riduttore occorre togliere i tacchi di legno, inseriti nell'imballo per assicurarne la stabilità durante la spedizione.

- Procedere con cautela durante la movimentazione del riduttore, evitando movimenti bruschi ed impatti violenti.
- Sollevare la macchina facendo attenzione a non sbilanciare il carico durante le manovre. In questa fase, due operatori dovranno guidare lateralmente il riduttore durante tutta la fase del suo sollevamento, onde evitare ondeggiamenti o spostamenti improvvisi del carico, che potrebbero determinare situazioni di estrema pericolosità.
- Se durante l'operazione si verifica un'oscillazione eccessiva, è opportuno arrestarsi e ripetere le operazioni di sollevamento del riduttore.
- Dopo aver eseguito il sollevamento del riduttore, provvedere al suo trasporto verso il luogo destinato al posizionamento.

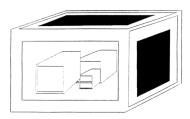
Trasporto:

Controllare sempre il bilanciamento dell'elemento trasportato avendo cura di agganciarlo al mezzo di trasporto nel modo più sicuro possibile per mezzo di imbragature, corde e/o ganci rispondenti alle norme vigenti. Durante il trasporto evitare pericolose oscillazioni del carico che potrebbero sbilanciarlo e provocarne la caduta.

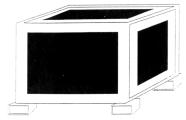
Inoltre fare attenzione durante il trasporto a non appoggiare nulla sopra al riduttore in quanto potrebbero danneggiarsi irreparabilmente alcuni particolari.

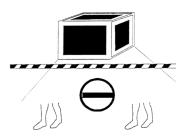
6 STOCCAGGIO




Fig. 5

Nel caso occorra immagazzinare il prodotto per un periodo superiore ai 2 mesi attenersi a quanto segue:


- Proteggere gli alberi e i centraggi con pellicola di grasso e/o liquidi protettivi anticorrosione.
- Riempire totalmente il riduttore con olii adeguati vedi Lubrificazione (pag. 50), ed orientare il riduttore in modo che il tappo sfiato sia posto nella posizione più alta.
- Immagazzinare in luogo asciutto e con temperatura compresa fra i 5°C e + 30°C.
- Proteggere i colli dallo sporco, e dalla polvere.
- Evitare ambienti con eccessiva umidità ed esposti ad intemperie (escludere zone all'aperto).
- Evitare il contatto diretto del riduttore con il suolo.
- Posizionare il riduttore su una base d'appoggio stabile ed accertarsi che non vi siano rischi di spostamenti imprevisti.


Non disporre i pezzi sovrapposti. Non camminare o posizionare pezzi sopra il collo.

Non immagazzinare alcun materiale all' interno del collo.

Se possibile posizionare cunei di legno tra il collo ed il pavimento.

Tenere lontano il collo dalle zone di passaggio.

M NOTA:

Per immagazzinamento prolungato oltre i 6 mesi decade l' efficienza per le tenute rotanti. Si consiglia un controllo periodico facendo ruotare gli ingranaggi interni a mano ruotando l'albero in entrata.

AVVERTENZA

Precauzioni per il ripristino del riduttore dopo stoccaggio:

- Sgrassare le superfici esterne di accoppiamento ed eliminare l'antiossidante, utilizzando abituali solventi, facendo attenzione agli anelli di tenuta che non devono mai venire in contatto con il solvente. Questa operazione deve essere eseguita al di fuori della zona di pericolo esplosione.
- Nel caso in cui sia stato eseguito per lo stoccaggio, il riempimento con olio diverso da quello necessario per il funzionamento, bisogna effettuare un lavaggio interno al riduttore, prima del riempimento con l'olio di funzionamento.
- E' consigliata l'eventuale sostituzione degli anelli rotanti prima dell'avviamento, dopo stoccaggi molto prolungati.

7 TARGHETTA DI IDENTIFICAZIONE

Ogni riduttore è dotato di **Targhetta di Identificazione** e di una **Dichiarazione di Conformità UE** ai sensi della direttiva 2014/34/UE.

La Targhetta di Identificazione contiene le principali informazioni tecniche relative alle caratteristiche funzionali e costruttive del riduttore; deve perciò essere mantenuta integra e visibile, provvedendo periodicamente alla sua pulizia.

Usare i dati riportati in targhetta per i contatti con i centri assistenza Dana Motion Systems Italia S.r.l.

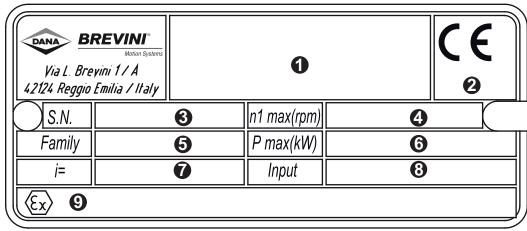


Fig. 6

- 1 Codice a barre
- 2 Data di produzione
- 3 Numero di serie
- 4 Giri in entrata max (con Duty cycle vedere disegno SI)
- 5 Famiglia riduttore
- 6 Potenza max. di funzionamento (con Duty Cycle vedere disegno SI)
- 7 Rapporto totale
- 8 Tipo di entrata
- 9 Marcatura Atex
 - II 3G Ex h IIC T4 Gc
 - II 3G Ex h IIB T4 Gc
 - II 3D Ex h IIIC T108°C Dc
 - II 2G Ex h IIC T4 Gb
 - II 2G Ex h IIB T4 Gb
 - II 2D Ex h IIIC T108°C Db
 - X: Condizioni speciali d'impiego

Le condizioni di funzionamento non devono superare i valori del Ciclo di lavoro del progetto, indicato su Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

In caso di malfunzionamento del sistema di controllo della potenza di lavoro erogata dalla macchina, la macchina deve essere immediatamente fermata e il riduttore deve essere inviato per revisione al Servizio Assistenza Dana Motion Systems Italia S.r.l.

ATTENZIONE

I motoriduttori (riduttore con motore) devono disporre di due targhette separate con marcatura conforme ATEX. La marcatura del motore deve corrispondere alle specifiche di progetto dell'impianto o della macchina. Per i motoriduttori è valida la protezione Atex minore tra quelle indicate sul riduttore e sul motore.

TARGHETTA DI IDENTIFICAZIONE

7.1 CONDIZIONI D'IMPIEGO E LIMITI DI FUNZIONAMENTO

La temperatura ambientale di esercizio ammessa è compresa tra -20°C e +40°C

AVVERTENZA

I valori di Targhetta, relativi alle massime temperature superficiali, fanno riferimento a misurazioni in normali condizioni ambientali e ad una normale e corretta installazione. Il funzionamento del riduttore in un vano di dimensioni ridotte riduce notevolmente la capacità di smaltimento della potenza termica, quindi avere effetti notevoli sullo sviluppo di calore.

L'installazione dei riduttori deve essere realizzata con cura e professionalità impiegando personale adeguatamente istruito e tecnicamente preparato.

È' opportuno che il personale sia informato sui sequenti argomenti inerenti la sicurezza nell'utilizzo della macchina:

- Regole antinfortunistiche generali o previste da direttive internazionali e dalla legislazione del Paese estinazione della macchina.
- Regole antinfortunistiche specifiche:
- 1 Direttiva europea 2014/34/UE si occupa dei sistemi di prevenzione da mettere in atto sulle apparecchiature e quindi, nel nostro caso specifico, è la direttiva di riferimento per i riduttori.
- 2 Direttiva europea 1999/92/EC (ATEX 153) si occupa della sicurezza del personale durante l'installazione, il funzionamento o la manutenzione di sistemi potenzialmente esplosivi.
- · Rischi di infortunio.
- Dispositivi predisposti per la sicurezza dell'operatore D.P.I. (dispositivi protettivi individuali: occhiali, guanti, elmetto, ecc.). La predisposizione al funzionamento deve avvenire rispettando tutte le indicazioni tecniche contenute nel Disegno Dimensionale dedicato, SI.

Tutte le operazioni di installazione debbono essere ispirate ai massimi livelli di sicurezza nei confronti:

- 1 dell'incolumità degli operatori e di terzi
- 2 di un corretto funzionamento del riduttore
- 3 della sicurezza di esercizio

E' assolutamente vietata ogni manipolazione arbitraria al riduttore e a tutti gli accessori eventualmente predisposti all'origine.

I riduttori forniti dalla Dana Motion System Italia sono destinati ad essere integrati in apparecchiature o sistemi completi, di conseguenza non devono essere messi in funzione finchè la macchina o il sistema, non sia stato dichiarato conforme alle disposizioni delle direttive vigenti (Direttiva macchine 2006/42/CE e successivi emendamenti).

Prima di iniziare l'installazione, verificare la congruenza tra i dati riportati sulla targhetta identificativa del riduttore e quelli relativi all'ambiente in cui verrà installato.

I riduttori non devono essere riverniciati, se già forniti verniciati da Dana Motion Systems Italia S.r.l.

Nel caso sia assolutamente necessario applicare un ulteriore strato protettivo, bisogna evitare il pericolo di accensione a causa di cariche elettrostatiche.

ATTENZIONE

Qualsiasi lavoro di installazione o manutenzione deve essere eseguito con il riduttore fermo, quindi è buona norma assicurarsi che non possano verificarsi inserimenti non intenzionali della forza motrice.

AVVERTENZA

Le strutture a cui vanno fissati i riduttori devono essere rigide, con superfici di appoggio lavorate a macchina ben piane e prive di verniciatura, normali all'asse azionato, e con centraggi a tolleranza adeguata.

Le superfici a contatto debbono essere preventivamente sgrassate in modo perfetto.

Verificare che l'accoppiamento con la flangia del motore elettrico o idraulico (lato entrata moto) sia tale da non consentire l'ingresso di polveri o di corpi estranei.

Per precauzione è richiesto l'uso di pasta sigillante tipo Loctite 510.

Deve essere curato l'allineamento tra il riduttore e l'albero da comandare, soprattutto nel caso di riduttori con uscita femmina scanalata che, ricordiamo, non accettano carichi esterni né radiali, né assiali.

Per le corrette tolleranze di lavorazione della struttura ed albero macchina, attenersi a quanto indicato sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

Prima di effettuare il serraggio delle viti di collegamento del riduttore alla struttura e del motore al riduttore, verificare che l'accoppiamento tra alberi maschi e alberi femmina avvenga con precisione, ma senza interferenza.

Gli organi di comando da accoppiare sull'albero in uscita devono essere lavorati come da indicazioni riportate nei capitoli sequenti, per le rispettive tipologie di fissaggio ed alberi lenti.

Nel collegamento tra alberi in ingresso riduttore e motore si consiglia l'utilizzo di giunti in grado di recuperare disallineamento, mentre se si utilizzano organi meccanici non in grado di recuperare disallineamento, all'atto del montaggio porre molta attenzione all'allineamento fra riduttore e motore.

In caso di riduttori ortogonali, con albero maschio in ingresso, può verificarsi alla installazione che l'asse di ingresso sia deviato rispetto alla sua posizione ideale.

Per ovviare a questa situazione si consiglia:

- nel caso di collegamenti tramite giunti in grado di recuperare disallineamenti, di misurare il disallineamento esistente, di verificare il disallineamento accettabile dal giunto e nel caso in cui il valore sia maggiore, di spessorare il motore per rientrare nei giochi ammissibili
- nel caso di collegamento tramite organi meccanici che non consentano recupero di giochi di procedere all'allineamento del motore tramite spessoramenti.

Per il fissaggio devono essere impiegate viti di classe 10.9, con serraggio al 75% dello snervamento e rondelle piane ISO 7089 di durezza HV300.

Per il serraggio si consiglia di consultare la tabella Tabella 4: Coppie di serraggio (pag. 19).

M NOTA:

Per il fissaggio dei riduttori in Categoria 2 GD, utilizzare pasta frenafiletti tipo LOCTITE 243 sulle viti di fissaggio alla struttura della macchina.

Durante il montaggio debbono essere assolutamente evitati urti assiali violenti che potrebbero danneggiare i cuscinetti interni. Lubrificare gli accoppiamenti scanalati in ingresso e uscita con composti antigrippaggio come LOCTITE 8150, MOLYKOTE GN PLUS, CHESTERTON 710-785.

E' assolutamente vietato eseguire lavori di saldatura sui riduttori.

E' assolutamente vietato confinare i riduttori all'interno di involucri chiusi o comunque in spazi eccessivamente ristretti o vicino a fonti di calore.

Predisporre la lubrificazione in accordo con le indicazioni contenute nel capitolo Lubrificazione (pag. 50).

