

DC5B1A1_000000R2 03 2024

Product Catalog

Brevini[®] Hydraulic motors **Orbital motors**

Displacement from 12.9 to 523 cc/rev, pressure up to 210 bar, flow up to 125 l/min

Low speed high torque motors

Extensive range of hydraulic orbital motors for general purposes, including valves. Gerotor and Geroller type, for light and heavy duty

		Page
General	Informations	
	Hydraulic Motors	A4
	Gearwheel Set	A4
	Timing Valve	A4
	Features of Main Types	A5
	Motors Perfomance	A6
	General Maintenance and Installation Rules	A7
	Circuit and Connectioncs	A8
	Use of Sam Motors in Braking Mode	A10
	Recommendend Braking Valves	A11
	Holding a Load	A11
	Nominal Values Calculation	A12
	Conversion	A12
	Name Plate	A13
BGM		B1
BG - BH		C1
AR		D1
BR - BS		E1
HR		F1
HT		G1
BRZ		H1
VALVES	& ACCESSORIES	l1

© 2024 Dana Brevini fluid power S.p.A. All rights reserved.

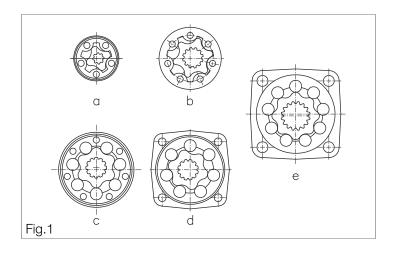
The technical features supplied in this catalogue are non binding and no legal action can be taken against such material. Dana Brevini fluid power will not be held responsible for information and specifications which may lead to error or incorrect interpretations. Given the continuous technical research aimed at improved technical features of our products, Dana Brevini fluid power reserves the right to make change that are considered appropriate without any prior notice. This catalogue cannot be reproduced (in while or in part) without the prior written consent of Dana Brevini fluid power. This catalogue supersedes all previous ones.

Use of the products in this catalogue must comply with the operating limits given in the technical specifications. The type of application and operating conditions must be assessed as normal or in malfunction in order to avoid endangering the safety of people and/or items.

GENERAL INFORMATION

Hydraulic Motors

i Operating Principle


Α

Hydraulic motors convert hydraulic energy (pressure, oil flow) into mechanical energy (torque, revolutions).

In the case of orbital motors, this conversion is made by the drive component (orbital unit): an external stator with internal toothing and a rotor (with planetary motion) of suitable profile. Our orbital motors have fixed displacement.

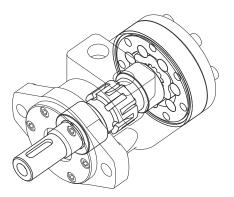
Gearwheel Set

There are two types of gearing: the BGM, BG, and BH have gears with matching profiles (Gerotor gear set: fig. 1 a-b), whereas the BR, BS, ARS, ARF, HR and HT have rollers between the two gears (Geroller gear set: fig. 1 c-d-e).

Timing Valve

In orbital motors the motor shaft and timing valve are driven by a cardan shaft that ensures the synchronism between the gearwheel set and the fluid timing valve. There are three types of timing valve:

- Spool valve

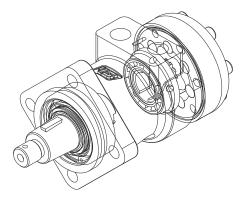

BGM, BG, BH, BR and BS motors have a spool valve: the timing valve has been integrated in the output shaft design (fig. 2).

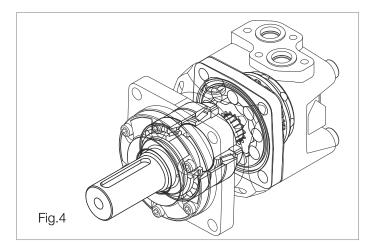
- Pressure compensated valve plate

ARS and ARF motors have a pressure compensated valve plate: The timing valve is driven by the output shaft through an Oldham type coupling (fig. 3).

- Separated pressure compensated valve plate.

HR and HT motors have a disc valve, hydraulically compensated and separately driven by a dedicated Cardan type coupling (fig. 4).




Fig.3

Click $m{i}$ button to return to main index

Fig.2

Features of main Types

BGM

Spool valve design and Gerotor gear set hydraulic motor with compact design and small displacement. Suitable for application where high speed and small dimensions are required.

BG - BH

BG series motors feature spool valve design and Gerotor gear set. They are economical motors able to accomplish light to medium duty applications.

BR - BS

The BR series motors feature spool valve and roller gear set design. They feature compact design, high efficiency, smooth rotational and good starting torque.

ARS

Roller gear set hydraulic motors with pressure compensated valve disc and tapered roller bearings support. The ARS series can withstand large radial and axial forces.

HR

Squared stator roller gear set, compensated valve disc featuring separate drive shaft and the tapered roller bearings make the HR series motors suited for application where high power is required. The technical solutions adopted with this model allow to reach an output power up to 44.2 kW [59.2 hp].

ΗT

Orbital motors with high performance squared stator roller, separately driven and hydraulically compensated disc valve and tapered roller bearings. Working pressure up to 280 bar [4060 psi] and power up to 40 kW [53.6 hp]. These motors are suitable for all those applications where high torque is required and continuous duty or frequent inversions of the sense of rotation make necessary the use of high performance motors.

ARSW - HRW

Hydraulic wheel drive motors with tapered roller bearings and recessed mounting flange. The recessed mounting flange allows to mount a wheel hub or a winch drum so that the radial load acts Midway between the two motor bearings. In this way the motor can withstand larger radial and axial forces.

ARF - HRF - HRL

Hydraulic motors with built-in hydraulically released multi-disc static brake. The ball bearings shaft support and the full torque holding brake make this motors a very compact solution for applications like winches and small hydrostatic transmission systems.

Motors Perfomance

i The power, speed and torque ratings both for continuous and intermittent duties, of the several motors in the Dana Brevini production range, are available in the following histograms (picture 5).

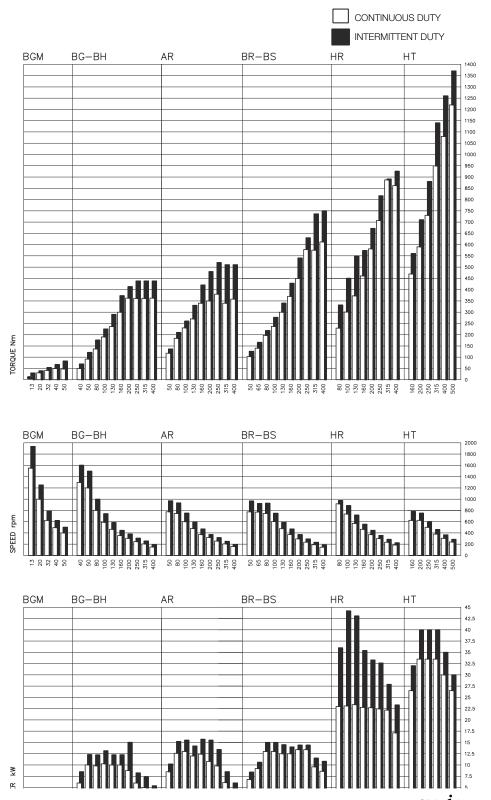


Fig.5

DANA

General Maintenance and Installation rules

1) Motors must be operated not exceeding the working parameters published in the corresponding catalogue. Motors should be filled with oil before operation, particularly for large displacement units.

2) Working oil temperatures in the hydraulic system should be kept between + 30°C and + 60°C. The anti-wear and lubrication properties of the oil are greatly reduced at higher temperatures.

3) The ambient temperature around the motor should be between -30° C and $+ 90^{\circ}$ C.

4) Only use an oil containing antiwear additives ISO 46 or with a viscosity at normal operating temperature of approx. 37 cSt. Fluid should also have an adequate viscosity index. Under no circumstances should oil viscosity be outside the range of

22 cSt to 75 cSt at the above mentioned temperature range. Minimum acceptable viscosity for short periods: 10 cst.

- 5) Brevini Dana Fluid Power motors can be used with fire resistant fluid. Contact Dana Brevini technical department for advice.
- 6) Before starting the hydraulic system check oil level and correct mounting of all components
- 7) Run the system unloaded for 10÷15 minutes to purge air from the circuit and to prevent foaming and jerky movement.
- Flush the system for 30 minutes, unloaded and connected to an auxiliary filter. This filter should be at least 10 µm or finer than the normal circuit filtering capacity.
- 9) Check for leaks, and top up reservoir.

10) Check oil level regularly and clean filters or replace them according to filter manufacturers advice.

Oil Filtering

For maximum life from Dana Brevini motors oil contamination should never exceed 22/20/17 (see ISO 4406:1999). To ensure this level, return line filters should have filtering capability of 40 µm absolute or 25 µm nominal in open circuit, 20 µm absolute and 10 µm nominal in closed circuit.

Static and Dynamic Seals

Dana Brevini standard motors have static and dynamic seals

(rotating) made of NBR.

These seals offer improved efficiency and prolonged life with all types of mineral oil.

For other fluids or seals material contact Dana Brevini. Under no circumstances should seals be subjected to temperatures outside the range of - 30°C to + 90°C.

Drain Line

When the back pressure of the return line exceeds the maximum acceptable level shown in the corresponding catalogue, it will be necessary to provide a separate drain line connected to the reservoir. A drain line is always recommended for brake motors (as drain oil passing through the motor provides essential cooling), also for short motors (those without output shaft) and in general when it is necessary to reduce the pressure on the shaft seal.

In some models internal check valves ensure the pressure in the motor case never exceeds that of the return line.

Circuit and Connections

Dana Brevini motors can be used in open circuit (fig. 6) as well as closed circuit (fig. 7). They can also be connected in series (fig. 8) or in parallel (fig. 9) or even to switch between series and parallel circuit (fig. 10).

Series Connections

8

i

In series connection (fig. 8) all the oil coming from the pump passes through each motor which therefore turn (theoretically) at the same shaft speed (assuming they have same displacement) or each to a speed proportional to its size (for different displacements). However, external oil leakage on each motor (depending on Δp due to load variations) will possibly result in a variation in speed compared to the theoretical one: if an external drain line is provided, the leakage flow will reduce the available flow to the following motor. Therefore, the theoretical speed can not be maintained in the following motor.

Dana Brevini motors with pressure compensated distribution guarantee a smaller drain flow and smaller leakages, therefore reducing the above mentioned problem.

The most precise and constant output speed is achieved using motors with high pressure shaft seals and without the external drain. In series connection the pump pressure is equal to the sum of the working Δp of all the motors.