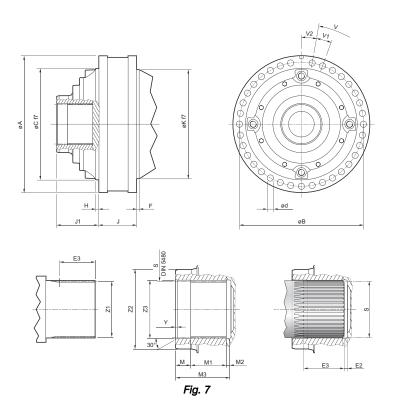
Tabella 4: Coppie di serraggio

Precarichi	e dei mon	nenti di seri	raggio per vi	ti con filetta	tura metrica	ISO					
dxp	Sr		4.8		5.8		8.8		10.9		12.9
mm	mm²	F kN	M N·m	F kN	M N·m	F kN	M N·m	F kN	M N·m	F kN	M N·m
3 x 0.5	5.03	1.2	0.9	1.5	1.1	2.3	1.8	3.4	2.6	4.0	3.0
4 x 0.7	8.78	2.1	1.6	2.7	2.0	4.1	3.1	6.0	4.5	7.0	5.3
5 x 0.8	14.2	3.5	3.2	4.4	4.0	6.7	6.1	9.8	8.9	11.5	10.4
6 x 1	20.1	4.9	5.5	6.1	6.8	9.4	10.4	13.8	15.3	16.1	17.9
7 x 1	28.9	7.3	9.3	9.0	11.5	13.7	17.2	20.2	25	23.6	30
8 x 1.25	36.6	9.3	13.6	11.5	16.8	17.2	25	25	37	30	44
8 x 1	39.2	9.9	14.5	12.2	18	18.9	27	28	40	32	47
10 x 1.5	58	14.5	26.6	18	33	27	50	40	73	47	86
10 x 1.25	61.2	15.8	28	19.5	35	30	53	43	78	51	91
12 x 1.75	84.3	21.3	46	26	56	40	86	59	127	69	148
12 x 1.25	92.1	23.8	50	29	62	45	95	66	139	77	163
14 x 2	115	29	73	36	90	55	137	80	201	94	235
14 x 1.5	125	32	79	40	98	61	150	90	220	105	257
16 x 2	157	40	113	50	141	76	214	111	314	130	368
16 x 1.5	167	43	121	54	150	82	229	121	336	141	393
18 x 2.5	192	49	157	60	194	95	306	135	435	158	509
18 x 1.5	216	57	178	70	220	110	345	157	491	184	575
20 x 2.5	245	63	222	77	175	122	432	173	615	203	719
20 x 1.5	272	72	248	89	307	140	482	199	687	233	804
22 x 2.5	303	78	305	97	376	152	592	216	843	253	987
22 x 1.5	333	88	337	109	416	172	654	245	932	286	1090
24 x 3	353	90	383	112	474	175	744	250	1060	292	1240
24 x 2	384	101	420	125	519	196	814	280	1160	327	1360
27 x 3	459	119	568	147	703	230	110	328	1570	384	1840
27 x 2	496	131	615	162	760	225	1200	363	1700	425	1990
30 x 3.5	561	144	772	178	955	280	1500	399	2130	467	2500
30 x 2	621	165	859	204	1060	321	1670	457	2370	535	2780

8.1 🖶 MESSA A TERRA

AVVERTENZA

Realizzare un collegamento equipotenziale del riduttore e dell'eventuale basamento macchina utilizzando uno dei fori liberi della carcassa riduttore avendo cura di:


- togliere la vernice nell'area di contatto;
- utilizzare conduttori di sezione adeguata secondo le vigenti norme, vedi tabella 5 della normativa EN 60079-0, considerando come area a sezione trasversale dei conduttori di fase della installazione quella dei cavi di alimentazione del motore;
- utilizzare sistemi di fissaggio antiallentamento ed antirotazione nel collegamento cavi;
- segnalare sul riduttore il punto utilizzato per il collegamento a terra con adeguata simbologia (높);
- verificare l'equipotenzialità tra riduttore e sistemi collegati in ingresso ed uscita allo stesso.

8.2 FISSAGGIO A FLANGIA CON ALBERO LENTO CAVO SCANALATO (FE)

FE - High Torque Planetary Gearboxes

Uscita femmina scanalata

Tabella 5:

	Α	В	С	d	E2	E3	F	Н	J	J1	K	М	M1	M2	МЗ
S300	445	400	370	15.5	2	>90	12	10	124	117	365	15	90	_	105
S400	445	400	370	15.5	10	>92	12	10	124	140	365	15	90	10	115
S600	510	460	410	22	10	>87	12	12	142	160	415	45	85	10	140
S850	565	510	460	26	10	>107	10	11	156	174	450	45	105	10	160
S1200	635	575	520	26	15	>125	15	12	175	205	520	45	120	15	180
S1800	710	650	595	26	15	>135	16	14	185	213	595	45	130	15	190
S2500	810	735	665	33	15	>145	15	12	195	227	665	50	140	15	205
S3500	885	810	740	33	17	>178	14	14	235	260	740	50	170	17	237
S5000	980	900	810	39	17	>208	14	14	265	338	810	60	200	17	277
S7500	1160	1070	970	40	15	>245	20	20	285	413	970	60	235	15	310

Tabella 6:

	S	V	V1	V2	Υ	Z1	Z2	Z3
S300	N120x5x30x22x9H	n°35x10°	10°	10°	1x45°	W120x5x30x22	165	122
S400	N140x5x30x26x9H	n°35x10°	10°	10°	3x30°	W140x5x30x26	185	142
S600	N150x5x30x28x9H	n°28x12.857°	12.857°	6.428°	5x30°	W150x5x30x28	218	152
S850	N170x5x30x32x9H	n°28x12.857°	12.857°	6.428°	5x30°	W170x5x30x32	235	172
S1200	N200x5x30x38x9H	n°32x11.25°	11.25°	5.625°	5x30°	W200x5x30x38	275	202
S1800	N210x5x30x40x9H	n°32x11.25°	11.25°	5.625°	5x30°	W210x5x30x40	297	212
S2500	N240x5x30x46x9H	n°32x11.25°	11.25°	5.625°	5x30°	W240x5x30x46	338	242
S3500	N280x8x30x34x9H	n°36x10°	10°	5°	5x30°	W280x8x30x34	358	282
S5000	N340x8x30x41x9H	n°32x11.25°	11.25°	5.625°	5x30°	W340x8x30x41	435	342
S7500	N400x8x30x48x9H	n°40x9°	9°	4.5°	7x30°	W400x8x30x48	548	402

FE - Industrial Planetary Gearboxes

Flangia e albero cavo scanalato

Tabella 7:

	МЗ	М	M1	M2	Υ	S	Z2	Z3	Z1	E2	E3
010	34.7	5	24.7	5	0.5	A40x36 H10	50 f8	36 H11	B40x36 c9	2	>30
020	51.5	8	43.6	-	1.0	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>44
030	44	8	36	-	1.5	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>36
045	44	8	36	-	1.5	A58x53 H10	75 f7	60 H7	B58x53 c9	2	>36
065-067	67	9	50	8	1.0	A70x64 H10	90 g7	72 H7	B70X64 c9	2	>58
090-091	75	5	62	8	1.0	A70X64 H10	90 h8	72 H7	B70X64 c9	2	>70
150-155	77	7	70	-	1.5	A80x74 H10	100 f7	88 H7	B80x74 c9	2	>70
250-255	85	7	78	-	1.5	A100x94 H10	130 f7	102 H7	B100x94 c9	2	>78
320	85	7	78	-	1.5	A100x94 H10	130 f7	102 H7	B100x94 c9	2	>78

8.3 FISSAGGIO A FLANGIA CON ALBERO LENTO MASCHIO SCANALATO (MN - MR - MP)

MP - High Torque Planetary Gearboxes

Uscita maschio scanalato

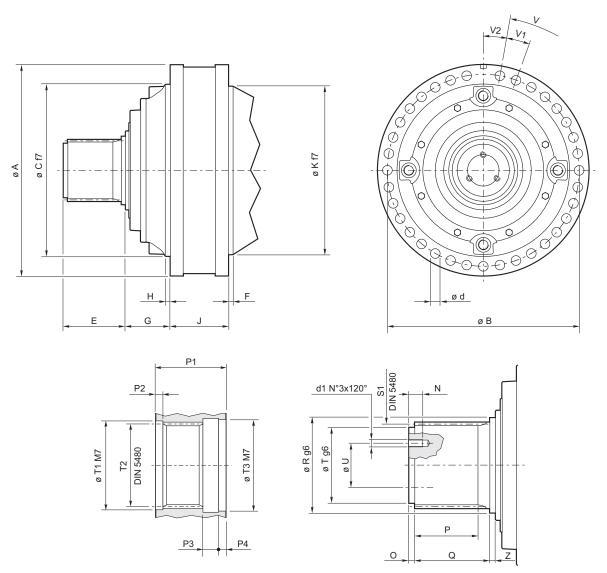
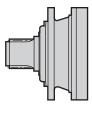
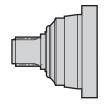


Fig. 9

Tabella 8:

	Α	В	С	d	d1	E	F	G	Н	J	K	N	0	Р
S300	445	400	370	15.5	M14	130	12	117	10	132	365	27	10	85
S400	445	400	370	15.5	M14	140	12	145	10	124	365	27	13	90
S600	510	460	410	22	M14	150	12	152	12	145	415	27	12	95
S850	565	510	460	26	M14	170	10	163	11	156	450	27	15	115


Tabella 9:


	P1	P2	P3	P4	Q	R	S1	Т	T1	T2	ТЗ	U	V	V1	V2	Z
S300	130	10	15	21	105	120	W120x3x30x38x8f	100	121	N120x3x9H	120	75	n°35x10°	10°	10°	15
S400	140	13	20	18	109	130	W130x3x30x42x8f	110	131	N130x3x9H	130	85	n°35x10°	10°	10°	18
S600	150	12	18	27	123	151	W150x5x30x28x8f	120	151	N150x5x9H	151	95	n°28x12.857°	12.857°	6.428°	15
S850	170	15	17	25	140	171	W170x5x30x32x8f	140	171	N170x5x9H	171	112	n°28x12.857°	12.857°	6.428°	15

MN - Industrial Planetary Gearboxes Flangia e albero scanalato

010 - 091

150 - 255

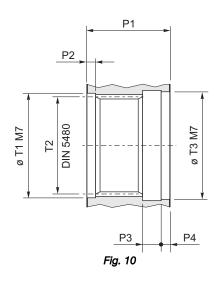
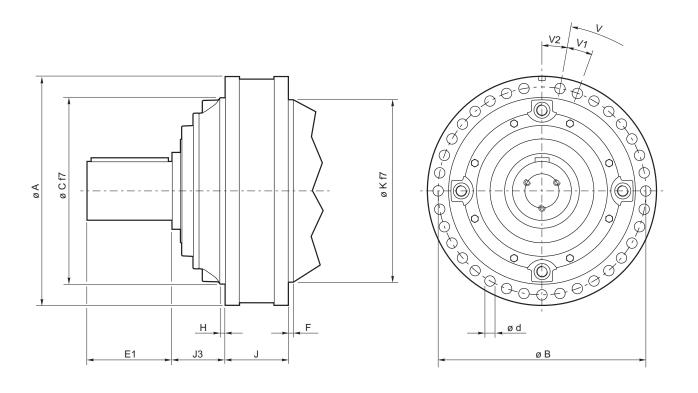


Tabella 10:


		d1	N	0	Р	P1	P2	P3	P4	Q	R	S1	T	T1	T2	T3	U	Z
010	MN-MR	M6	20	5	30	55	5	14	7	43	42 f7	B40x36 c9	35 f7	42 M7	A40x36	42 M7	24	7
020	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
030	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
040	MN	M10	20	8	50	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
045	MR	M10	20	8	38	68	8	13	10	58	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	8
046	MN	M10	20	8	50	80	8	16	7	73	60 f7	B58x53 c9	50 f7	60 M7	A58x53	60 M7	32	7
065-067	MR	M10	20	10	50	90	10.5	21	10	80	72 f7	B70x64 c9	62 f7	72 M7	A70x64	72 M7	40	10
090-091	MN-MR	M10	25	10	50	90	10.5	22	10	80	85 f7	B80x74 c9	70 f7	80 M7	A80x74	85 M7	45	10
150-155	MN	M10	25	10	50	90	10.5	22	10	80	85 f7	B80x74 c9	70 h7	80 M7	A80x74	85 M7	45	10
100 100	MR	M14	30	12	65	110	12	22	15	98	105 f7	B100x94 c9	85 h7	105 M7	A100x94	105 M7	52	12
250-255	MN	M14	25	12	65	110	12	22	15	97	105 f7	B100x94 c9	85 f7	105 M7	A100x94	105 M7	52	13

8.4 FISSAGGIO A FLANGIA CON ALBERO LENTO MASCHIO CILINDRICO (MN1 - MR1 - MP1)

MP1 - High Torque Planetary Gearboxes

Uscita maschio cilindrico

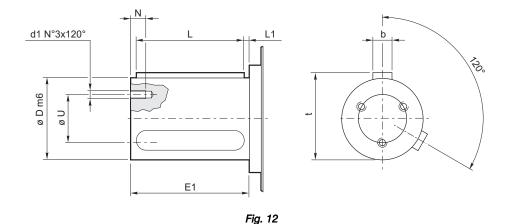
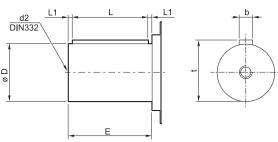
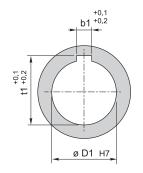
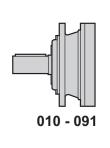
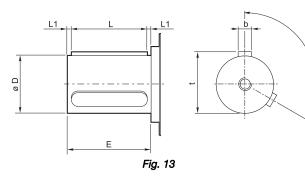


Tabella 11:


	Α	В	b	С	D	d	d1	E1	F	Н	J	J3	K	L	L1	N	t	U	V	V1	V2
S300	445	400	32	370	120	15.5	M14	210	12	10	132	117	365	200	5	27	127	75	n°35x10°	10°	10°
S400	445	400	32	370	130	15.5	M14	220	12	10	124	145	365	200	10	27	137	85	n°35x10°	10°	10°
S600	510	460	40	410	160	22	M14	240	12	12	145	152	415	220	10	27	169	120	n°28x12.857°	12.857°	6.428°
S850	565	510	40	460	170	26	M14	240	10	11	156	163	450	220	10	27	179	125	n°28x12.857°	12.857°	6.428°




MN1 - Industrial Planetary Gearboxes


Flangia e albero cilindrico

MR1 - Industrial Planetary Gearboxes Flangia e albero cilindrico rinforzato

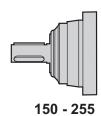


Fig. 14

Tabella 12:

		D	E	L	L1	t	b	d2	D1	t1	b1
010	MN1-MR1	42 k6	82	70	6	45	12	M16	42	45	12
020	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
030	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
040	MN1	65 m6	105	90	7.5	69	18	M20	65	69	18
045	MR1	65 m6	105	90	7.5	69	18	M20	65	69	18
046	MN1	65 m6	105	90	7.5	69	18	M20	65	69	18
065-067	MR1	80 m6	130	110	10	85	22	M20	80	85	22
090-091	MN1-MR1	90 m6	170	160	5	95	25	M24	90	95	25
150-155	MN1	100 m6	210	200	5	106	28	M24	100	106	28
150-155	MR1	100 m6	210	200	5	106	28	M24	100	106	28
250-255	MN1	110 m6	210	200	5	116	28	M24	100	116	28

8.5 FISSAGGIO PENDOLARE CON ALBERO LENTO CAVO PER CALETTATORE (FS)

FS - High Torque Planetary Gearboxes

Uscita femmina per giunti ad attrito

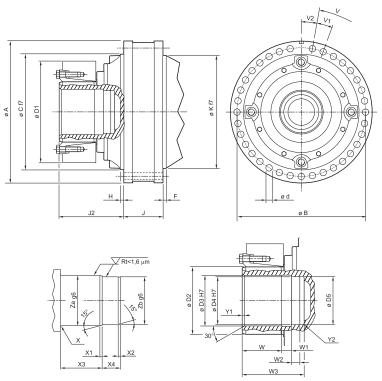
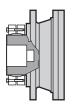


Fig. 15

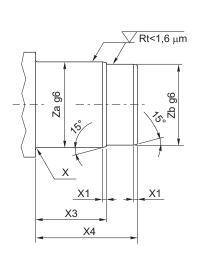
Tabella 13:

	Α	В	С	d	D1	D2	D3	D4	D5	F	Н	J	J2	K
S300	445	400	370	15.5	320	185	140	130	132	12	10	124	178	365
S400	445	400	370	15.5	320	185	140	130	132	12	10	124	208	365
S600	510	460	410	22	370	220	165	155	157	12	12	142	235	415
S850	565	510	460	26	405	240	180	170	172	10	11	156	257	450
S1200	635	575	520	26	460	280	220	210	212	15	12	175	315	520
S1800	710	650	595	26	485	300	240	230	232	16	14	185	322	595
S2500	810	735	665	33	570	340	260	250	252	15	12	195	358	665
S3500	885	810	740	33	590	360	290	280	282	14	14	235	368	740
S5000	980	900	810	39	680	420	340	330	332	14	14	265	438	810
S7500	1160	1070	970	40	850	500	400	390	392	20	20	285	530	970


Tabella 14:

	٧	V1	V2	W	W1	W2	W3	X	X1	X2	Х3	X4	Y1	Y2	Za	Zb
S300	n°35x10°	10°	10°	83	27	30	150	R 2 max	4	4	87	57	4	R 3.5	140	130
S400	n°35x10°	10°	10°	110	25	22	167	R 2.5 max	4	4	114	47	5	R 3.5	140	130
S600	n°28x12.857°	12.857°	6.428°	132	28	25	200	R 4 max	5	5	137	53	6	R 5	165	155
S850	n°28x12.857°	12.857°	6.428°	140	35	30	220	R 4 max	5	5	145	65	5	R6	180	170
S1200	n°32x11.25°	11.25°	5.625°	179	40	32	269	R 4 max	5	5	184	72	8	R 10	220	210
S1800	n°32x11.25°	11.25°	5.625°	181	40	32	271	R 4 max	5	5	186	72	8	R 10	240	230
S2500	n°32x11.25°	11.25°	5.625°	211	45	37	311	R 4 max	5	5	216	82	8	R 10	260	250
S3500	n°36x10°	10°	5°	218	45	40	323	R 4 max	5	5	223	85	8	R 12	290	280
S5000	n°32x11.25°	11.25°	5.625°	260	45	40	365	R 4 max	5	5	265	85	8	R 12	340	330
S7500	n°40x9°	9°	4.5°	230	100	55	410	R 4 max	5	5	235	160	10	R 12	400	390

FS - Industrial Planetary Gearboxes


Albero cavo per calettatore

010 - 091

150 - 255

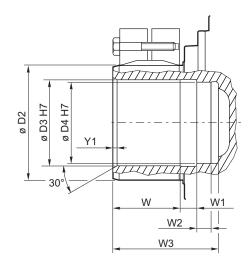
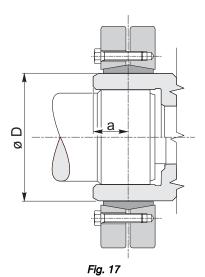


Fig. 16

Tabella 15:

	W	W1	W2	W3	D2	D3	D4	Y1	Х	X1	ХЗ	X4	Za	Zb
010	29	9	10	50	62 f7	50 H7	30 F7	2	R 2	3	33	48	50	30
020	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
030	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
045	54	16	23	95	100 f7	75 H7	40 F7	2	R 2	3	52	92	75	40
065-067	80	20	33	135	125 f7	90 H7	50 F7	2	R 2	3	62	132	90	50
090-091	80	20	38	140	140 f7	100 H7	60 F7	2	R 2	3	69	135	100	60
150-155	79	6	47	135	165 f7	120 H7	80 F7	5	R 2	3	79	130	120	80
250-255	80	20	47	150	175 f7	130 H7	80 F7	2	R 1.5	5	81	145	130	80



8.5.1 INSTALLAZIONE DEL RIDUTTORE CON USCITA FS

MOTA:

i giunti di collegamento vengono forniti pronti per essere installati, perciò non devono essere smontati prima dell'installazione iniziale.

- Avvitare leggermente tre viti del giunto di serraggio poste a 120 ° fino ad ottenere che l'anello interno possa essere appena ruotato a mano (un serraggio troppo stretto potrebbe deformare l'anello interno).
- Inserirlo sopra l'albero del riduttore la cui superfice esterna è stata precedentemente lubrificata.
- Sgrassare la superficie interna dell'albero del riduttore e l'albero della macchina.
- Inserire il riduttore sull'albero della macchina o viceversa (non deve essere necessaria una forza assiale eccessiva).
- Posizionare la mezzeria del giunto sulla mezzeria del tratto utile dell'albero della macchina (vedi Fig. 17 (pag. 29)); per questa operazione attenersi alla quota "a", che varierà a seconda della grandezza del giunto, come da tabelle a seguire.

- Avvitare con chiave dinamometrica tutte le viti del giunto gradualmente e in senso circolare (non in senso diametralmente opposto) fino al totale serraggio con una coppia corrispondente ad un valore riportato in Tabella 16: (pag. 30) oppure Tabella 17: (pag. 31) a seconda della taglia riduttore: Ma = coppia di serraggio [N·m], T = coppia di serraggio [N·m]
- Verificare che i 2 anelli rimangano concentrici e paralleli, tenendo presente che il massimo errore di parallelismo permesso è di 0.25 0.35% del diametro esterno dei giunti.

MOTA:

Un eccessivo tiraggio può causare una deformazione permanente all'anello interno, attenersi alle coppie indicate in tabella.

Proteggere la zona del giunto con opportuno carter in lamiera, se si prevede che pietre, sabbia o altro materiale possano danneggiare il giunto o le guarnizioni di tenuta del riduttore.

Il carter di protezione deve essere dimensionato correttamente per esaudire la prova d'impatto come richiesto dalla EN ISO 80079-36.

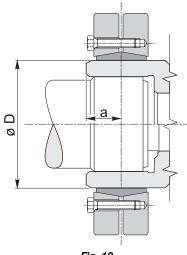


Fig. 18

Tabella 16:

	Dimensioni		Viti			
	d. sh.	dxD	n°	Type	Ma [N·m]	a
010	50	62x110	10	M6x25	12	17
020-030-045	75	100x170	12	M8x35	30	30
065-067	90	125x215	12	M10x40	59	35
090-091	100	140x230	10	M12x45	100	40
150-155	120	165x290	8	M16x55	250	45
250-255	130	175x300	8	M16x55	250	45

Ma = Coppia di serraggio N⋅m

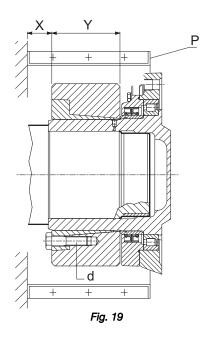


Tabella 17:

Tabella 17.							
	Tipo giunto	Y			X [mm] per tipo di chiave		
	Tipo giaino		d	T [N·m]		0	O si a
S300	185x320	85	M16	290	50	100	58
S400	185x320	112	M20	490	55	115	58
S600	220x370	134	M20	490	55	115	58
S850	240x405	144	M20	490	55	115	58
S1200	280x460	172	M24	840	65	120	70
S1800	300x485	176	M24	840	65	120	70
S2500	340x570	206	M27	1250	_	125	85
S3500	360x590	210	M27	1250	_	125	85
S5000	420x680	246	M27	1250	_	125	85
S7500	500x850	213	M30	1970	_	_	90

T = Coppia di serraggio N⋅m

8.5.2 MONTAGGIO BRACCIO DI REAZIONE SUL RIDUTTORE

Il braccio di reazione e la relativa biella possono avere soluzioni di progetto diverse da quelle proposte nelle pagine seguenti, ma è tassativo rispettare i seguenti accorgimenti:

- Il braccio di reazione deve essere perfettamente dritto.
- Se si prevedono pezzi saldati, occorre sabbiare, normalizzare e correggere di macchina utensile eventuali deformazioni.
- La superficie di contatto del braccio di reazione in corrispondenza della flangiatura al riduttore, deve essere perfettamente piana.
- Prima di collegare il braccio di reazione al riduttore, eliminare accuratamente ogni traccia di grasso dalle superfici a contatto.

AVVERTENZA

Non eseguire alcun lavoro di saldatura che coinvolga il riduttore, nemmeno come messa a terra!

- Usare sempre la chiave dinamometrica per serrare le viti di collegamento.
- Il disegno fornisce solo un esempio indicativo, poiché, la configurazione corretta, dipende dal senso di rotazione del riduttore. Infatti, durante il lavoro, è consigliabile che la biella risulti in trazione e non in compressione. Quindi può essere conveniente il montaggio dal lato opposto, relativamente alla raffigurazione. In caso di necessità, a causa di ingombri specifici, la biella può essere montata verso l'alto.
- Quando si esegue un montaggio tramite giunto calettatore ad attrito e braccio di reazione, occorre ricordare che i pesi del riduttore, del braccio di reazione e di tutti gli elementi ad essi collegati, inducono carichi e momenti ribaltanti che vengono sopportati dai cuscinetti del portasatelliti dello stadio d'uscita. Quindi la posizione relativa di tutte le masse che concorrono alla trasmissione della potenza deve essere valutata in sede di progetto al fine di rendere minimo il valore delle risultanti su detti cuscinetti. Per le stesse ragioni è chiaro che si deve limitare al massimo il peso dei componenti collegati al riduttore, valutando accuratamente gli spessori delle strutture effettivamente necessarie a reggere gli sforzi e decentrando tutti gli elementi che non sono funzionali alla trasmissione di potenza.