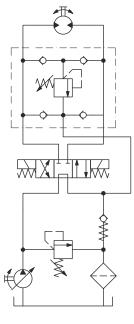


Fig.6

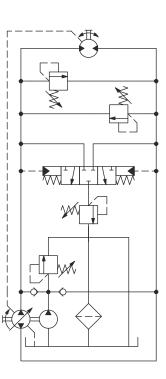


Fig.7

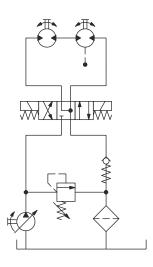


Fig.8

Parallel Connections

With motors connected in parallel (fig. 9) every motor is subjected to the Δp provided by the pump.

Hence motors of same displacement will provide the same torque, or if of different displacement will provide torque proportional to their displacements. In this circuit all motors will require flow under pressure from the pump according to their desired speed. This makes the system work as a "hydraulic differential" and is ideal for traction drive for mobile machinery.

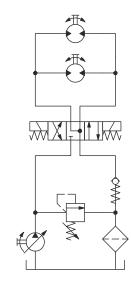
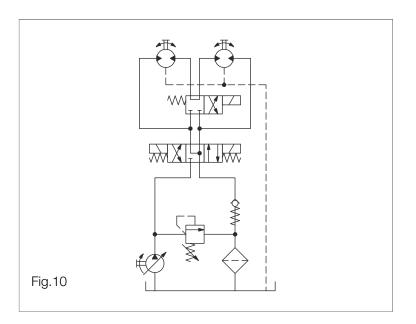


Fig.9

i

Click \boldsymbol{i} button to return to main index



Series - Parallel Connections

With this configuration (fig. 10) by using an additional control valve it is possible to switch between series and parallel circuit, making the system able to perform like a multi speed gearbox.

In series configuration the motors provide maximum speed and low torque, vice versa in parallel. In series circuit the motor will run at the same speed.

Use of Sam Motors in Braking Mode

When using Dana Brevini motors it is necessary to use the correct braking valves when dissipating the inertia of the load. In such circumstance the motor will operate as a pump converting the inertia into hydraulic energy and this energy is then dissipated across the braking valves.

The greater the motors displacement and the higher the pressure setting of the valve, the greater will be the braking torque. Calculation of the setting pressure of the braking valve:

Considering the total efficiency of the motor while being used as a pump, the absorbed torque during braking action is:

$$M_{t} = 1.3 \times M_{m}$$

Mt: torque absorbed by the motor during braking with a given pressure setting of the valve.

Mm: the torque output of the motor (see performance charts) for a given pressure and speed during normal operation.

To avoid overloading the motor during deceleration it is recommended that the flow through the valve is not greater than the maximum flow of the motor in normal operating mode. During braking it will also be necessary to provide a boosted inlet flow to avoid cavitation.

Recommended Braking Valves

To control a moving or suspended load it is possible to use a variety of valves.

When no static brake is required, then a simple anti-shock and anti-cavitation valve is recommended (fig. 11).

When using an hydraulically released static brake, a shuttle valve is required to ensure automatic release of the brake (fig. 12). In this case it is necessary to use an open centre directional valve, to ensure that the motor is fed with oil during braking and therefore avoiding cavitation.

When using the anti-shock valve, however, closed centre valves are required as this is the only way to open the pressure valve during braking.

Both types of valve need a check valve on the return line which is set at sufficient pressure to avoid cavitation of the motor.

Holding a Load

It is important to be aware that because of internal motor leakage and other possible circuit leakage it is not possible to ensure hydraulic holding of the load.

Because of the inevitable leakages, the motor will creep when driven by the load. The designer of the application should therefore implement a static brake, hydraulically released, capable of holding the maximum design load.

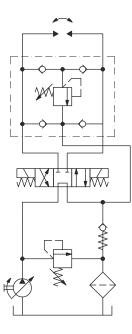


Fig.12

Α

11

Nominal Values Calculation

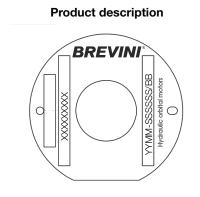
i Pumps

Motors

Output flow	$Q = \frac{V_g \cdot n \cdot \eta_v}{1000}$	(l/min)	V _g = geometrical displacement (cm³/rev) Δp = drop of pressure (bar)
Drive torque	$M = \frac{\Delta p \cdot V_g}{62.8} \cdot \frac{1}{\eta_{hm}}$	(Nm)	n = speed (rpm) Q = flow (l/min) M = torque (Nm) W = power (kW) η_v = volumetric efficiency r_v = mask bad efficiency
Driver power	$W = \frac{M \cdot n}{9550} = \frac{Q \cdot \Delta p}{600} \cdot \frac{1}{\eta_t}$	(kW)	η_{hm} = mech-hyd. efficiency η_t = overall efficiency (η_t = η_v · η_{hm})
Input flow	$Q = \frac{V_g \cdot n}{1000} \cdot \frac{1}{\eta_v}$	(l/min)	
Output torque	$M = \frac{\Delta p \cdot V_g \cdot \eta_{hm}}{62.8}$	(Nm)	V _g = geometrical displacement (cm ³ /rev) Δp = drop of pressure (bar) n = speed (rpm) Q = flow (l/min) M = torque (Nm)
Output power	$W = \frac{M \cdot n}{9550} = \frac{Q \cdot \Delta p \cdot \eta_t}{600}$	(kW)	
Output speed	$n = \frac{Q \cdot 1000 \cdot \eta_v}{V_g}$	(rpm)	

Conversion Factors

The following table report the conversion factor from metric units of measure to english units for the main units used in hydraulic.


	to co	nvert		to convert		
	from	to	multiply by	from	to	multiply by
length	mm	in	0.039	in	mm	25.4
capacity	I	gal	0.219	gal	I	4.546
mass	kg	dl	2.204	lb	kg	0.4536
force	N	lbf	0.225	lbf	N	4.45
torque	N∙m	lbf·ft	0.737	lbf·ft	N∙m	1.357
pressure	bar	psi	14.5	psi	bar	0.06895
flow	l/min	U.S. gpm	0.264	U.S. gpm	l/min	3.79
power	kW	hp	1.34	hp	kW	0.746
rotation speed	giri/min	r.p.m.	1	r.p.m.	giri/min	1
displacement	cm³/giro	in ³ /rev	0.061	in ³ /rev	cm³/giro	16.387
temperature	°C	°F	1.8x°C+32	°F	°C	(°F-32)/1.8

Name Plate

Each Dana Brevini ORBITAL products are supplied with an identification plate. The identification of the product is made through the serial number. Every request of information must quote this number.

Serial number

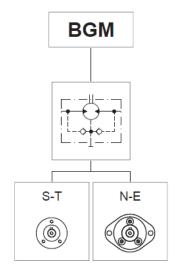
YYMM = Year and Month of production SSSSSS = Batch number BB = Batch progressive number (where required)

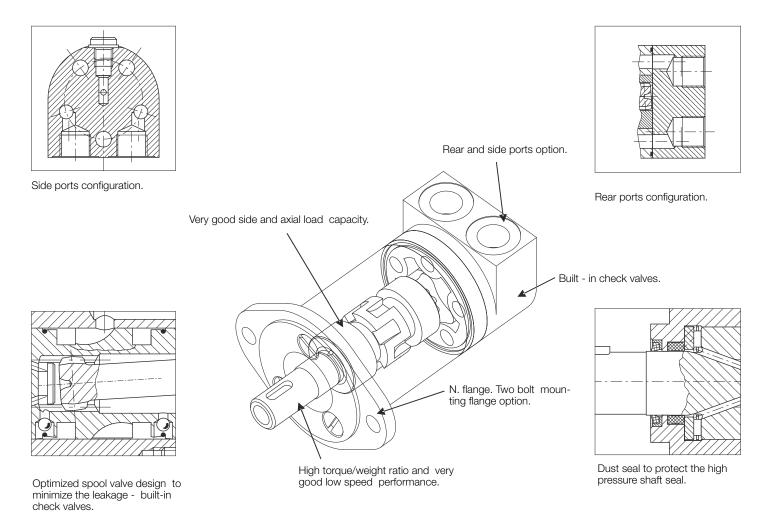
Product description

Serial number

YM = Year and Month of production SSSSSS = Batch number BB = Batch progressive number (where required) i

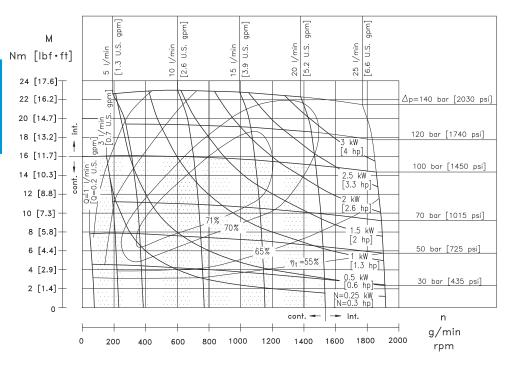
Click \boldsymbol{i} button to return to main index

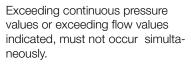

BGM Orbital Motors



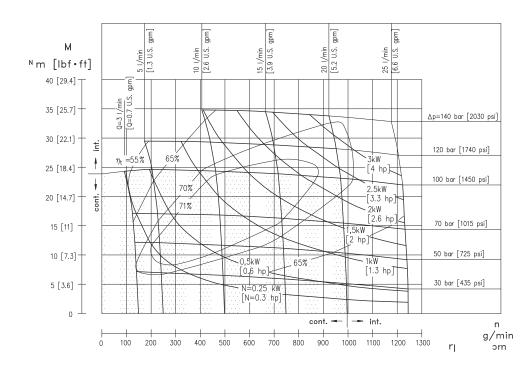
B

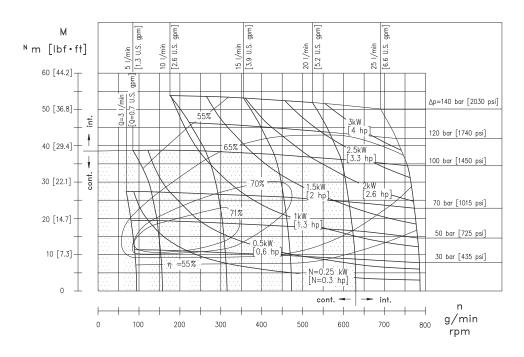
Motor Features	B2
Motor Technical Specifications	B 3
Performance Curves	B 4
Pressure Data	B 7
Max. Permissible Shaft Seal Pressure	B7
Pressure Loss	B7
Other Informations	B 8
Ordering Code	B 9
Dimensions and Weight	B11
Shaft End	B17
Valve Features	B18


Motor	Displacement	Max. input pressure	Max. differential pressure	Max. torque*	Max. flow	Max. speed	Max. power
	cm ³ /giro [in ³ /rev]	bar [psi]	bar [psi]	Nm [lbf·ft]	l/min [U.S. gpm]	rpm	kW [hp]
BGM 013	12.9 [0.78]	Cont 140 [2030] Int ¹⁾ 175 [2537] Peak ²⁾ 225 [3265]	Cont 100 [1450] Int ¹⁾ 140 [2030] Peak ²⁾ 200 [2900]	Cont 16 [11.7] Int ¹⁾ 23 [16.9] Peak ²⁾ 33 [24.3]	Cont 20 [5.28] Int ¹⁾ 25 [6.60]	Cont 1550 Int ¹⁾ 1935	Cont 2.3 [3.08] Int ¹⁾ 3.2 [4.28]
BGM 020	20 [1.22]	Cont 140 [2030] Int ¹⁾ 175 [2537] Peak ²⁾ 225 [3265]	Cont 100 [1450] Int ¹⁾ 140 [2030] Peak ²⁾ 200 [2900]	Cont 25 [18.4] Int ¹⁾ 35 [25.7] Peak ²⁾ 51 [37.5]	Cont 20 [5.28] Int ¹⁾ 25 [6.60]	Cont 1000 Int ¹⁾ 1250	Cont 2.3 [3.08] Int ¹⁾ 3.3 [4.42]
BGM 032	31.8 [1.93]	Cont 140 [2030] Int ¹⁾ 175 [2537] Peak ²⁾ 225 [3265]	Cont 100 [1450] Int ¹⁾ 140 [2030] Peak ²⁾ 160 [2320]	Cont 39 [28.7] Int ¹⁾ 54 [39.7] Peak ²⁾ 60 [44.2]	Cont 20 [5.28] Int ¹⁾ 25 [6.60]	Cont 625 Int ¹⁾ 785	Cont 2.3 [3.08] Int ¹⁾ 2.8 [3.75]
BGM 040	40.1 [2.44]	Cont 140 [2030] Int ¹⁾ 175 [2537] Peak ²⁾ 225 [3265]	Cont 100 [1450] Int ¹⁾ 140 [2030] Peak ²⁾ 160 [2320]	Cont 50 [36.8] Int ¹⁾ 67 [49.3] Peak ²⁾ 76 [56.0]	Cont 20 [5.28] Int ¹⁾ 25 [6.60]	Cont 495 Int ¹⁾ 620	Cont 1.8 [2.41] Int ¹⁾ 2.5 [3.35]
BGM 050	50 [3.05]	Cont 140 [2030] Int ¹⁾ 175 [2537] Peak ²⁾ 225 [3265]	Cont 80 [1160] Int ¹⁾ 140 [2030] Peak ²⁾ 160 [2320]	Cont 49 [36.1] Int ¹⁾ 83 [61.1] Peak ²⁾ 94 [69.2]	Cont 20 [5.28] Int ¹⁾ 25 [6.60]	Cont 400 Int ¹⁾ 500	Cont 1.8 [2.41] Int ¹⁾ 2.4 [3.21]

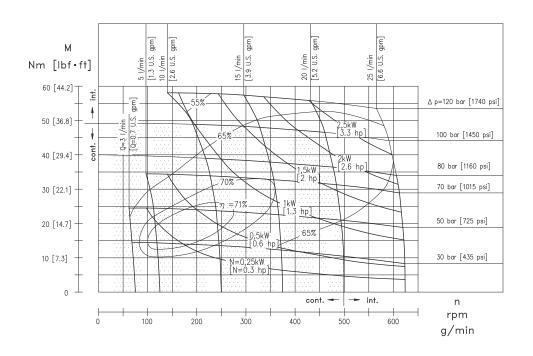

¹⁾ Intermittent duty must not exceed 10% each minute. ²⁾ Peak duty must not exceed 1% each minute.

BGM




BGM 020

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

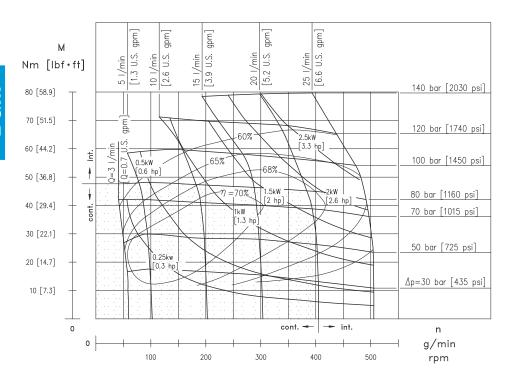

Click DANA button to return to section index

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

BGM 040

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

В


5

BGM

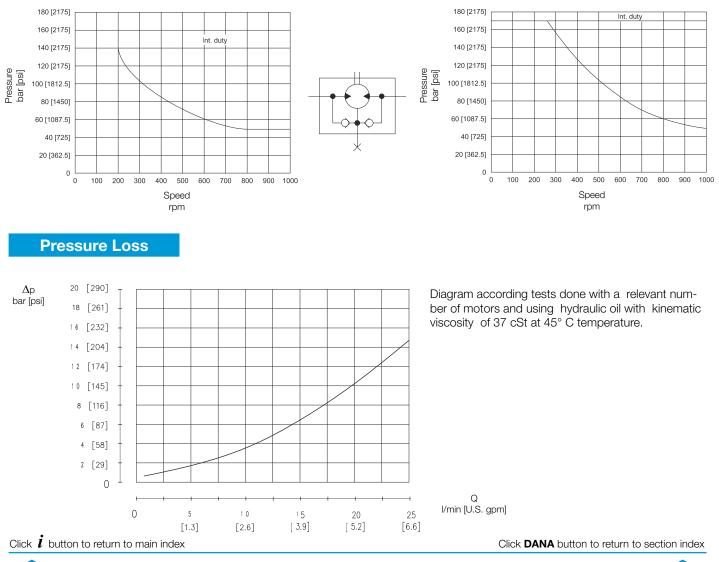
В

6

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click **DANA** button to return to section index

Max. Pressure


Motor	Max return pressure with drain line bar [psi]	Max starting pressure with no load bar [psi]	Min starting torque Nm [lbf-ft]	
BGM 013	140 [2030]	4 [58]	At max Δ p	Cont 12 [8.8] Int ¹⁾ 17 [12.5]
BGM 020	140 [2030]	4 [58]	At max Δ p	Cont 21 [15.4] Int ¹⁾ 30 [22.1]
BGM 032	140 [2030]	4 [58]	At max Δ p	Cont 35 [25.7] Int ¹⁾ 51 [37.5]
BGM 040	140 [2030]	4 [58]	At max Δ p	Cont 34 [25] Int ¹⁾ 48 [35.3]
BGM 050	140 [2030]	4 [58]	At max Δ p	Cont 40 [29.4] Int ¹⁾ 70 [51.5]

Max. Permissible Shaft Seal Pressure

STANDARD

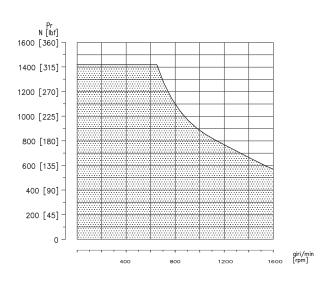
Max. return pressure without drain line or max. pressure in the drain line. Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart).

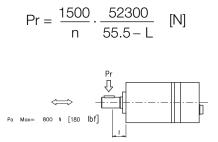
For pressure and speeds not showed in the curve below, please contact Dana Brevini.

HPS

Shaft Load

The permissible radial shaft load depends on:

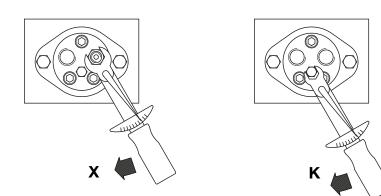

- Speed (n)


_

BGM

Distance (L) from the point of load to the mounting flange

Radial load capacity (Pr) curve according to speed (n) and distance (L) from flange



This formula being valid for n>= 650 rpm For n< 650 rpm Pr_{max} = 1450 N [326.25 lbf]

The curve show the relation between (Pr) and (n) L= 20 mm [0.78 in]

Tightening Torque

	X	К
Nipples	3/8 G (BSPP)	1/8 G (BSPP)
with steel washer	60 Nm 44.2 [lbf·ft]	20 Nm 14.7 [lbf·ft]
with aluminium washer	40 Nm 29.4 [lbf·ft]	10 Nm 7.3 [lbf·ft]
with copper washer	60 Nm 44.2 [lbf-ft]	20 Nm 14.7 [lbf·ft]

Click **DANA** button to return to section index

DANA

Click \boldsymbol{i} button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BGM motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

Series			
BGM	Orbital motor		

2		
Displacement		
013	13 cm³/giro [0.793 in³/rev]	
020	20 cm³/giro [1.22 in³/rev]	
032	32 cm³/giro [1.952 in³/rev]	
040	40 cm³/giro [2.44 in³/rev]	
050	50 cm³/giro [3.05 in³/rev]	

3

	Version
FR0	Standard Version
FRQ	Q Version
SP1	SP1 Version

4

-	
	Mount flange
S	3 bolts M6 - Ø31.5mm [Ø 1.240 in] (standard)
т	3 bolts 1/4 - 28 UNF - Ø31.5mm [Ø 1.240 in]
Z	5 bolts 1/4 - 28 UNF - Ø31.5mm [Ø 1.240 in]
Ν	2 bolts - Ø63mm [Ø 2.480 in] - (combination with S flange)
Е	2 bolts - Ø63mm [Ø 2.480 in] - (combination with T flange)

5

Shaft end			
CL160	Cylindrical keyed Ø16 mm [0.629 in]		
SC160	SC160 B17x14 DIN5482 Splined		
CL158	Cylindrical keyed Ø15.88 mm [Ø0.625 in]		
CS158	Cylindrical crosshole Ø15.88 mm [Ø0.625 in]		

Click \boldsymbol{i} button to return to main index

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

DC5B1A1_000000R2 - 03/2024

B 10 **Ordering Code**

	6						
Γ		Main part	Version				
		Main port	FR0	SP1	FRQ		
	M06	3/8 G (BSPP) Main Ports (standard)	•	•	٠		
	S06	9/16 - 18 UNF Main Ports	•	•	-		