AVVERTENZA

Una progettazione impropria, può accorciare la vita dei riduttori causando cedimenti prematuri dei cuscinetti e degli ingranaggi a causa di eventuali eccessive deformazioni elastiche degli stadi e determinare la possibilità di slittamento e grippaggio del giunto ad attrito.

- Verificare che i centraggi del riduttore e del braccio di reazione siano puliti, esenti da ammaccature e che non vi siano tracce di vernice.
- Lubrificare gli accoppiamenti e infilare il braccio di reazione sul centraggio del riduttore, quindi infilare le spine di riferimento eventualmente richieste.
- Fissare il braccio di reazione utilizzando bulloni di classe minimo 8.8.
- Si raccomanda di usare viti di classe 10.9 o 12.9 quando l'applicazione comporta pesanti urti, frequenti avvii o arresti, inversioni o quando si supera il 70% della coppia massima del riduttore.
- Verificare che il sistema di ancoraggio del braccio di reazione non blocchi il riduttore, ma dia la possibilità al riduttore di
 muoversi nello spazio in modo da assorbire i movimenti impressigli dall'albero macchina; per le coppie di serraggio vedi
 Tabella 4: Coppie di serraggio (pag. 19), assicurandosi che queste siano compatibili con la controparte (dadi e strutture di
 fissaggio).

Indicazioni per la costruzione e ancoraggio del braccio di reazione

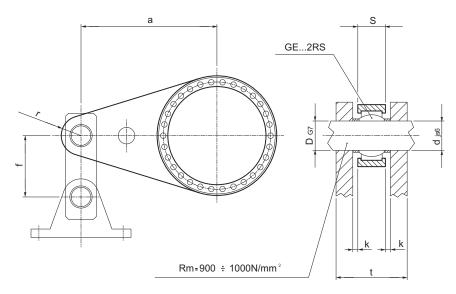


Fig. 20

Tabella 18:

	a min [mm]	s [mm]	r min. [mm]	f min [mm]	tipo nodo sferico GE-UK-2RS	D d [mm]	k [mm]	t min [mm]
S300	600	30	45	150	35	35	4	70
S400	700	32	50	160	40	40	4	72
S600	800	35	50	230	40	40	6.5	86
S850	1000	40	55	250	45	45	7.5	92
S1200	1000	45	65	270	50	50	7.5	108
S1800	1200	55	75	300	60	60	8.5	120
S2500	1400	60	85	350	70	70	9.5	137
S3500	1600	65	95	400	80	80	10.5	144
S5000	2000	70	105	450	90	90	9.5	147
S7500	2500	80	120	550	100	100	19	178

Tabella 19:

	a min [mm]	s [mm]	r min [mm]	f min [mm]	GE2RS	D d [mm]	k [mm]	t min [mm]
010	200	15	30	80	20	20	2	35
020	300	15	30	80	20	20	2	35
030-045	300	20	35	100	25	25	3	46
065-067	400	20	35	100	25	25	3	46
090-091	500	25	40	150	30	30	3	55
150-155	600	25	40	150	30	30	3	55
250-255	700	30	45	150	35	35	4	66

- 1 Il punto di ancoraggio del braccio di reazione deve essere flottante in tutte le direzioni. Quindi si raccomanda l'impiego di snodi sferici in tutti i collegamenti.
- 2 Si consiglia l'impiego di snodi sferici tipo "long life" con superfici d'attrito protette con PTFE. In alternativa possono essere usati giunti del tipo "acciaio su acciaio" prevedendo la possibilità di una operazione di ingrassaggio periodica.
- **3** La biella di ancoraggio deve essere parallela al braccio di reazione per garantire, a vuoto, il gioco laterale K che garantisce libertà di movimento alla struttura in caso di deformazione.
- 4 Il supporto fisso a cui è collegata la seconda estremità della biella deve garantire un ancoraggio adeguato al carico.

Verificare l' equipotenzialità tra riduttore e braccio di reazione.

8.5.3 DISINSTALLAZIONE DEL GIUNTO E DEL RIDUTTORE

- Sbloccare gradualmente le viti di fissaggio in senso circolare.
- Inizialmente ogni vite deve essere sbloccata solo un quarto di giro per evitare inclinazioni e bloccaggio degli elementi di fissaggio.

Vedi Tabella 16: (pag. 30) Ma = coppia di serraggio [N·m], o Tabella 17: (pag. 31) T = coppia di serraggio [N·m], a seconda della taglia riduttore.

- Rimuovere il riduttore dall'albero comandato. A tal fine è stato previsto un foro sull'albero del riduttore mediante il quale è anche possibile pompare olio a bassa pressione per ottenere uno sfilamento graduale.
- Togliere il giunto dall'albero del riduttore.

8.6 FISSAGGIO PENDOLARE CON ALBERO LENTO FEMMINA SCANALATO (FAR)

FAR - High Torque Planetary Gearboxes

Uscita femmina scanalata

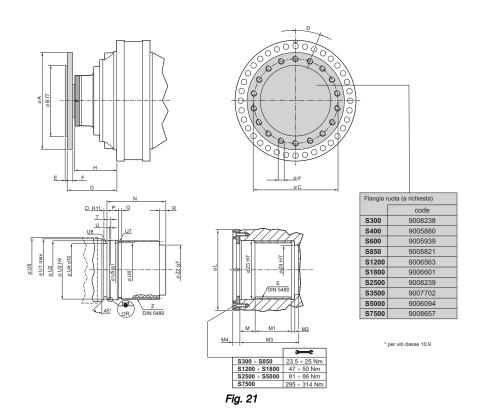


Tabella 20:

	Α	В	С	d*	D	E	F	G	Н	L	М	M1	M2	МЗ	M4	N	0	OR
S300	360	220	300	M30	12x30°	10	30	177	137	165	15	90	_	117	20	115	9	113.97x2.62
S400	360	220	300	M30	14x25.71°	10	30	200	160	185	15	90	10	135	20	133	9	133.02x2.62
S600	400	260	340	M30	18x20°	10	30	220	180	218	45	85	10	157	20	155	9	145.72x2.62
S850	450	310	395	M30	22x16.36°	10	35	260	194	235	45	105	10	173	20	171	9	164.77x2.62
S1200	510	375	450	M30	22x16.36°	10	35	280	225	275	45	120	15	198	20	196	9	190.9x3.53
S1800	585	445	530	M30	30x12°	10	40	294	233	300	45	130	15	208	20	206	9	202.79x3.53
S2500	655	480	580	M36	24x15°	10	40	317	257	324	50	140	15	227	30	225	11	234.54x3.53
S3500	730	545	650	M36	30x12°	10	50	360	290	358	50	170	17	259	30	257	12	266.29x3.53
S5000	800	620	730	M36	36x10°	10	50	425	368	430	60	200	17	320	30	318	13	304.39x3.53
S7500	960	650	880	M39	30x12°	10	60	533	449	540	60	235	15	350	36	348	20	380.37x5.33

Tabella 21:

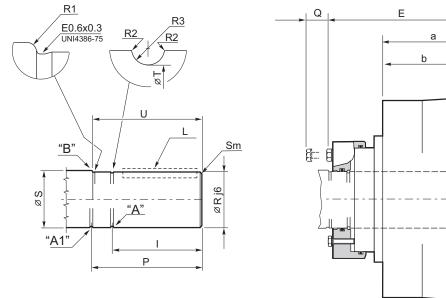
	Р	Q	R	S	Т	U	U1	U2	U3	U4	U5	U6	U7	U8	U9	Z	Z2	Z3	Z4
S300	14	8	11.5	N120x5x30x22x9H	8.6	3.6	120	115	117.8	102	122	107	R 1.2	R 1.2	123	W120x5x30x22	105	122	105
S400	14	10	26	N140x5x30x26x9H	8.6	3.6	140	130	137.8	122	142	127	R 1.2	R 1.2	143	W140x5x30x26	120	142	120
S600	33	10	22	N150x5x30x28x9H	11	3.6	160	150	147.8	134	152	137	R 1.2	R 1.2	160	W150x5x30x28	122	152	122
S850	33	10	18	N170x5x30x32x9H	11	3.6	180	170	167.8	154	172	157	R 1.2	R 1.2	180	W170x5x30x32	145	172	145
S1200	33	10	28	N200x5x30x38x9H	12	4.8	220	206	196.4	189	202	187	R 1.2	R 1.2	220	W200x5x30x38	170	202	170
S1800	33	10	28	N210x5x30x40x9H	12	4.8	240	226	206.4	199	212	197	R 1.2	R 1.2	240	W210x5x30x40	180	212	180
S2500	38	10	36	N240x5x30x46x9H	12	4.8	260	246	236.4	228	242	227	R 1.2	R 1.2	260	W240x5x30x46	220	242	220
S3500	38	10	34	N280x8x30x34x9H	12	4.8	300	280	276.4	264	282	260	R 1.2	R 1.2	300	W280x8x30x34	235	282	235
S5000	45	15	58	N340x8x30x41x9H	14	4.8	360	340	336.4	320	342	320	R 1.2	R 1.2	360	W340x8x30x41	320	342	320
S7500	45	15	53	N400x8x30x48x9H	20	7.2	420	405	393.3	370	402	380	R 4.0	R 4.0	420	W400x8x30x48	380	402	380

8.6.1 INDICAZIONE PER LA COSTRUZIONE E ANCORAGGIO DEL BRACCIO DI REAZIONE

MOTA:

Per le istruzioni di montaggio del braccio di reazione fare riferimento al punto Montaggio braccio di reazione sul riduttore (pag. 32).

Verificare l' equipotenzialità tra riduttore e braccio di reazione.


8.7 FISSAGGIO PENDOLARE CON ALBERO LENTO CON CAVA PER LINGUETTA (FP)

FP - Industrial Planetary Gearboxes

Albero cavo con cava per linguetta

020 - 255

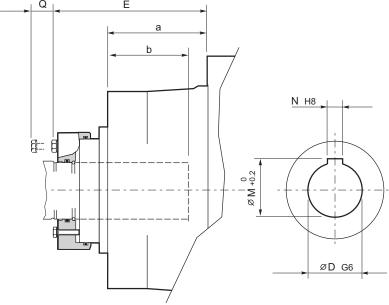
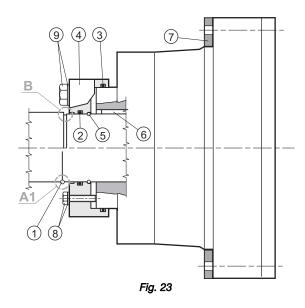


Fig. 22

Tabella 22:

	D	М	N	R	R1	R2	R3	s	Т	1	Р	L	U	E	Q	а	b	Sm
020	50	53.8	14	50	1.3	0.4		53 -0.3 / -0.5	47.5	97.5	119.5	14x9x70	118	130	70	87	72	1.5-2
030	65	69.4	18	65	1.6	0.4		68 +0.2 / +0.1	63.8	107.5	131.5	18x11x90	130	143	70	90	80	1.5-2
045	65	69.4	18	65	1.6	0.4	1.8	68 +0.2 / +0.1	63.8	107.5	131.5	18x11x91	130	143	70	90	80	1.5-3
065-067	80	85.4	22	80	1.6	0.4		83 +0.2 / -0.1	76.8	138	162.5	22x14x110	161	173	70	101	94	2
090-091	90	95.4	25	90	1.6	0.4		93 +0.2 / +0.1	86.8	158	183.5	25x14x125	182	196	70	121.5	114	2
150-155	100	106.4	28	100	1.6	0.4		103 +0.2 / +0.1	96.8	180	206	28x16x140	204	236.5	80	149	122	2
250-255	110	116.4	28	110	3	0.3	3.4	116 +0.2 / +0.1	104	159	186	28x16x125	183	253	80	192	130	2


[&]quot;A" gola obbligatoria per bloccaggio

[&]quot;A1" o "B" gole in alternativa per estrazione

8.7.1 INSTALLAZIONE DEL RIDUTTORE CON USCITA FP

- Inserire se previsto nella sua sede sull'albero l'anello d'arresto pos. n°1.
- Ingrassare le sedi degli o-ring pos. n° 2 e 3 sul coperchio pos. n° 4; quindi inserire i rispettivi o-ring nelle loro sedi; inserire a sua volta il coperchio sull'albero.