		Se	eal	
N	NBR			

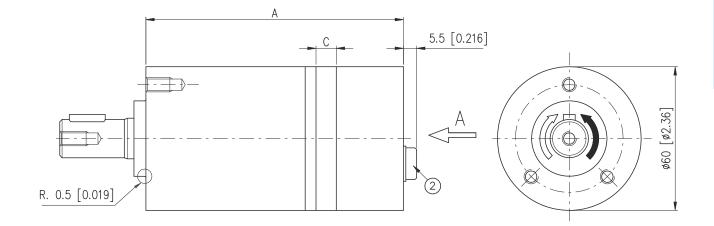
	Velue	Main		
	Valve	M06	S06	Valve
хххх	Not required	•	•	¢
M061	Pressure relief valve VAF 06 - D (available only with SP1 Version)	•	-	

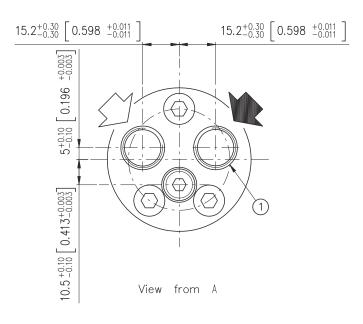
9				
	Valve feature	Valve		
	valve leature	XXXX	M061	
000		-		
030	Not Set 50÷150 bar [725 to 2175 psi]	-	•	

10	
	Option
xx	None

11							
	Valve feature		Flange				
	Valve leature	S	Т	Ν	E		
QDG	QUAD-RING version with Rear drain 1/8 G (BSPP)	•	•	•			
HPS	High Pressure Seal	•	•	•			
TES	TAC-E Tachometer (with sensor arrangement) - CCW suitable direction of rotation (Standard)	•	-	•	-		
TED	TAC-E Tachometer (with sensor arrangement) - CW suitable direction of rotation (Optional)	•	-	•	-		

12	
	Painting
xx	Not Painted
01	Black Painted RAL 9005
22	Grey Painted RAL 7035


Click **DANA** button to return to section index



DC5B1A1_0000000R2 - 03/2024

M06 MAIN PORTS

(1) N.2 3/8 G (BSPP) main ports thread depth 12 mm [0.472 in] (2) 1/8 G (BSPP) drain port thread depth 9 mm [0.354 in]

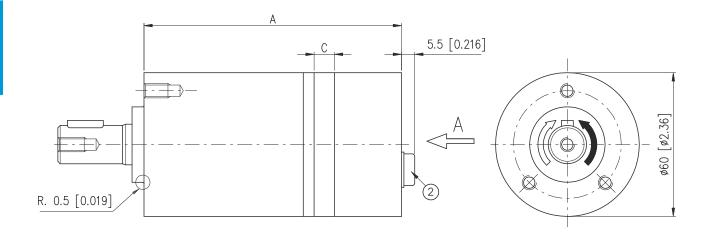
S06 MAIN PORTS

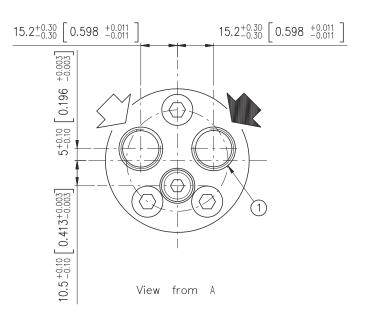
(1) N.2 9/16"-18 UNF main ports thread depth 13 mm [0.511 in] (2) 7/16"-20 UNF drain port thread depth 12 mm [0.472 in]

		BGM 013	BGM 020	BGM 032	BGM 040	BGM 050
A	mm [in]	104.5 [4.11]	107.5 [4.23]	112.5 [4.42]	116 [4.56]	120 [4.72]
В	mm [in]	-	-	-	-	-
с	mm [in]	5.5 [0.216]	8.5 [0.334]	13.5 [0.531]	17 [0.66]	21 [0.82]
Weight	kg [lb]	2 [4.4]	2.06 [4.5]	2.15 [4.7]	2.2 [4.8]	2.25 [4.9]

Click $m{l}$ button to return to main index

Click **DANA** button to return to section index




DC5B1A1_000000R2 - 03/2024 <

BGM

M06 MAIN PORTS

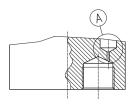
1 N.2 3/8 G (BSPP) main ports thread depth 12 mm [0.472 in] 2 1/8 G (BSPP) drain port thread depth 9 mm [0.354 in]

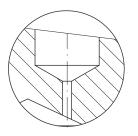
S06 MAIN PORTS

(1) N.2 9/16"-18 UNF main ports thread depth 13 mm [0.511 in] (2) 7/16"-20 UNF drain port thread depth 12 mm [0.472 in]

		BGM 013	BGM 020	BGM 032	BGM 040	BGM 050
Α	mm [in]	104.5 [4.11]	107.5 [4.23]	112.5 [4.42]	116 [4.56]	120 [4.72]
В	mm [in]	_	-	_	-	-
с	mm [in]	5.5 [0.216]	8.5 [0.334]	13.5 [0.531]	17 [0.66]	21 [0.82]
Weight	kg [lb]	2 [4.4]	2.06 [4.5]	2.15 [4.7]	2.2 [4.8]	2.25 [4.9]

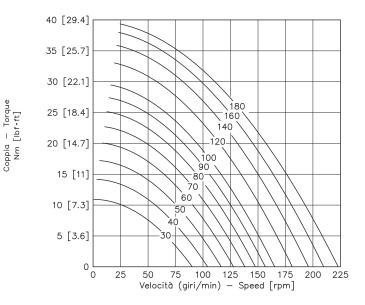
Click DANA button to return to section index

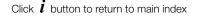

Click \boldsymbol{i} button to return to main index

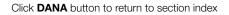


i

Fixed flow restrictor option

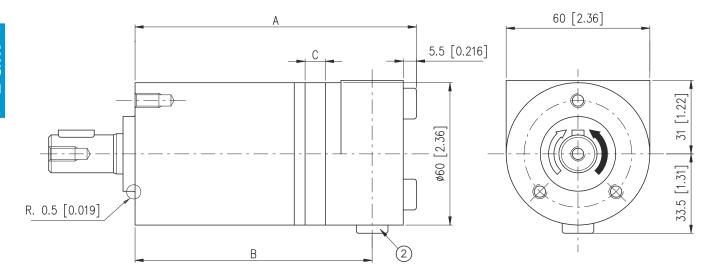


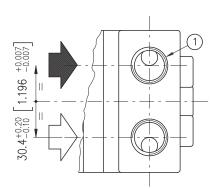

PART. A Flow restrictor


BGM/FRQ motors feature a restrictor at the back of the motor meant to ensure very low shaft speed though in presence of high flow. Typical applications are truck or tractor mounted snow blowers.

Performance curves

Performance curves (torque/speed) according to pressure relief valve setting and 1.2 mm [0.047 in] diameter (for BGM32) of flow restrictor.



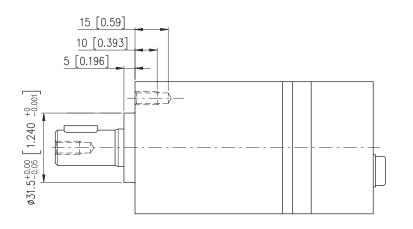


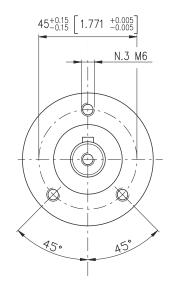
BGM

M06 MAIN PORTS

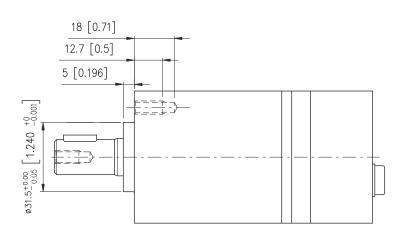
S06 MAIN PORTS

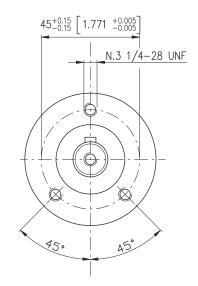
1 N.2 3/8 G (BSPP) main ports thread depth 12mm [0.472 in] 2 1/8 G (BSPP) drain port thread depth 10 mm [0.393 in]

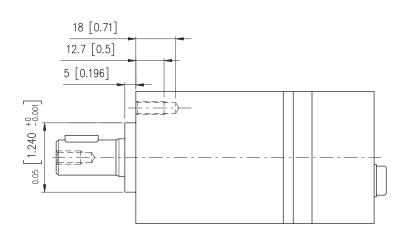

1 N.2 9/16"-18 UNF main ports thread depth 13mm [0.511 in] 2 7/16"-20 UNF drain port thread depth 12mm [0.472 in]

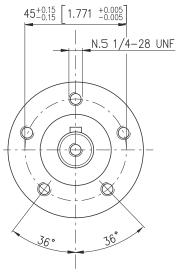

		BGM 013	BGM 020	BGM 032	BGM 040	BGM 050
Α	mm [in]	113.8 [4.48]	116.8 [4.59]	121.8 [4.79]	125.3 [4.93]	129.3 [5.09]
В	mm [in]	95.3 [3.75]	98.3 [3.87]	103.3 [4.06]	106.8 [4.20]	110.8 [4.36]
с	mm [in]	5.5 [0.216]	8.5 [0.334]	13.5 [0.531]	17 [0.66]	21 [0.82]
Weight	kg [lb]	2.1 [4.6]	2.16 [4.7]	2.25 [4.9]	2.3 [5]	2.35 [5.1]

Click **DANA** button to return to section index

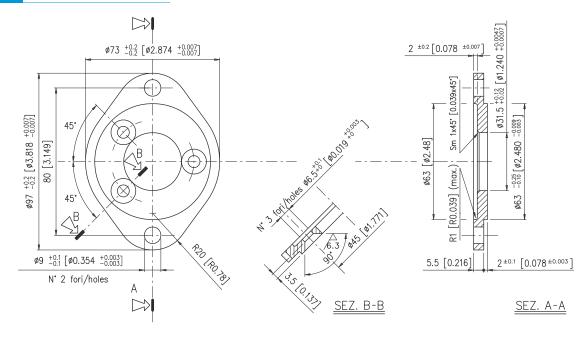








T 3 bolts 1/4 - 28 UNF



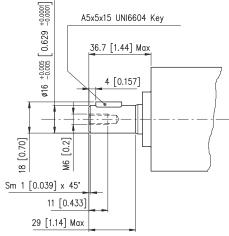
N/E 2 bolts

Flange - Assembling

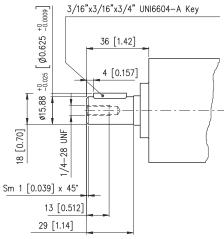
M6x14 - 8.8 UNI 7688 flathead screw (with S flange). TSP 1/4-28 UNF 1/2" - 8.8 DIN 965 screw (with T flange)

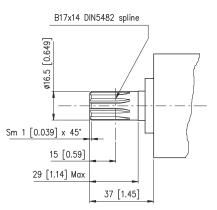
Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024


Click \dot{l} button to return to main index

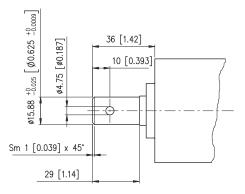
BGM


Ζ



Max Torque Continuous 39Nm [28.743 lbf·ft]

CL158 Cylindrical Shaft

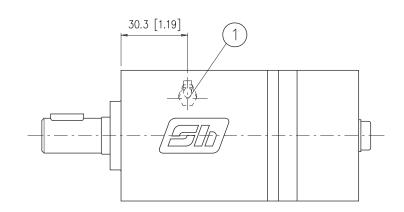


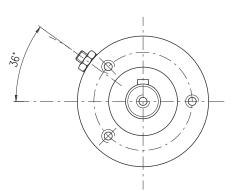
Max Torque Continuous 39Nm [28.743 lbf·ft]

Max Torque Continuous 44Nm [32.428 lbf·ft]

CS158 Cylindrical Crosshole Shaft

Max Torque Continuous 39Nm [28.743 lbf·ft]


Click \boldsymbol{i} button to return to main index



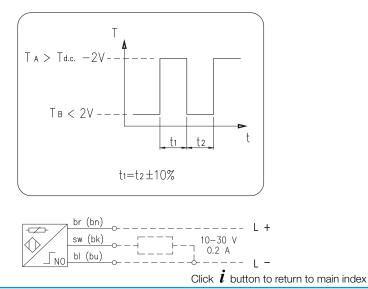
В

TES **Tachometer - CCW**

TED Tachometer - CW

① Sensor connection M5x0.5

Sensor Kit

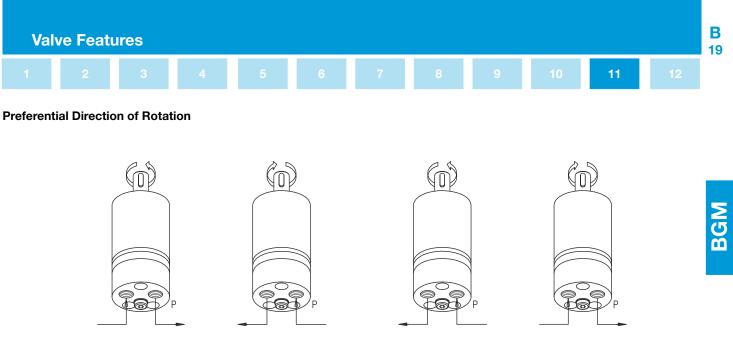

- ① Cod. 424.0090.0000 inductive sensor (1A) + M5x0.5 locking nut (1B)
- (2) Cod. 406.0730.0000 Sealing washer GM2000 M5

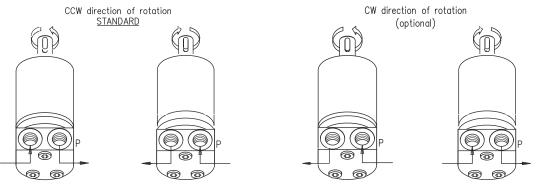
́1В 2

Electronic sensor technical features

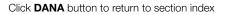
Number of pulses for revolution = 4 Inductive principle Output current PNP Voltage 10-30 V d.c. Max load 200 mA Max frequency 3000 Hz Temperature range -25°C +85°C Enclosure IP 67 Cable length 2 m

Output signal electronic tacho


Click **DANA** button to return to section index



DC5B1A1_000000R2 - 03/2024

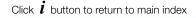


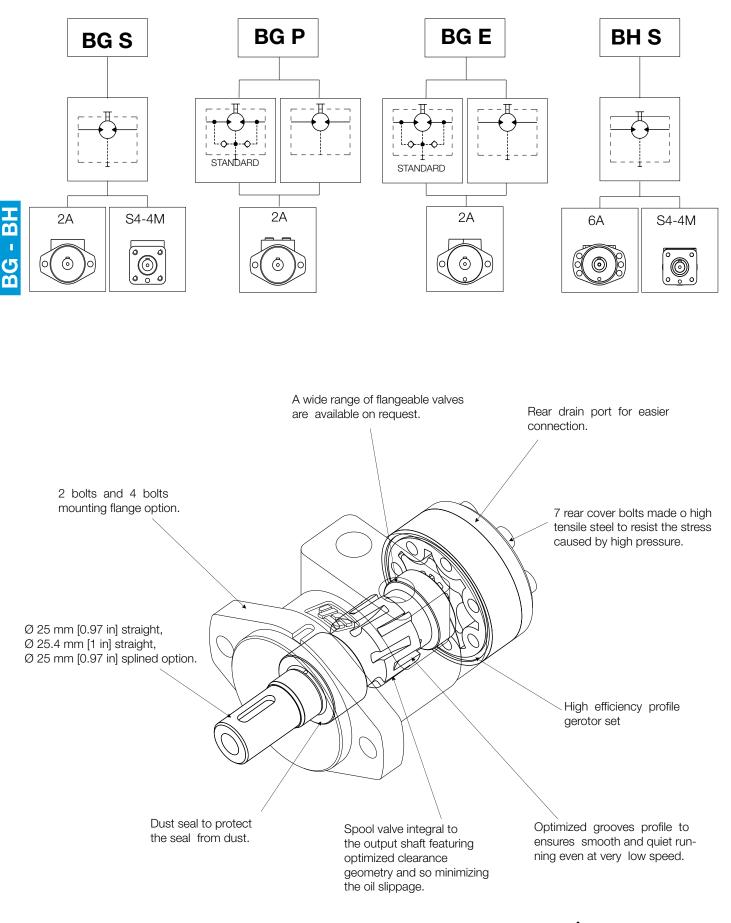
11

The selection of the version CW or CCW depends on the prevailing direction of rotation of the motor, in order to use the sensor at the lower working pressure.

Click DANA button to return to section index

DC5B1A1_000000R2 - 03/2024


Motion Systems


BG - BH Orbital Motors

	Page
Motor Features	C2
Motor Technical Specifications	C 3
Performance Curves	C4
Pressure Data	C 9
Max. Permissible Shaft Seal Pressure Without Drain	C 9
Pressure Loss	C10
Other Informations	C11
BG - Ordering Code	C12
BG - Dimensions and Weight	C15
BG - Shaft End	C19
BG - Valve Feature	C20
BH - Ordering Code	C22
BH - Dimensions and Weight	C24
BH - Shaft End	C26
BH - Main Port	C27

С

2

Click **DANA** button to return to section index

Click ${m i}$ button to return to main index

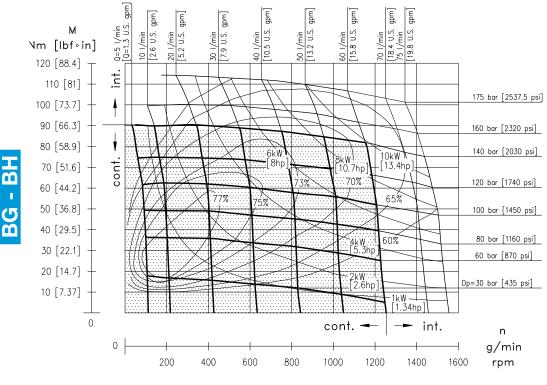
BG / BH MOTOR TECHNICAL DATA WITH CL250-CL254 PARALLEL KEYED SHAFT

Motor	Displacement cm ³ /rev [in ³ /rev]	F	ax. input pressure bar [psi]	p	differential pressure bar [psi]		x. torque m [lbf·ft]		ax. flow [U.S. gpm]	Ma	a x. speed		x. power
BG-BH 050	47.8 [2.91]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	91 [67.1] 115 [84.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	1220 1530	Cont Int ¹⁾	10 [13.4] 12 [16.1]
BG-BH 080	71.9 [4.38]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int* Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int*	135 [99.5] 175 [128.9]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	820 1025	Cont Int ¹⁾	9.5 [12.7] 12 [16.1]
BG-BH 100	100.1 [6.10]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	190 [140] 230 [169.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	590 740	Cont Int ¹⁾	10.5 [14] 13 [17.4]
BG-BH 130	127.2 [7.76]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	240 [176.8] 290 [213.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	465 585	Cont Int ¹⁾	10 [13.4] 12 [16.1]
BG-BH 160	165.3 [10.08]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	300 [221.1] 370 [272.6]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	355 445	Cont Int ¹⁾	10 [13.4] 12 [16.1]
BG-BH 200	192.4 [11.73]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	115 [1670] 160 [2320] 200 [2900]	Cont Int ¹⁾	300 [221.1] 390 [287.4]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	305 380	Cont Int ¹⁾	8 [10.7] 15 [20.1]
BG-BH 250	239.1 [14.58]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	95 [1377] 125 [1810] 180 [2610]	Cont Int ¹⁾	300 [221.1] 400 [294.8]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	245 305	Cont Int ¹⁾	6 [8.1] 8 [10.7]
BG-BH 315	286.9 [17.50]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	80 [1160] 105 [1522] 160 [2320]	Cont Int ¹⁾	300 [221.1] 400 [294.8]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	205 255	Cont Int ¹⁾	5 [6.7] 7 [9.4]
BG-BH 400	382.5 [23.33]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	60 [870] 80 [1160] 130 [1890]	Cont Int ¹⁾	300 [221.1] 400 [294.8]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	150 190	Cont Int ¹⁾	4 [5.4] 6 [8.1]