- Inserire l'altro anello d'arresto pos. n° 5, poi la linguetta pos. n° 6 nelle rispettive sedi sull'albero.
- Montare il braccio di reazione pos. nº 7 sul riduttore (vedi informazioni a seguire per braccio di reazione).
- Lubrificare adeguatamente sia l'albero che la sua sede (albero femmina riduttore); quindi effettuare l'accoppiamento tra albero e riduttore (non deve essere forzato).
- Posizionare il coperchio pos. n° 4, serrarlo con le viti e rispettive rondelle dowty pos. n° 8 (fornite con tutti gli accessori), facendo attenzione di avvitare le viti gradualmente e in senso circolare (non in senso diametralmente opposto) fino al totale serraggio applicando una coppia come da Tabella 4: Coppie di serraggio (pag. 19) (classe delle viti 8.8), utilizzando un frenafiletti medio.
- Montare tutte le altre viti e relative rondelle dowty pos. n° 9 (meno una in posizione alta), inserire altro lubrificante da questo foro lasciato aperto; quindi montare anche l'ultima vite chiudendo così l'accoppiamento in una camera stagna lubrificata, utilizzando un frenafiletti medio.

8.7.2 INDICAZIONI PER LA COSTRUZIONE E ANCORAGGIO DEL BRACCIO DI REAZIONE



Fig. 24

Tabella 23:

	a min [mm]	s [mm]	r min [mm]	f min [mm]	GE2RS	D, d [mm]	k [mm]	t min [mm]
010	200	15	30	80	20	20	2	35
020	300	15	30	80	20	20	2	35
030-045	300	20	35	100	25	25	3	46
065-067	400	20	35	100	25	25	3	46
090-091	500	25	40	150	30	30	3	55
150-155	600	25	40	150	30	30	3	55
250-255	700	30	45	150	35	35	4	66

1 NOTA:

Per le istruzioni di montaggio del braccio di reazione fare riferimento al punto Montaggio braccio di reazione sul riduttore (pag. 32).

Verificare l' equipotenzialità tra riduttore e braccio di reazione.

8.7.3 DISINSTALLAZIONE DEL RIDUTTORE CON USCITA FP

- Liberare il braccio di reazione del riduttore, sostenendo adeguatamente il riduttore stesso.
- Togliere le viti pos. nº 9 sostituendole con viti di maggior lunghezza, compatibilmente con lo spazio a disposizione.
- Togliere le viti pos. n° 8; quindi avvitare le viti pos. n° 9 gradualmente e in senso circolare (non in senso diametralmente opposto) fino allo sbloccaggio del riduttore.

AVVERTENZA

Al rimontaggio dopo una qualsiasi operazione di riparazione o altro, le rondelle tipo "Dowty" in pos. n° 8 e 9 non possono essere riutilizzate; devono essere tassativamente sostituite con rondelle nuove.

8.8 NORME DI INSTALLAZIONE PER RIDUTTORE CON FISSAGGIO A PIEDE

- Accertarsi che i piedi di montaggio appoggino su una superficie piana; in caso contrario spessorarli al fine che tutti appoggino correttamente.
- Un errato appoggio dei piedi può provocarne la rottura.
- Per il fissaggio utilizzare viti di classe minimo 8.8 serrate con coppia come da Tabella 4: Coppie di serraggio (pag. 19).

8.9 MONTAGGIO DI ACCESSORI SUGLI ALBERI D'USCITA E/O D'ENTRATA

Per il montaggio di pignoni, pulegge o giunti utilizzare attrezzature adeguate al fine di evitare grippaggi; in alternativa riscaldare il pezzo a 80° - 100° C.

Lubrificare le scanalature con un sottile strato di grasso o un lubrificante anti-grippaggio e serrare le viti di fissaggio applicando una coppia di serraggio adeguata alla classe delle viti utilizzate. Per il serraggio si consiglia di consultare Tabella 4: Coppie di serraggio (pag. 19).

AVVERTENZA

Per il montaggio di pignoni, pulegge o giunti e altri accessori, non servirsi di martelli, o di altri strumenti, per non danneggiare gli alberi o supporti del riduttore.

8.10 GUARNIZIONI A LABIRINTO TACONITE (ACCESSORIO OPZIONALE)

Le tenute a labirinto Taconite sono state progettate principalmente per un uso in ambienti polverosi. La penetrazione della polvere è ostacolata da un labirinto tra la parte fissa e quella rotante solidale con l'albero, riempito di grasso.

AVVERTENZA

Le tenute Taconite vanno periodicamente lubrificate con una frequenza annuale (come indicato in Tabelle frequenza controlli e manutenzione (pag. 57)) con grasso contenente PTFE, grado di consistenza NLGI nr.2, come grasso Polymer 400 o similare. Sui disegni dimensionali SI sono indicate le posizioni degli ingrassatori da utilizzare.

8.11 DISPOSITIVO ANTIRITORNO (ACCESSORIO OPZIONALE)

A richiesta, per certe applicazioni il riduttore può essere integrato con un dispositivo antiritorno. Questo dispositivo permette la rotazione dell'albero in una sola direzione durante il ciclo di lavoro, bloccandolo nel senso opposto. Il senso di rotazione è indicato con una freccia, su una targhetta posizionata vicino all'albero d'ingresso del riduttore. Il dispositivo antiritorno è integrato nel riduttore e lubrificato con lo stesso olio.

AVVERTENZA

Per evitare di danneggiare il dispositivo antiritorno o il riduttore stesso, il motore non deve ruotare nel senso di bloccaggio del dispositivo. Osservare l'indicazione di rotazione libera indicata sul riduttore.

MOTA:

Prima di collegare il motore elettrico, determinarne la direzione di rotazione dalle tre fasi di corrente, utilizzando un indicatore di fasi di corrente, e collegare il motore per avere il corretto senso di rotazione richiesto dal dispositivo antiritorno.

8.12 FRENI LAMELLARI NEGATIVI DI STAZIONAMENTO IN BAGNO D'OLIO

Questi freni agiscono sotto la spinta di una serie di molle su coppie di dischi alternati fissi e mobili; lo sbloccaggio avviene per effetto della pressione idraulica nel pistone. Hanno quindi un funzionamento "negativo"; sono da impiegare come freni di stazionamento, non per frenatura dinamica. Tali prestazioni, con margine di accuratezza +/- 10% sono sempre calcolate con zero contropressione; in caso contrario la coppia frenante viene percentualmente ridotta nel rapporto contropressione/pressione min. apertura.

La selezione del freno viene fatta in fase di progetto e i dati tecnici del freno utilizzato sono indicati sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

MOTA:

Il freno lamellare di stazionamento è usato solo come freno di stazionamento, o in condizioni particolari come freno d'emergenza.

Diverse taglie di freni montati in ingresso ai riduttori, sono disponibili come da tabelle seguenti:

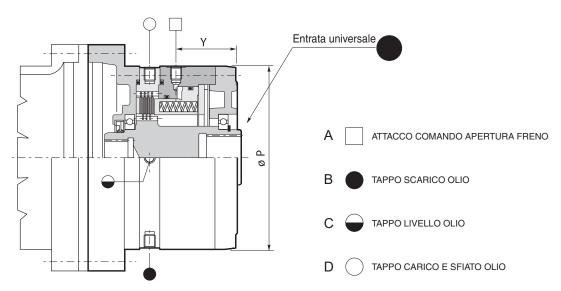


Fig. 25

Tabella 24:

	Р	V	Attacchi	Attacchi					
		'	Α	В	С	D	Kg		
FL250	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	24		
FL350	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	24		
FL450	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	26		
FL650	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	36		
FL750	195	67	M12X1.5	R 1/4	R 1/4	R 1/4	37		
FL960	225	72.5	M12X1.5	R 1/4	R 1/4	R 1/4	42		

Tabella 25:

		Т	Р	Pmax	Vo [I]		Va [cm ³]
		[N·m]	[bar]	[bar]	orizzontale	verticale	lamelle nuove
FL250	FL 250.4C	181	13.28	315	0.3	0.6	15
FL230	FL 250.6C	278	13.28	315	0.3	0.6	15
FL350	FL 350.6C	417	19.92	315	0.3	0.6	15
rL330	FL 350.8C	571	19.92	315	0.3	0.6	15
FL450	FL 450.6C	540	25.59	315	0.3	0.6	15
FL ⁴³⁰ FL	FL 450.8C	737	25.59	315	0.3	0.6	15
FL650	FL 650.10C	642	19.92	315	0.5	1.0	15
	FL 650.12C	792	19.92	315	0.5	1.0	15
	FL 650.14C	949	19.92	315	0.5	1.0	15
	FL 750.10C	834	25.59	315	0.5	1.0	15
FL750	FL 750.12C	1027	25.59	315	0.5	1.0	15
	FL 750.14C	1229	25.59	315	0.5	1.0	15
	FL 960.12C	1528	21.98	315	1.2	2.4	22
FL960	FL 960.14C	1783	21.98	315	1.2	2.4	22
	FL 960.16C	2038	21.98	315	1.2	2.4	22
	FL 960.18C	2293	21.98	315	1.2	2.4	22

T: Coppia statica media

P: Pressione apertura freno

P_{max}: Pressione max.

Vo: Volume olio

Va: Volume olio per comando apertura freno

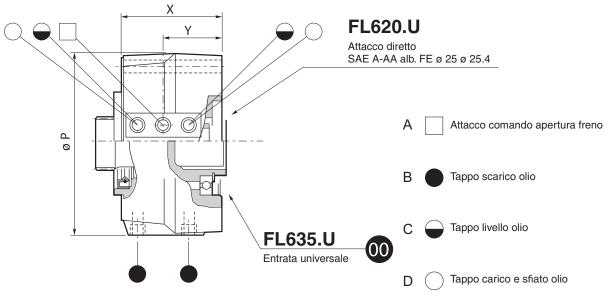


Fig. 26

Tabella 26:

	P	x	Y	Attacchi				Kg	Codice
	•	^	•	Α	В	С	D	1.9	- Coulos
FL620.U	161	104.5	46	M10x1	R 1/8	R 1/8	R 1/8	8	C1103704120 (alb. FE ø 25) C1103704130 (alb. FE ø 25.4)
FL635.U	165	91	59	M12x1.5	R 1/4	R 1/4	R 1/4	9	C1109200160

Tabella 27:

	Т	P		Vo [I]	Va [cm ³]	
	[N·m]	[bar]	[bar]	orizzontale	verticale	lamelle nuove
FL620.U	271	24.9	210	0.1	0.2	10
FL635.U	377	13.6	315	0.1	0.2	10

T: Coppia statica media

P: Pressione apertura freno

P_{max}: Pressione max.

Vo: Volume olio

Va: Volume olio per comando apertura freno

AVVERTENZA

Alte velocità di rotazione alberi motori possono causare un veloce riscaldamento del freno. In fase di selezione del riduttore con freno, con motori idraulici ed elettrici previsti di lavorare con alte velocità è necessario includere una sonda termica montata sul freno, in grado di fermare il riduttore quando si eccede la temperatura impostata.

NOTA:

L'implementazione di sonda termica sul freno deve essere indicata in fase d'ordine.

NOTA:

Quando è prevista la sonda termica sul freno, fare riferimento al capitolo Accessori - sensori di monitoraggio del riduttore (pag. 46).

AVVERTENZA

Pressioni di esercizio per il controllo freno più basse di quelle indicate in tabella per i rispettivi freni (pressione apertura freno), possono causare un veloce riscaldamento del freno. Per scongiurare questo pericolo, includere sulla linea idraulica controllo freno un pressostato di controllo.

AVVERTENZA

Pressioni di esercizio per il controllo freno più alte di quelle indicate in tabella per i rispettivi freni (Pressione max.), possono causare un veloce danneggiamento delle guarnizioni pistone freno. Per scongiurare questo pericolo, includere sulla linea idraulica controllo freno un pressostato di controllo.

8.13 ACCESSORI - SENSORI DI MONITORAGGIO DEL RIDUTTORE

Quando è previsto e necessario l'utilizzo di sonda termica (PT100) e/o sensore di livello olio "ON-OFF", nel riduttore e/o freno, questi accessori possono essere inclusi nella fornitura Dana del riduttore, oppure sono di implementazione da parte del Cliente. In questo ultimo caso, il Cliente è responsabile della corretta scelta della sonda termica e/o sensore di livello olio "ON-OFF" montata sul riduttore.

La sonda termica e/o sensore di livello olio "ON-OFF", scelti dal Cliente, devono essere conformi alle normative ATEX, per il Gruppo, Categoria e tipo d'atmosfera di progetto, appositamente omologati e contrassegnati. La marcatura dei sensori ai sensi ATEX devono corrispondere alle specifiche di progettazione dell'impianto o della macchina.

AVVERTENZA

La selezione di un sensore elettrico non adeguato, potrebbe non eseguire il controllo corretto a cui è proposto, arrecando danneggiamenti o rotture al riduttore e/o al freno lamellare di parcheggio.

IMPORTANTE:

I COLLEGAMENTI ELETTRICI DEVONO ESSERE ESEGUITI SECONDO LA EN 60079-14.

8.13.1 SONDA TERMICA

La sonda termica elettrica (PT100) selezionata deve essere con 2 soglie di intervento:

- Allarme che segnala un aumento anomalo della temperatura.
- Blocco Macchina al raggiungimento della temperatura rilevata massima di 80 +/- 3 °C.

M NOTA:

Il sensore di temperatura deve essere installato nella zona più calda del riduttore e/o al freno lamellare di parcheggio, rilevata durante i test di primo avviamento.

O NOTA:

Verificare che il sensore di temperatura sia montato come indicato sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

8.13.2 INDICATORE DI LIVELLO OLIO "ON-OFF"

L'indicatore di livello olio selezionato, deve essere installato tra il tappo carico e scarico olio del riduttore, posizionato alla corretta altezza, per garantire il giusto livello olio interno al riduttore.

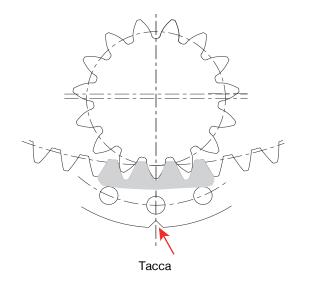
L'indicatore di livello deve segnalare la diminuzione del livello olio superiore ai 5-10mm, del livello olio richiesto per il corretto funzionamento del riduttore.

MOTA:

La posizione dei tappi carico e scarico olio ed il livello olio riduttore richiesto, sono indicati sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

8.14 NORME DI INSTALLAZIONE PER RIDUTTORE ROTAZIONE TIPO RPR-RPRC-SLS-SCS-ECS

- La struttura cui vanno fissati deve essere rigida, con la superficie d'appoggio ben pulita, ortogonale all'asse azionato e priva di scorie di saldatura.
- I centraggi e i piani d'accoppiamento del riduttore devono essere puliti e privi di ammaccature.


I controlli sopra descritti sono particolarmente importanti per ottenere un perfetto ingranamento tra il pignone del riduttore e la ralla. Generalmente i costruttori di ralle, contrassegnano di colore verde 3 denti della ralla; punto di maggior ovalizzazione del diametro primitivo della ralla stessa, punto che servirà per il posizionamento del riduttore.

ATTENZIONE

Se sulla ralla non vi è nessun dente colorato (generalmente di verde) o con altri contrassegni, si consiglia di contattare il costruttore della ralla stessa.

Se il tipo di riduttore prevede un supporto con eccentrico per regolare il gioco tra pignone e ralla, sul riduttore stesso è presente una tacca (vedi dis.), che indica il punto di maggiore eccentricità, corrispondente al gioco max. d'ingranamento ottenibile tra pignone e ralla; sia che il riduttore sia posto all'interno o all'esterno della ralla stessa (vedi dis.).

Il valore del gioco tra i fianchi dei denti tra pignone e ralla, si ottiene moltiplicando il valore del modulo della dentatura, per due valori fissi 0,03 e 0,04;

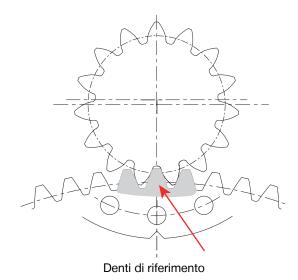


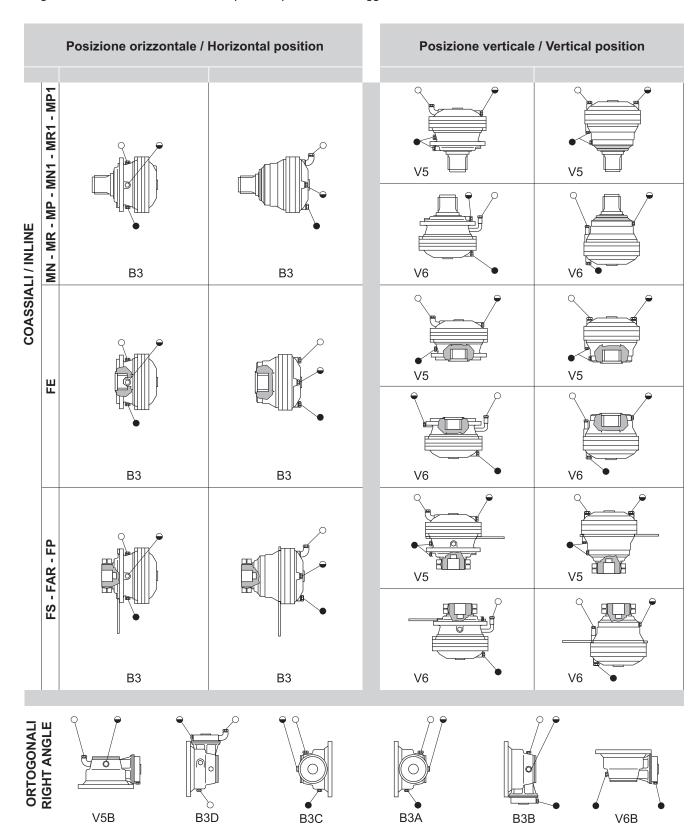
Fig. 27

Esempio:

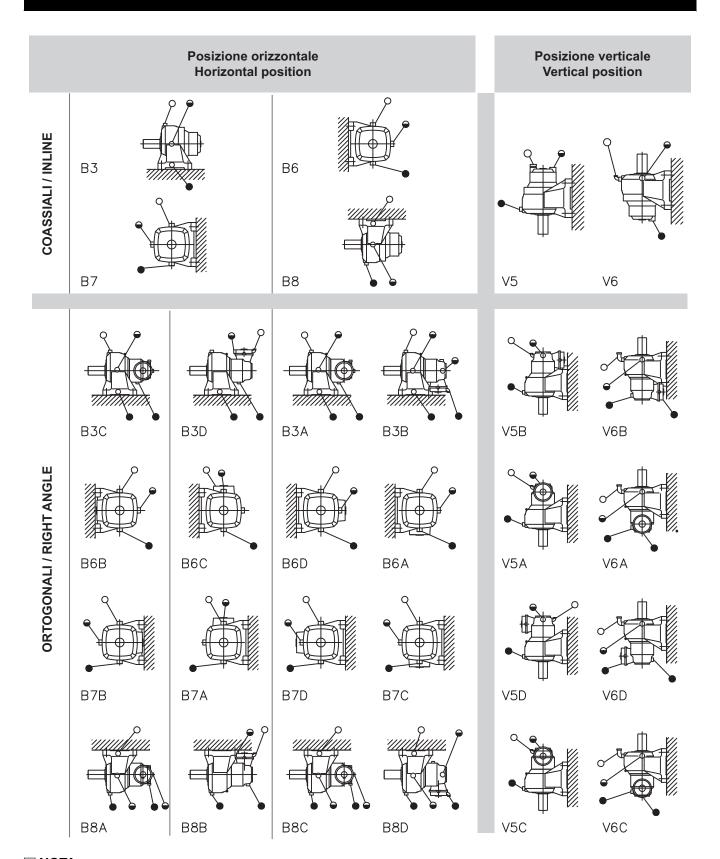
Se abbiamo una dentatura con m=20, basta eseguire $20 \times 0.03 = 0.6$ e $20 \times 0.04 = 0.8$ ottenendo così due valori di 0.6 e 0.8; questo significa che il gioco tra i fianchi dei denti, per un perfetto ingranamento dovrà essere un valore compreso tra $0.6 \div 0.8$ mm., quindi posizionare il riduttore con la tacca in corrispondenza dei 3 denti colorati (generalmente di verde) della ralla, ruotare il riduttore avvicinandolo così alla ralla, inserendo sui fianchi del dente che va ad ingranare il valore di spessori ottenuto dal calcolo sopra descritto; quindi serrare il riduttore.

Controllare di nuovo il gioco tra i fianchi in vari punti, su tutta la circonferenza primitiva della ralla.

Dopo aver effettuato il posizionamento del riduttore, ed eseguito i controlli del caso, serrare le viti di fissaggio (classe minima raccomandata 8.8) applicando una coppia di serraggio come da Tabella 4: Coppie di serraggio (pag. 19), assicurandosi che queste siano compatibili con la controparte (dadi e/o strutture di fissaggio).


ATTENZIONE

In presenza del riduttore con eccentrico, dopo il posizionamento dello stesso, tutti i fori di livello, carico olio, di comando motore, freno lamellare ecc. potrebbero andare fuori posizione rispetto al Disegno Dimensionale dedicato, SI.



8.15 POSIZIONI DI MONTAGGIO RIDUTTORI

A seguire le diverse denominazioni delle possibili posizioni montaggio dei riduttori.

M NOTA:

Posizioni di montaggio di riduttori inclinati rispetto l'asse orizzontale, devono essere considerati come montaggi verticali.

9 LUBRIFICAZIONE

I parametri importanti da considerare quando si sceglie il tipo di olio sono:

- la viscosità alle condizioni nominali di funzionamento
- gli additivi
- la temperatura d'infiammabilità

Lo stesso olio, deve lubrificare sia i cuscinetti che gli ingranaggi e tutti questi componenti convivono all'interno della stessa scatola, in condizioni di funzionamento diverse. Consideriamo i singoli parametri.

Viscosità

La viscosità nominale è riferita ad una temperatura di 40 °C, ma diminuisce velocemente all'aumentare della temperatura. Prevedendo una temperatura di funzionamento vicino a 100 °C, si può scegliere una viscosità nominale secondo la seguente tabella indicativa.

Tabella 28:

Giri in uscita	
> 5 (min-1)	VG 150
< 5 (min-1)	VG 220

Additivi

Oltre ai normali additivi antischiuma ed antiossidanti, è importante utilizzare oli lubrificanti con additivi in grado di conferire proprietà EP (extreme-pressure) ed anti-usura, secondo ISO 6743-6 L-CKC o DIN 51517-3 CLP.

Chiaramente quindi occorre ricercare prodotti con caratteristiche EP tanto più forti (tipo MOBILGEAR SHC) quanto più lenta è la velocità del riduttore.

E' opportuno ricordare che i composti chimici sostitutivi della lubrificazione idrodinamica, si formano a scapito della carica EP originale.

Quindi, in presenza di velocità molto basse e carichi elevati, è importante rispettare gli intervalli di manutenzione per non deprimere eccessivamente le caratteristiche lubrificanti dell'olio.

Tipi di ol

Gli oli disponibili appartengono generalmente a tre grandi famiglie.

- 1 Oli minerali
- 2 Oli sintetici Poli-Alfa-Olefine
- 3 Oli sintetici Poli-Glicole

La scelta più appropriata è generalmente legata alle condizioni di impiego.

I riduttori non particolarmente caricati e con un ciclo di impiego discontinuo, senza escursioni termiche importanti, possono certamente essere lubrificati con olio minerale.

Nei casi di impiego gravoso, quando i riduttori saranno prevedibilmente caricati molto ed in modo continuativo, con conseguente prevedibile innalzamento della temperatura, è bene utilizzare lubrificanti sintetici tipo polialfaolefine (PAO).

Gli oli di tipo poliglicole (PG) sono da utilizzare strettamente nel caso di applicazioni con forti strisciamenti fra i contatti, ad esempio nelle viti senza fine.

Debbono essere impiegati con grande attenzione poiché non sono compatibili con gli altri oli e sono invece completamente miscibili con l'acqua.

Questo fenomeno è particolarmente pericoloso poiché non si nota, ma deprime velocemente le caratteristiche lubrificanti dell'olio.

Oltre a questi già menzionati, ricordiamo che esistono gli oli per l'industria alimentare in quanto sono prodotti speciali non nocivi alla salute.

Per una maggiore tutela dell'ambiente sottolineiamo l'esistenza di alcuni tipi biodegradabili.

Vari produttori forniscono oli appartenenti a tutte le famiglie con caratteristiche molto simili.

AVVERTENZA

Per riduttori certificati ATEX, Dana Motion Systems Italia S.r.l., richiede l'utilizzo di oli Polialfaolefine (PAO), vedi tabella in capitolo Lubrificanti per uso generale (pag. 51).