BG MOTOR TECHNICAL DATA WITH SD250 SPLINED SHAFT BH MOTOR TECHNICAL DATA WITH SE250 SPLINED SHAFT

Motor	Displacement cm ³ /rev [in ³ /rev]	F	Max. input pressure bar [psi]		pressure		Max. differential pressure bar [psi]		i x. torque Im [lbf·ft]		ax. flow [U.S. gpm]	M	ax. speed		x. power
BG-BH 050	47.8 [2.91]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	91 [67.1] 115 [84.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	1220 1530	Cont Int ¹⁾	10 [13.4] 12 [16.1]		
BG-BH 080	71.9 [4.38]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int* Peak ²⁾	Int* 175 [2540] Cor		135 [99.5] 175 [128.9]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	820 1025	Cont Int ¹⁾	9.5 [12.7] 12 [16.1]		
BG-BH 100	100.1 [6.10]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	nt ¹⁾ 175 [2540] Cor		190 [140] 230 [169.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	590 740	Cont Int ¹⁾	10.5 [14] 13 [17.4]		
BG-BH 130	127.2 [7.76]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	240 [176.8] 290 [213.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	465 585	Cont Int ¹⁾	10 [13.4] 12 [16.1]		
BG-BH 160	165.3 [10.08]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	300 [221.1] 370 [272.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	355 445	Cont Int ¹⁾	10 [13.4] 12 [16.1]		
BG-BH 200	192.4 [11.73]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	360 [265.3] 420 [309.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	305 380	Cont Int ¹⁾	10 [13.4] 12 [16.1]		
BG-BH 250	239.1 [14.58]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	110 [1595] 140 [2030] 180 [2610]	Cont Int ¹⁾	360 [265.3] 440 [324.2]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	245 305	Cont Int ¹⁾	8 [10.7] 10 [13.4]		
BG-BH 315	286.9 [17.50]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	Int ¹⁾ 120 [1740] CO		340 [250.6] 440 [324.2]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	205 255	Cont Int ¹⁾	5.6 [7.8] 7.5 [10.1]		
BG-BH 400	382.5 [23.33]	Cont Int ¹⁾ Peak ²⁾	165 [2392] 195 [2827] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	70 [1020] 95 [1377] 130 [1890]	Cont Int ¹⁾	360 [265.3] 460 [339]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	150 190	Cont Int ¹⁾	4.7 [6.3] 6 [8.1]		

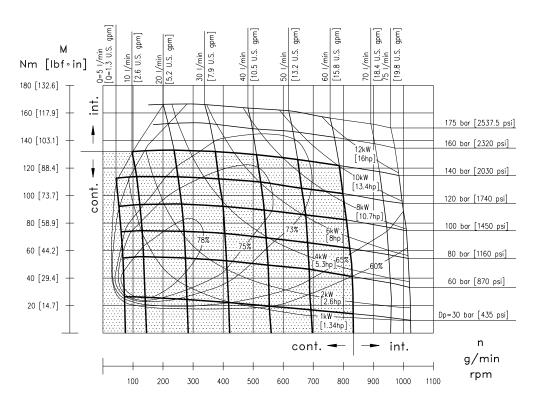
¹⁾ Intermittent duty must not exceed 10% each minute. ²⁾ Peak duty must not exceed 1% each minute.


Click $\boldsymbol{\dot{l}}$ button to return to main index

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

DC5B1A1_000000R2 - 03/2024

BG - BH 050



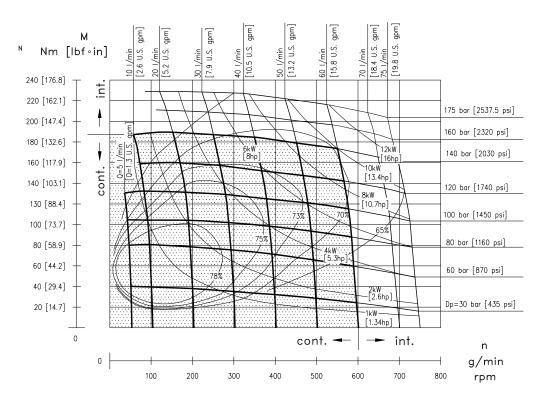
 80 bor [1160 psi]
 Exceeding continuous pressure

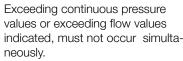
 60 bor [870 psi]
 values or exceeding flow values

 indicated, must not occur simulta neously.

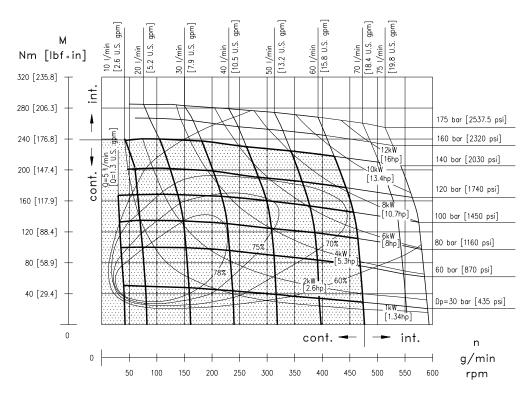
BG - BH 080

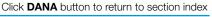
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.


Click **DANA** button to return to section index



Click \dot{l} button to return to main index



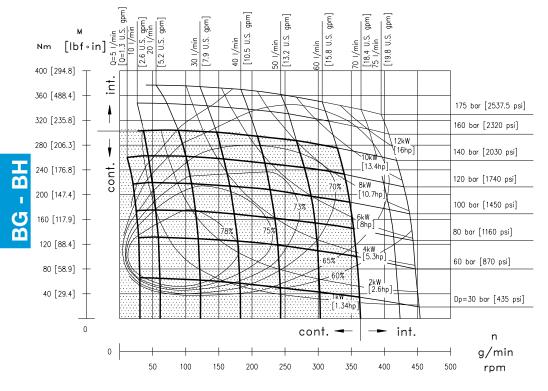


BG - BH 130

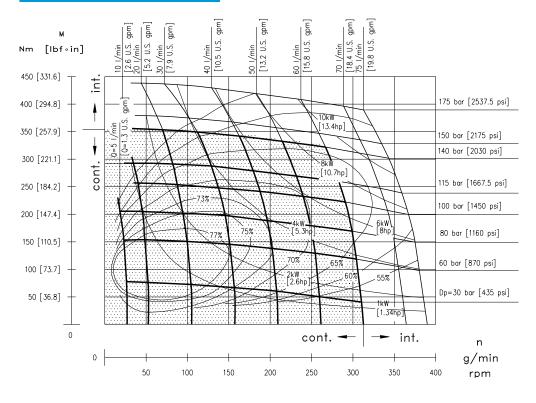
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

С

5


DC5B1A1_000000R2 - 03/2024

С


6

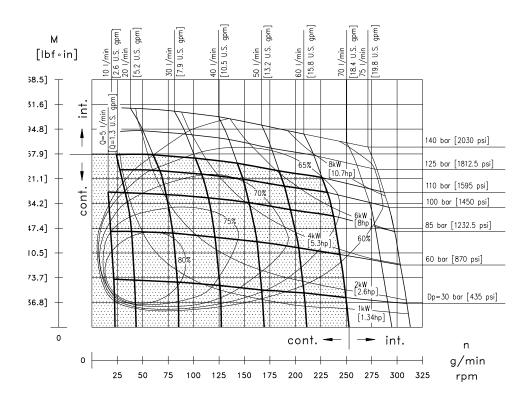
BG - BH 160

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

BG - BH 200

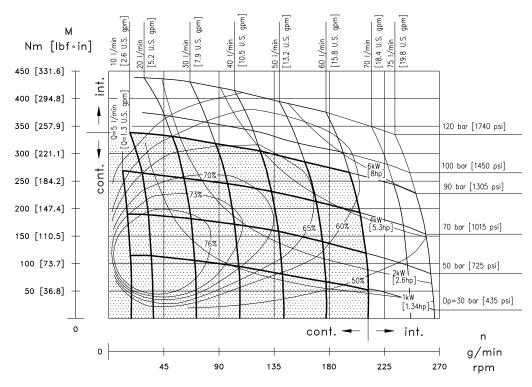
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click **DANA** button to return to section index



DC5B1A1_000000R2 - 03/2024

Click \dot{l} button to return to main index



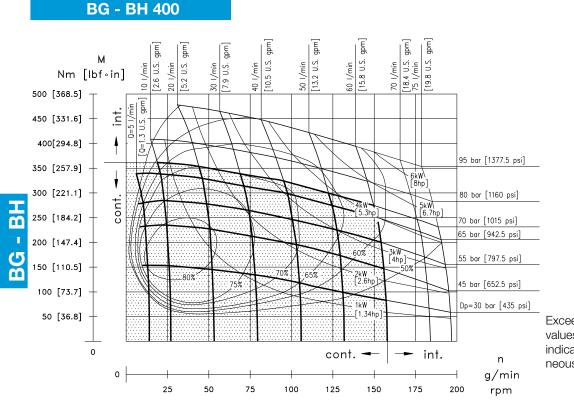
BG - BH 250

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

BG - BH 315

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click \dot{l} button to return to main index



Click DANA button to return to section index

BG - BH

С

8

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

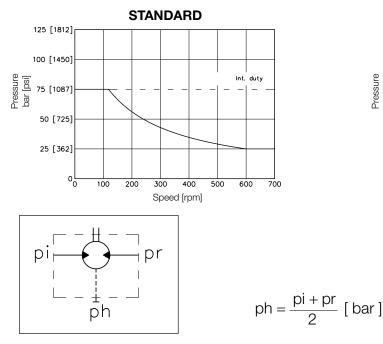
Diagrams according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.

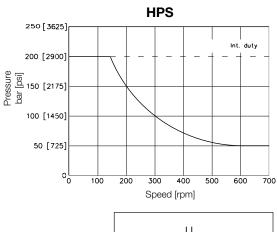
Max. Pressure

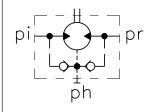
Motor	r	Max return pressure with drain line	Max starting pressure with no load	м	in starting	torque
		bar [psi]	bar [psi]		Nm [lbf	ft]
BG	050	140 [2030]	10 [145]	At max ∆p	Cont. Int.	70 [51.6] 90 [66.3]
BG	080	140 [2030]	10 [145]	At max ∆p	Cont. Int.	105 [77.4] 135 [99.5]
BG	100	140 [2030]	10 [145]	At max ∆p	Cont. Int.	150 [111] 190 [140]
BG	130	140 [2030]	9 [131]	At max ∆p	Cont. Int.	190 [140] 240 [177]
BG	160	140 [2030]	8 [116]	At max ∆p	Cont. Int.	250 [184] 315 [232]
BG	200	140 [2030]	7 [102]	At max ∆p	Cont. Int.	255 [188] 320 [236]
BG	250	140 [2030]	6 [87]	At max ∆p	Cont. Int.	265 [195] 345 [254]
BG	315	140 [2030]	6 [87]	At max ∆p	Cont. Int.	250 [184] 330 [243]
BG	400	140 [2030]	6 [87]	At max ∆p	Cont. Int.	265 [195] 355 [262]

1) Intermittent duty must not exceed 10% every minute.

2) Peak duty must not exceed 1% of every minute.


3) Oil viscosity 35 cSt.


Max. Permissible Shaft Seal Pressure Without Drain


Max. return pressure without drain line or max. pressure in the drain line. Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart).

For pressure and speeds not showed in the curve below, please contact Dana Brevini.

N.B.: TAC/U version is not available with HPS seals.

ph = housing pressure

pi = inlet pressure

pr = outlet pressure

The case pressure without drain line is the average between inlet and return pressure. As standard, BH motors are supplied with drain port. Max. permissible return (back) pressure with drain line 138 bar [2000 psi] Cont.

In the motors without built-in check valves, the (ph) pressure on the seal is the average between inlet and return pressure. If (ph) exceeds the allowed values (see the curves in this page), the drain line must be connected.

Click $\boldsymbol{\dot{l}}$ button to return to main index

C 10

BG - Pressure Loss

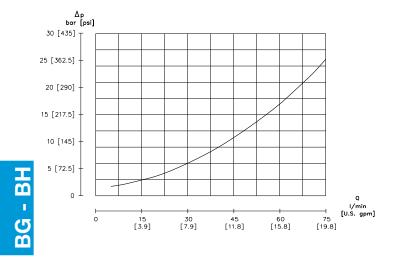
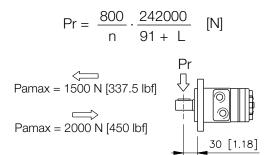


Diagram according tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45° C temperature.

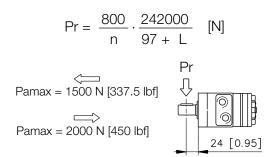

Shaft Load

The permissible radial shaft load depends on:

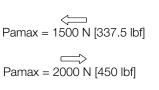
- Speed (n)
- Distance (L) from the point of load to the mounting flange
- Mounting flange version

BG MOTOR

Radial load capacity (Pr) curve according to speed (n) and distance (L) from flange, valid for the 2-bolt flange type "2A"

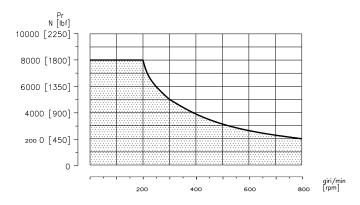


BH MOTOR


Radial load capacity (Pr) curve according to speed (n) and distance (L) from flange, valid for the 6-bolt flange type "6A"

$$Pr = \frac{800}{n} \cdot \frac{242000}{97 + L}$$
 [N]

Radial load capacity (Pr) curve according to speed (n) and distance (L) from flange, valid for the 4-bolt flange type "S4-4M"

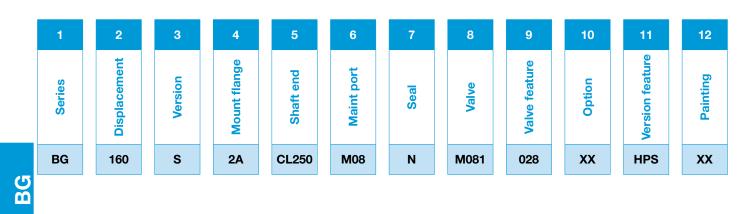


Radial load capacity (Pr) curve according to speed (n) and distance (L) from flange, valid for the 4-bolt flange type "S4-4M"

This formulas being valid for n>= 200 rpm. For n< 200 rpm $Pr_{max} = 8000 \text{ N} [1800 \text{ lbf}]$

The curve show the relation between (Pr) and (n):

- L = 30 mm [1.18 in] for motors with 2A flange
- L = 24 mm [0.95 in] for motors with S4-4M and 6A flange


С

11

Click ${\it l}$ button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BG motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

Series BG Orbital motor

2								
	Displacement							
050	50 cm³/giro [3.05 in³/rev]							
080	80 cm ³ /giro [4.88 in ³ /rev]							
100	100 100 cm ³ /giro [6.10 in ³ /rev]							
130	130 cm³/giro [7.93 in³/rev]							
160	160 cm³/giro [9.76 in³/rev]							
200	200 cm³/giro [12.20 in³/rev]							
250	250 cm³/giro [15.25 in³/rev]							
315	315 cm³/giro [19.21 in³/rev]							
400	400 cm³/giro [24.40 in³/rev]							

3	
	Version
S	S (standard)
Е	E Version
Р	P Version

4				
Mounting Flange			Version	
		S	E	Р
2A	Oval 2 bolts (standard)	•	•	٠
S 4	4 bolts 3/8 16 UNC - Ø44.45 mm [Ø1.75 in]	•	-	-
4M	4 bolts M10 - Ø44.45 mm [Ø1.75 in]	•	-	-

5							
	Shaft end						
CL250	CL250 Ø25 mm [0.97 in] Parallel keyed (standard)						
CL254	Ø25.4 mm [1 in] Parallel keyed						
SD250	Splined Shaft (SAE 6B 1" 6T spline)						

Available

- Not Available

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

Click \dot{i} button to return to main index

BG - Ordering Code

	U				
Γ		Main Port		Version	
			S	E	Р
	M08	1/2 G BSPP (40x8) Main Ports (standard)	•	-	-
	F08	1/2 G BSPP Main Ports	-	-	
	R08	1/2 G BSPP (36x36) Main Ports	-		-

7	
	Seal
N	NBR (standard)
V	FKM (Not available in HPS version)

			R08 - - - - - - - - - - - - -
Velve		Main port	
Valve	M08	F08	R08
Not required (standard)	•	•	•
VAF 08 - D pressure relief valve	•	-	-
VAF 08 - D/AF pressure relief valve	•	-	-
VAAF 31 anticavitation and Anti-Shock Valve	•	-	-
AF shuttle-valve	•	-	-
VCD 08 - S/AF overcentre Valve	•	-	-
VCR1 08 - D/AF double-acting overcentre valve with shuttle valve	•	-	-
VCR1 08 D/AF LDP double-acting overcentre valve with shuttle valve	•	-	-
VAF E8 - D pressure relief valve	-	-	•
VCD E8 - S/AF overcentre Valve	-	-	•
VCR1 E8 - D/AF double-acting overcentre valve with shuttle valve	-	-	•
VCR1 E8 D/AF LDP double-acting overcentre valve with shuttle valve	-	-	•
	VAF 08 - D pressure relief valve VAF 08 - D/AF pressure relief valve VAAF 31 anticavitation and Anti-Shock Valve AF shuttle-valve VCD 08 - S/AF overcentre Valve VCR1 08 - D/AF double-acting overcentre valve with shuttle valve VCR1 08 D/AF LDP double-acting overcentre valve with shuttle valve VAF E8 - D pressure relief valve VCD E8 - S/AF overcentre Valve VCR1 E8 - D/AF double-acting overcentre valve with shuttle valve	M08Not required (standard)●VAF 08 - D pressure relief valve●VAF 08 - D/AF pressure relief valve●VAAF 31 anticavitation and Anti-Shock Valve●AF shuttle-valve●VCD 08 - S/AF overcentre Valve●VCR1 08 - D/AF double-acting overcentre valve with shuttle valve●VCR1 08 D/AF LDP double-acting overcentre valve with shuttle valve●VCD E8 - S/AF overcentre Valve-VCD E8 - S/AF overcentre Valve-VCD E8 - D/AF double-acting overcentre valve with shuttle valve-VCD E8 - D/AF double-acting overcentre valve with shuttle valve-VCR1 E8 - D/AF double-acting overcentre valve with shuttle valve-	ValveM08F08Not required (standard)●●VAF 08 - D pressure relief valve●●VAF 08 - D/AF pressure relief valve●-VAF 08 - D/AF pressure relief valve●-VAAF 31 anticavitation and Anti-Shock Valve●-AF shuttle-valve●-VCD 08 - S/AF overcentre Valve●-VCR1 08 - D/AF double-acting overcentre valve with shuttle valve●-VCR1 08 D/AF LDP double-acting overcentre valve with shuttle valve●-VCR E8 - D pressure relief valveVCD E8 - S/AF overcentre ValveVCR1 E8 - D/AF double-acting overcentre valve with shuttle valveVCR1 E8 - D/AF double-acting overcentre valve with shuttle valveVCR1 E8 - D/AF double-acting overcentre valve with shuttle valveVCR1 E8 - D/AF double-acting overcentre valve with shuttle valve

9														
	Valve feature	Valve												
	valve leature			M082	M083	M084	M085	M086	M087	R081	R082	R083	R084	
000	Feature not necessary	•	-	-	-	•	-	-	-	-	-	-	-	
028	Not Set 30÷70 bar [435 to 1015 psi]	-	•		-	-	-	-	-	-	-	-	-	
017	Not Set 70÷200 bar [1015 to 2900 psi]	-	٠	•	-	-	-	-	-	-	-	-	-	
031	Not Set 50÷130 bar [725 to 1885 psi]	-	-	-		-	-	-	-	•	-	-	-	
021	Not Set 100÷250 bar [1450 to 3625 psi]	-	-	-	•	-	-	-	-	-	-	-	-	
020	Not Set 100÷200 bar [1450 to 2900 psi]	-	-	-	-	-	-	-	-	•	-	-	-	
425	Pilot Ratio 4.25:1	-	-	-	-	-	-		•	-	-	•	•	
800	Pilot Ratio 8:1	-	-	-	-	-	-	•	•	-	-	-	-	
700	Pilot Ratio 7:1 - Direction of rotation CW	-	-	-	-	-	•	-	-	-	-	-	-	
35D	Pilot Ratio 3.5:1 - Direction of rotation CW	-	-	-	-	-	•	-	-	-	•	-	-	
70S	Pilot Ratio 7:1 - Direction of rotation CCW	-	-	-	-	-	•	-	-	-	-	-	-	
35S	Pilot Ratio 3.5:1 - Direction of rotation CCW	-	-	-	-	-	•	-	-	-	•	-	-	

10	
	Option
XX	None

¹⁾ Minimum quantity for order 20 pieces

Available

- Not Available

Click $\boldsymbol{\dot{l}}$ button to return to main index

Click **DANA** button to return to section index

BG

Valv

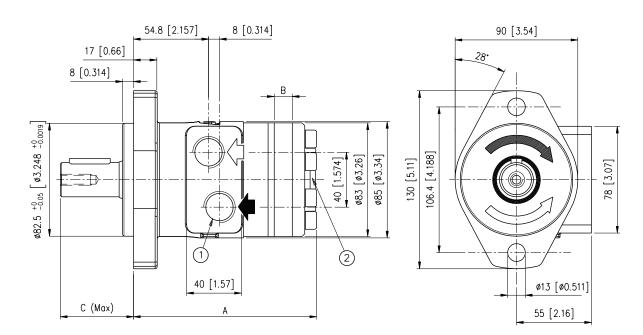
С

13

C 14

11								
	Version Feature							
	version realure	S	Е	Р				
QDR	QUAD-RING version with Rear drain 1/4" G (BSPP) (standard)	•	•	•				
HPS	High Pressure Seal (without Rear Drain)	•	•	•				
TC1	TAC/U tachometer (with sensor arrangement)	•	-	-				
SV0	Version without built-in check valves + Rear Drain - 1/4" G (BSPP)	-	•	•				
SVH	Version without built-in check valves + High Pressure Seal (without Rear Drain) - •							
SVA	Version without built-in check valves + High Pressure Seal + Rear Drain - 1/4"G (BSPP) - •							
DPM	High Pressure Seal + Rear Drain - 1/4" G (BSPP)		•	-				