LUBRIFICAZIONE

9.1 LUBRIFICANTI PER USO GENERALE

Tabella 29:

Produttore	Oli Sintetici Polialfaolefine (PAO) Per riduttori						
	ISO VG 150	ISO VG 220	ISO VG 320				
MOBIL	Mobil SHC Gear 150	Mobil SHC Gear 220	Mobil SHC Gear 320				
SHELL	Omala S4 GXV 150	Omala S4 GXV 220	Omala S4 GXV 320				
TOTAL	Carter SH 150	Carter SH 220	Carter SH 320				

Tabella 30:

Produttore	Oli Polialfaolefine (PAO) Per freni lamellari negativi						
	ISO VG 32	ISO VG 46	ISO VG 68				
MOBIL	Mobil DTE24	Mobil DTE25	-				
SHELL	Shell Tonna S 32	-	Shell Tonna S 68				
TOTAL	Azolla ZS 32	Azolla ZS 46	Azolla ZS 68				

Tabella 31:

Produttore	Grasso sintetico - per cuscinetti supporto uscita
	Viscosità dell'olio base, ASTM D 445 cSt a 40 ° C: 460
SHELL	Shell Gadus S3 460 2

M NOTA:

L'utilizzatore può scegliere oli di altri produttori con caratteristiche di lubrificazione corrispondenti, accertandosi che l'olio scelto abbia un punto di infiammabilità superiore a 200°C.

M NOTA:

L'utilizzatore può scegliere grassi di altri produttori, con caratteristiche di lubrificazione e compatibilità corrispondenti ed adeguata, accertandosi che il grasso scelto abbia un punto di infiammabilità superiore a 200°C.

AVVERTENZA

Non utilizzare oli e grassi con un punto di infiammabilità inferiore a 200°C.

AVVERTENZA

Non mescolare oli e grassi di tipo e caratteristiche diverse.

AVVERTENZA

Riempire il riduttore con olio nuovo specificato nella tabella, usando un filtro di max. 25 µm.

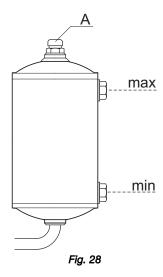
MESSA IN SERVIZIO E MODALITÀ CAMBIO OLIO

10.1 LUBRIFICAZIONE RIDUTTORI

Tutti i riduttori, salvo diverse indicazioni contrattuali, vengono consegnati senza lubrificante.

L'operatore è pertanto tenuto a scegliere il tipo di olio più conveniente tra quelli indicati (o con caratteristiche analoghe) e ad effettuare il riempimento e controllo del livello dell'olio prima dell'avviamento come indicato al punto Riempimento e controllo livello olio (pag. 52).

10.2 RIEMPIMENTO E CONTROLLO LIVELLO OLIO


Modalità:

- Verificare la posizione esatta dei tappi ed accertarsi che il tappo livello olio sia in una posizione facilmente ispezionabile.
- Individuare sul disegno dimensionale SI dedicato, menzionato sul Certificato di Dichiarazione di Conformità, la posizione dei tappi carico+sfiato e livello.
- Svitare entrambi i tappi, immettere olio fino a quando esce dal foro di livello, rimontare il tappo livello, attendere che eventuali bolle d'aria abbiano il tempo di fuoriuscire poi rimontare il tappo carico, mettere in funzione il riduttore in modo da eliminare le ultime sacche d'aria e poi controllare nuovamente il livello, aggiungendo eventualmente olio per raggiungere il livello.

O NOTA:

Quando presente il freno lamellare, eseguire la stessa operazione riempimento olio come sopra descritta.

In presenza del vaso di espansione (serbatoio), operare come segue:

- Individuare sul disegno dimensionale SI dedicato, menzionato sul Certificato di Dichiarazione di Conformità, la posizione dei tappi carico+sfiato e livello.
- Rimuovere entrambi i tappi carico+sfiato"A" e livello "min.".
- Per aiutare la ventilazione del riduttore (solo in fase di riempimento) si può togliere uno dei tappi dalla parte superiore del riduttore.
- Come l'olio sale alla sommità del tappo aperto nella parte superiore del riduttore, reinserire il tappo.
- Continuare il riempimento finchè l'olio non arriva al tappo livello "min." sul serbatoio, rimontare il tappo livello "min.".
- Reinserire il tappo "A".
- Con il livello non arrivare mai al livello max, per lasciare spazio all'espansione dell'olio.
- Far girare per qualche minuto il riduttore in modo da eliminare eventuali sacche d'aria interne, poi controllare nuovamente il livello, aggiungendo eventualmente olio per raggiungere il livello "min.".

MOTA:

Verificare che il vaso di espansione sia stato posizionato nella parte più alta del riduttore come indicato sul Disegno Dimensionale SI menzionato sul Certificato di Dichiarazione di Conformità.

MESSA IN SERVIZIO E MODALITÀ CAMBIO OLIO

10.3 RIMOZIONE OLIO DAL RIDUTTORE E DAL FRENO LAMELLARE (SE PRESENTE)

- Individuare sul disegno dimensionale SI dedicato, menzionato sul Certificato di Dichiarazione di Conformità, il tappo di scarico olio del riduttore e freno lamellare (se presente),
- svitare il tappo di scarico e quello di carico per favorire l'uscita dell'olio dal riduttore e freno lamellare (se presente),
- una volta svuotato dall'olio rimontare il tappo scarico del riduttore e freno lamellare (se presente).

11 AVVIAMENTO

11.1 GENERALITÀ

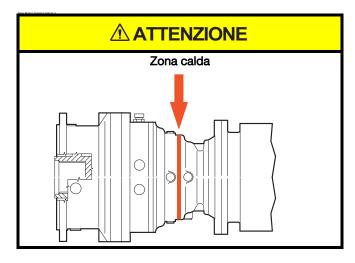
AVVERTENZA

Prima dell'avviamento sotto carico verificare che:

- Avviando il motore, l'albero in uscita del riduttore sia in rotazione;
- Che il verso di rotazione sia quello previsto in fase di progetto;
- Per i riduttori muniti di dispositivo antiretro, controllare prima dell'avviamento che ci sia corrispondenza tra il senso di rotazione libera e i sensi di rotazione della macchina da azionare e del motore;
- Per i riduttori muniti di freno lamellare negativo di stazionamento, accertarsi prima dell'avviamento che il tubo comando freno sia collegato e che sia stata eseguita correttamente l'operazione di spurgo aria nel circuito idraulico

M NOTA:

Presenza di aria nel circuito idraulico, può causare la non completa apertura freno con conseguente veloce riscaldamento del freno.


- Che non vi siano perdite di lubrificante dai tappi o guarnizioni (nelle prime ore di funzionamento può verificarsi una lieve fuoriuscita di grasso dagli anelli di tenuta che non pregiudica il buon funzionamento);
- Che il tappo sfiato non sia ostruito da sporcizia, o vernice;
- Non si avvertano rumorosità e/o vibrazioni anomali;
- Il riduttore sia ventilato in modo sufficiente e che non sia presente alcuna significativa fonte di calore all'esterno;
- La temperatura ambiente e l'aria di raffreddamento non possa superare i 40 °C;
- Tutti gli accessori montati o collegati al riduttori siano dotati di certificazione ATEX, idonei alla zona d'impiego;
- Verificare che tutti i dispostivi predisposti per la protezione tra gli operatori e gli organi rotanti siano efficaci.

11.2 RILIEVO SUPERFICIALE DELLA TEMPERATURA

All'atto dell'avviamento è indispensabile eseguire un controllo della temperatura di superficie nelle condizioni di funzionamento normale.

La prova serve a garantire che sono rispettate le premesse relative al comportamento dell'impianto come stabilito in fase di progetto.

- La zona di ingresso riduttori è stata individuata come la più calda e deve essere controllata con un termometro nel punto
 indicato nella figura seguente o comunque all'esterno della flangiatura tra motore e riduttore, dalla parte del riduttore.
- Se è presente un freno lamellare negativo di stazionamento, effettuare la misurazione della temperatura anche sul corpo freno
- La misura di temperatura deve essere effettuata nelle condizioni di massimo carico per una durata di minimo 3 ore.
- Se la temperatura misurata supera più di 68 °C oltre la temperatura ambiente (es. con 30 °C di temperatura ambiente non bisogna superare 30 °C + 68 °C = 98 °C) fermare il collaudo e contattare il Servizio Assistenza Dana Motion Systems Italia S.r.l.

ATTENZIONE

Le operazioni di controllo/manutenzione devono essere eseguite da manutentore esperto che intervenga nel rispetto delle norme antinfortunistiche, per garantire la propria sicurezza e quella delle persone presenti delle vicinanze.

Prima di eseguire qualsiasi intervento sul riduttore, assicurarsi che la macchina sia spenta e venga impedito l'avviamento accidentale.

AVVERTENZA

Pulire periodicamente la superficie esterna del riduttore dai depositi di polveri o incrostazioni. Nel caso di funzionamento in ambiente polveroso, lo strato di polvere accumulato non deve superare i 5 mm. Non usare aria compressa, ma usare attrezzatura idonea per l'area d'installazione.

ATTENZIONE

E' consigliabile eseguire la sostituzione dell'olio a caldo per favorire l'asportazione di eventuali depositi o morchie interne. In questo caso non superare comunque i 40 °C ed operare sempre con i dovuti mezzi protettivi D.P.I.

AVVERTENZA

Non mescolare oli di tipo e caratteristiche diverse.

AVVERTENZA

Pulire periodicamente il tappo metallico di carico/sfiato con valvola. Occorre svitarlo dal riduttore (proteggendo il riduttore dall'ingresso della polvere e corpi estranei ecc..), verificare l'apertura della valvola con molla (non deve essere assolutamente bloccata), pulire con aria compressa ed infine rimontarlo.

AVVERTENZA

Controllare la temperatura superficiale nella zona del riduttore individuata come la più calda in fase di avviamento. La massima temperatura registrata deve essere inferiore a quella indicata sulla targhetta.

Se la temperatura misurata dovesse essere superiore i 108°C arrestare la macchina e contattare il Servizio Assistenza Dana Motion Systems Italia S.r.l.

AVVERTENZA

Controllare ad ogni cambio d'olio, che sul magnete presente nel tappo di scarico non ci sia una consistente evidenza di materiale ferroso. In caso affermativo, occorre programmare immediatamente un fermo macchina finalizzato ad un intervento di manutenzione.

AVVERTENZA

zione sotto elencate.

E' vietata l'apertura dei riduttori per qualsiasi operazione che non sia compresa nelle attività di controllo e manuten-

Non si assume nessuna responsabilità per eventuali interventi effettuati e non compresi in questo manuale, che abbiano arrecato danno a persone o cose.

In caso di necessità contattare il Servizio Assistenza Dana Motion Systems Italia S.r.l.

12.1 ANELLI DI TENUTA

La durata degli anelli di tenuta è influenzata da molti fattori, come temperatura di esercizio, velocità di strisciamento, pulizia dell'olio, condizioni ambientali, ecc.; per questa ragione vanno sostituiti periodicamente, per scongiurare perdite d'olio che andrebbero a pregiudicare i componenti interni al riduttore, fino ad aumenti di temperatura carcassa oltre a quelli di progetto.

Per motivi di sicurezza, è richiesta una sostituzione più frequente degli anelli di tenuta per riduttori montati in posizioni di montaggio verticale ed obliquo (completamente o quasi pieni d'olio) e meno frequente per riduttori montati in posizione di montaggio orizzontale (riempiti d'olio in mezzeria).

Per le posizioni di montaggio fare riferimento a Posizioni di montaggio riduttori (pag. 48).

Per la frequenza sostituzione anelli di tenuta fare riferimento a Tabelle frequenza controlli e manutenzione (pag. 57).

AVVERTENZA

La mancata sostituzione degli anelli di tenuta con la frequenza indicata in Tabelle frequenza controlli e manutenzione (pag. 57), potrebbe portare a perdite d'olio tali da pregiudicare completamente il funzionamento del riduttore, con il rischio del raggiungimento di temperature elevate sul riduttore stesso.

12.2 TABELLE FREQUENZA CONTROLLI E MANUTENZIONE

Tabella 32:

Controllo ed operazione	Intervallo di tempo	Note
Verifica livello olio	Giornalmente e prima di ogni avviamento	Vedere Messa in servizio e modalità cambio olio (pag. 52).
Verifica perdite di olio	Giornalmente	Vedere Malfunzionamenti (pag. 59) se presenti.
Primo cambio d'olio	Dopo 100 ore di funzionamento	Vedere Messa in servizio e modalità cambio olio (pag. 52).
Seguenti cambi d'olio	Ogni 2000 ore di funzionamento o comunque una volta all'anno	Vedere Messa in servizio e modalità cambio olio (pag. 52).
Controllare il serraggio delle viti	Dopo le prime 100 ore di funzionamento	Per dettagli vedere Tabella 4: Coppie di ser- raggio (pag. 19).
Controllare il serraggio delle viti	Ogni 2000 ore di funzionamento o comunque ogni anno	Per dettagli vedere Tabella 4: Coppie di ser- raggio (pag. 19).
Presenza di acqua nell'olio	Una volta all'anno o comunque ad ogni cambio d'olio	Se presente, sostituire anelli rotanti e tappo sfiato.
Pulire il tappo magnetico scarico olio	Ad ogni cambio olio	Con parti metalliche inconsuete sul magnete, vedere Controlli e manutenzione (pag. 55).
Pulire il tappo sfiato	Ogni 3 mesi	Vedere Controlli e manutenzione (pag. 55).
Controllo assorbimento motore	Ogni 3 mesi in assenza di sistema continuo	-
Controllo temperatura superficiale	Ogni 3 mesi	Vedere Controlli e manutenzione (pag. 55).
Verifica rumorosità riduttore	Ogni 3 mesi	Vedere Malfunzionamenti (pag. 59) se non normale.
Verifica vibrazioni riduttore	Ogni 3 mesi	Vedere Malfunzionamenti (pag. 59) se non normale.
Collegamento equipotenziale	Ogni 3 mesi	Vedere Installazione ed accessori (pag. 17).
Pulire il riduttore	Periodicamente	Vedere Controlli e manutenzione (pag. 55).
Leggibilità targhetta	Annualmente	Vedere Targhetta di identificazione (pag. 15).
Ingrassare guarnizioni Taconite	Ogni 2000 ore di funzionamento o comunque una volta all'anno	Vedere Guarnizioni a Labirinto Taconite (accessorio opzionale) (pag. 40) e disegno dimensionale SI.
Ingrassare guarnizioni supporto in uscita	Ogni 2.000 ore di funzionamento o comunque una volta all'anno	Vedere Capitolo 9 Lubrificazione (pag. 50) e disegno dimensionale SI
Controllare la coppia frenante del freno lamel- lare di stazionamento	Ogni 2000 ore di funzionamento o comunque ogni anno	Vedere Freni lamellari negativi di staziona- mento in bagno d'olio (pag. 42) e disegno di- mensionale SI.
Sostituzione guarnizioni riduttore e freno la- mellare di stazionamento (se presente) mon- taggio orizzontale, da eseguire presso Servizio Assistenza Dana Motion Systems Ita- lia S.r.l.	Ogni 6000 ore di funzionamento o comunque ogni 3 anni	Pos. di montaggio: B3, B3C, B3A, B6, B7, B8, B6B, B6D, B7B, B7D, B8A, B8C.
Sostituzione guarnizioni riduttore e freno la- mellare di stazionamento (se presente) mon- taggio verticale od obliquo, da eseguire presso Servizio Assistenza Dana Motion Sy- stems Italia S.r.l.	Ogni 2000 ore di funzionamento o comunque ogni anno	Pos. di montaggio: V5, V6, V5B, B3D, B3B, V6B, B6C, B6A, B7A, B7C, B8B, B8D, V6B, V5A, V6A, V5D, V6D, V5C, V6C
Verifica stato usura alberi in ingresso ed uscita riduttore	Una volta all'anno	Vedere Installazione ed accessori (pag. 17) per re-ingrassaggio.

I controlli e manutenzione dei riduttori e/o ai freni lamellari di parcheggio, inclusi di Sensori di controllo elettrico, come sonde termiche e/o indicatori di livello olio "ON-OFF", differiscono da quelli sopra indicati, relativamente alla sostituzione guarnizione, come di seguito:

Tabella 33:

Controllo ed operazione	Intervallo di tempo	Note riferite ai Manuali
Sostituzione guarnizioni riduttore e freno la- mellare di parcheggio (se presente) montag- gio orizzontale, da eseguire presso Servizio Assistenza Dana Motion Systems Italia S.r.l.	Ogni 6.000-10.000 ore di funzionamento o co- munque ogni 3-5 anni e quando si revisiona il riduttore	Posizioni di montaggio: B3, B3C, B3A, B6, B7, B8, B6B, B6D, B7B, B7D, B8A, B8C.
Sostituzione guarnizioni riduttore e freno la- mellare di parcheggio (se presente) montag- gio verticale od obliquo, da eseguire presso Servizio Assistenza Dana Motion Systems Ita- lia S.r.l.	Ogni 6.000-10.000 ore di funzionamento o co- munque ogni 3-5 anni e quando si revisiona il riduttore	Posizioni di montaggio: V5, V6, V5B, B3D, B3B, V6B, B6C, B6A, B7A, B7C, B8B, B8D, V6B, V5A, V6A, V5D, V6D, V5C, V6C
Controllo Sensori di temperatura ed indicatori di livello olio	Ogni 3 mesi	Vedere Nota sottostante

M NOTA:

E' cura dell'utilizzatore verificare con la giusta frequenza che i circuiti elettrici di controllo, utilizzati dai Sensori siano sempre funzionanti e correttamente tarati per intervenire ai parametri prefissati.

AVVERTENZA

I riduttori vengono selezionati per raggiungere la vita di lavoro, richiesta dal cliente per ogni specifico progetto, con l'indicato ciclo di lavoro, come indicato sul disegno dimensionale SI, menzionato sul Certificato di Dichiarazione di Conformità.

Raggiunte le ore di lavoro indicate sulla Documentazione, il riduttore deve essere sostituito con uno nuovo oppure inviato ad un Servizio Assistenza Dana Motion Systems Italia S.r.I., per una completa revisione.

13 MALFUNZIONAMENTI

In caso di funzionamento anomalo, consultare la seguente tabella.

Nel caso in cui le anomalie persistano, consultare un Centro Assistenza Dana Motion Systems Italia S.r.l.

Tabella 34:

Anomalia	Possibile causa	Rimedio
Con motore in funzione l'albero in uscita non ruota	Errato montaggio motore	Controllare accoppiamento tra riduttore e motore
	Freno di stazionamento bloccato/chiuso	Verificare l'impianto idraulico collegato al fre- no
	Anomalia interna	Rivolgersi a un Centro Assistenza
Perdite olio dallo sfiato durante il funziona- mento	Livello troppo alto	Abbassare livello olio
	Sfiato in posizione errata	Verificare la posizione dello sfiato
	Possibile usura tenuta sfiato	Rivolgersi a un Centro Assistenza
Trafilamento olio dalle tenute	Tappo sfiato occluso	Svitare e sostituire il tappo
	Irrigidimento tenute per prolungato stoccag- gio	Pulire la zona e riverificare il trafilamento dopo pochi giorni. Se rimane il trafilamento, rivol- gersi a un Centro Assistenza
	Danneggiamento o usura tenute	Rivolgersi a un Centro Assistenza
Rumorosità eccessiva	Anomalia interna	Rivolgersi a un Centro Assistenza
Vibrazioni eccessive	Riduttore non installato correttamente	Verificare i fissaggi e coassialità
	Struttura di accoppiamento troppo debole	Rinforzare la struttura
	Anomalia interna	Rivolgersi a un Centro Assistenza
Riscaldamento eccessivo	Mancanza di ventilazione	Verificare che non ci siano cofanature o impedimenti alla circolazione dell'aria. Verificare la pulizia esterna
	Apertura del freno incompleta	Verificare la pressione minima d'apertura fre- no
	Ciclo di lavoro oltre a quello di progetto indi- cato su disegno dimensionale SI	Verificare carichi e potenza richiesti dalla macchina
	Temperatura ambiente superiore a 40 °C	Arrestare la macchina fino a che la temperatura ambiente ritorna inferiore ai 40°C
	Anomalia interna	Rivolgersi a un Centro Assistenza
Il freno lamellare negativo non si apre/sblocca	Mancanza di pressione al freno	Verificare il collegamento idraulico al freno
	Incollaggio dischi dovuto ad un periodo di stazionamento	Applicare pressione al freno, mettendo in rotazione l'ingresso freno/riduttore
	Tenute del freno che trafilano olio	Rivolgersi a un Centro Assistenza
Il freno lamellare non si chiude/blocca	È presente una contropressione nel circuito freno	Verificare il circuito idraulico
	Lamelle freno usurate	Rivolgersi a un Centro Assistenza

14 MESSA FUORI SERVIZIO DEL RIDUTTORE

Le operazioni per la messa fuori servizio del riduttore, vanno eseguite da personale esperto, nel rispetto delle leggi vigenti in materia di sicurezza sul lavoro.

Si suggerisce di operare nel seguente modo:

- Rimuovere completamente dal riduttore gli oli presenti all'interno.
- Disconnettere la motorizzazione all'ingresso del riduttore.
- Smontare il riduttore

Si raccomanda di effettuare le operazioni di smaltimento, nel rispetto delle vigenti leggi in materia di protezione dell'ambiente, evitando la contaminazione di suolo ed acqua con prodotti non biodegradabili.

15 ESEMPIO CERTIFICATO DICHIARAZIONE DI CONFORMITÀ UE

Dana Incorporated

Dana Motion Systems Italia S.r.I. (a socio unico) - Power – Transmission Division
Via Luciano Brevini 1/A, 42124 Reggio Emilia – Italy
Tel: +39.0522.9281 Fax: +39.0522.928300
P.I. /VAT 0026275 035 9 REA N° RE75379

DICHIARAZIONE DI CONFORMITA' UE EU DECLARATION OF CONFORMITY

Dana Motion Systems S.r.l.

Dichiara sotto la propria responsabilità che il riduttore epicicloidale sotto indicato, è progettato e costruito in conformità alla **Direttiva 2014/34/UE** e idoneo all'impiego in ambienti con atmosfera potenzialmente esplosiva secondo **Gruppo II, categoria 2G.**

Declares in sole responsibility, that the planetary gear unit below mentioned, is designed and manufactured in compliance with the **Directive 2014/34/EU** and is suitable for use in potentially explosive atmosphere, according **Group II**, category 2G.

Marcatura / Marking : 🐿 II 2G Ex h IIC T4 Gb

Cliente: Customer:	Conferma d'ordine N°: Order confirmationN°:	
Riduttore tipo: Gearbox type:	Matricola N°: Serial N°:	
Codice prodotto: Product code:	Disegno dimensionale N°: Dimensional drawing N°:	SI

Norme di riferimento / Applicable standards:

EN ISO 80079-36:2016 EN ISO 80079-37:2016 EN 1127-1:2011

Dana Motion Systems S.r.l.

ha depositato i documenti previsti secondo l'allegato VIII della Direttiva ATEX 2014/34/UE, con numero deposito fascicolo tecnico nr. 0206243, presso:

have archived required documents according to the Annex VIII of the Directive ATEX 2014/34/EU, with identification number no. 0206243, at the following location:

TÜV Cyprus, EU Code 2261

General Manager Power - Transmission Matteo Foletti Head of Engineering Power - Transmission Alessandro Vighi

Reggio Emilia, data/date: 17/02/2020

Doc. QCATEX0000 date: 01/11/2019

ESEMPIO CERTIFICATO DICHIARAZIONE DI CONFORMITÀ UE

Dana Incorporated

Dana Motion Systems Italia S.r.I. (a socio unico) - Power – Transmission Division
Via Luciano Brevini 1/A, 42124 Reggio Emilia – Italy
Tel: +39.0522.9281 Fax: +39.0522.928300
P.I. / VAT 0026275 035 9 REA N° RE75379

DICHIARAZIONE DI CONFORMITA' UE EU DECLARATION OF CONFORMITY

Dana Motion Systems S.r.l.

EN ISO 80079-36:2016 EN ISO 80079-37:2016

EN 1127-1:2011

Dichiara sotto la propria responsabilità che il riduttore epicicloidale sotto indicato, è progettato e costruito in conformità alla **Direttiva 2014/34/UE** e idoneo all'impiego in ambienti con atmosfera potenzialmente esplosiva secondo **Gruppo II**, **categoria 3G**.

Declares in sole responsibility, that the planetary gear unit below mentioned, is designed and manufactured in compliance with the **Directive 2014/34/EU** and is suitable for use in potentially explosive atmosphere, according **Group II**, category 3G.

> General Manager Power - Transmission Matteo Foletti

Head of Engineering Power - Transmission Alessandro Vighi

Reggio Emilia, data/date: 17/02/2020

Doc. QCATEX0010 date: 01/11/2019

© Copyright 2022 Dana Incorporated
All content is subject to copyright by Dana and may not
be reproduced in whole or in part by any means,
electronic or otherwise, without prior written approval.
THIS INFORMATION IS NOT INTENDED FOR SALE OR
RESALE, AND THIS NOTICE MUST REMAIN ON ALL
COPIES.

For product inquiries or support, visit www.dana.com.
For other service publications, visit www.danaaftermarket.com/literature-library For online service parts ordering, visit www.danaaftermarket.com

Motion Systems