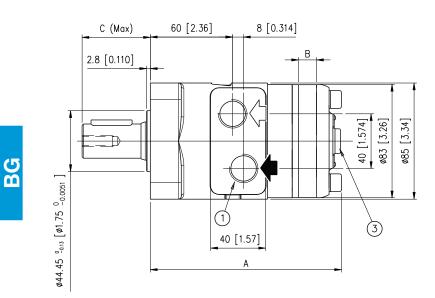
	12							
		Painting						
(5	XX Not Painted (standard)							
BG	01 Black Painted RAL 9005							
	02	Blue Painted RAL 5015						
	06	Grey Painted RAL 7015						
	07	Grey Painted RAL 7021						
	22	Grey Painted RAL 7035						

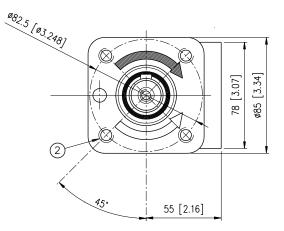

Click **DANA** button to return to section index

DC5B1A1_0000000R2 - 03/2024

Click $\boldsymbol{\dot{l}}$ button to return to main index

(1) No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in] (2) 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in]


For shafts dimensions see page

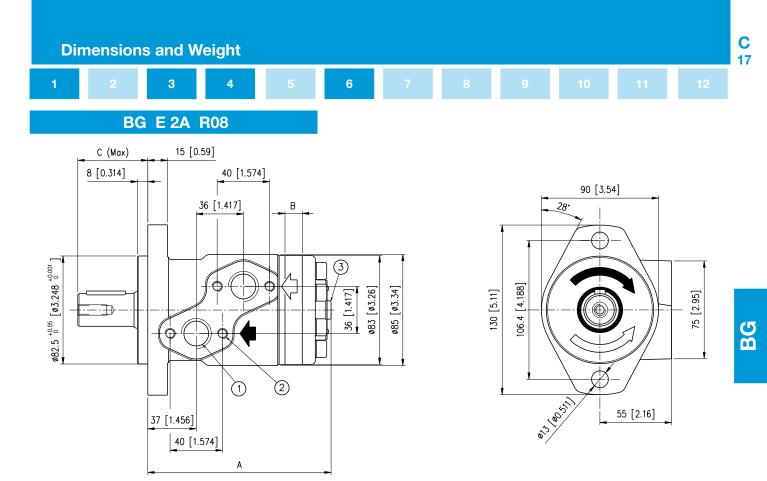

S	HAFT	CL250	CL254	SD250
С	mm [in]	53.5 [2.10]	53.5 [2.10]	53.5 [2.10]

		BG S 050	BG S 080	BG S 100	BG S 130	BG S 160	BG S 200	BG S 250	BG S 315	BG S 400
Α	mm [in]	127.5 [5.01]	130.5 [5.13]	134.5 [5.29]	138.5 [5.45]	143.5 [5.64]	146.5 [5.76]	153.5 [6.04]	162.5 [6.39]	172.5 [6.79]
В	mm [in]	6.3 [0.248]	9.5 [0.374]	13.3 [0.523]	16.2 [0.63]	21.9 [0.86]	25.5 [1.003]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Weight	kg [lb]	5.5 [12.1]	5.6 [12.3]	5.8 [12.8]	5.9 [13.0]	6.1 [13.4]	6.3 [13.9]	6.5 [14.3]	6.8 [15.0]	7.3 [16.1]

BG

1 No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in] (2) No. 4 3/8 16UNC thread depth 17 mm [0.66 in] (S4 flange) No. 4 M10 thread depth 17 mm [0.66 in] (4M flange) (3) 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in]

C19 For shafts dimensions see page

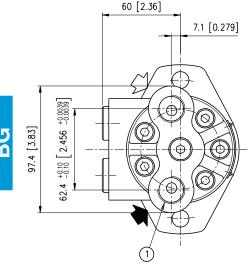

	SHAFT	CL250	CL254	SD250	
С	mm [in]	50 [1.96]	45 [1.77]	50 [1.96]	

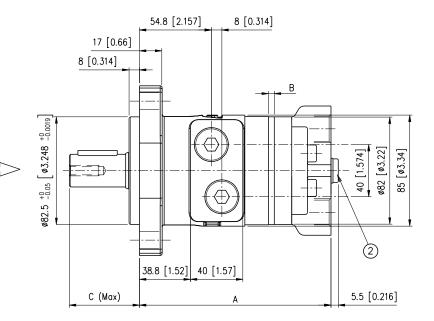
		BG S 050	BG S 080	BG S 100	BG S 130	BG S 160	BG S 200	BG S 250	BG S 315	BG S 400
Α	mm [in]	133.1[5.24]	136.3 [5.36]	140 [5.51]	143.7 [5.65]	148.7 [5.85]	152.2 [5.99]	158.5 [6.24]	165 [6.49]	177.5 [6.98]
В	mm [in]	6.3 [0.248]	9.5 [0.374]	13.3 [0.523]	16.2 [0.63]	21.9 [0.86]	25.5 [1.003]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Weię	ht kg [lb]	5.5 [12.1]	5.6 [12.3]	5.8 [12.8]	5.9 [13.0]	6.1 [13.4]	6.3 [13.9]	6.5 [14.3]	6.8 [15.0]	7.3 [16.1]

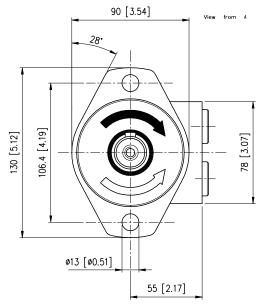
DC5B1A1_000000R2 - 03/2024

No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in]
 No. 4 M8 thread depth 16 mm [0.62 in]
 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in]

For shafts dimensions see page


 SHAFT
 CL250
 CL254
 SD250


 C
 mm [in]
 55 [2.16]
 50 [1.96]
 55 [2.16]


		BG E 050	BG E 080	BG E 100	BG E 130	BG E 160	BG E 200	BG E 250	BG E 315	BG E 400
Α	mm [in]	127.7 [5.03]	130.9 [5.15]	134.7 [5.30]	138.2 [5.44]	143.3 [5.64]	146.9 [5.78]	153.1 [6.02]	159.5 [6.27]	172.2 [6.78]
В	mm [in]	6.3 [0.248]	9.5 [0.374]	13.3 [0.523]	16.2 [0.63]	21.9 [0.86]	25.5 [1.003]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Weight	kg [lb]	5.5 [12.1]	5.6 [12.3]	5.8 [12.8]	5.9 [13.0]	6.1 [13.4]	6.3 [13.9]	6.5 [14.3]	6.8 [15.0]	7.3 [16.1]

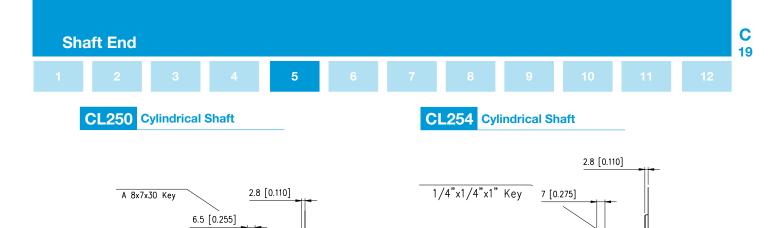
А

(1) No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in] (2) 1/4 G (BSPP) drain motor thread depth 15.5 mm [0.61 in]

For shafts dimensions see page

s	HAFT	CL250	CL254	SD250	
С	mm [in]	53.5 [2.10]	53.5 [2.10]	53.5 [2.10]	

		BG P 050	BG P 080	BG P 100	BG P 130	BG P 160	BG P 200	BG P 250	BG P 315	BG P 400
A	mm [in]	140 [5.51]	143 [5.62]	147 [5.78]	150.2 [5.91]	155.5 [6.12]	159 [6.25]	165 [6.49]	171.5 [6.75]	187.5 [7.38]
В	mm [in]	6.3 [0.248]	9.5 [0.374]	13.3 [0.523]	16.2 [0.63]	21.9 [0.86]	25.5 [1.003]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Weight	kg [lb]	6.5 [14.3]	6.6 [14.5]	6.8 [15.0]	6.9 [15.2]	7.1 [15.6]	7.3 [16.1]	7.5 [16.5]	7.8 [17.2]	8.3 [18.3]


Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

Click \dot{l} button to return to main index

28 [1.10] 0.000

ø25.4 ⁰-0025 [1

1/4"-20UNC

20 [0.78]

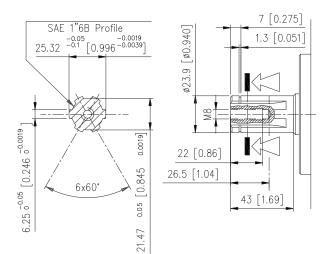
Max Torque Continuous 300 Nm [221.1 lbf·ft]

44 [1.73]

4 [0.157]

SD250 Splined Shaft

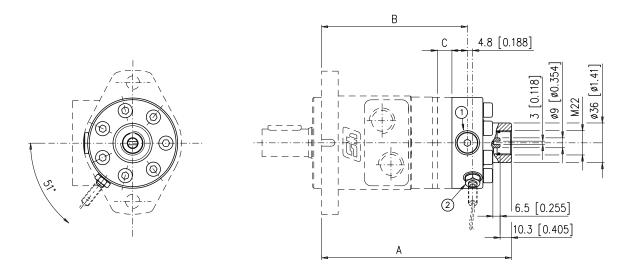
ø25 ⁰-0.021 [ø0.984] ⁰-0.0008


28 [1.10]

M8

22 [0.86]

Max Torque Continuous 300 Nm [221.1 lbf·ft]


47.8 [1.88]

Max Torque Continuous 360 Nm [265.32 lbf·ft]

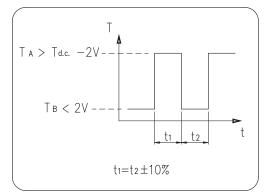
- TC1 TAC/U tachometer
- 1) 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in]
- 2) Sensor connection M8x1

WARNING:

Tacho shaft has a 6 times higher revolution speed than the motor shaft and opposite direction of rotation.

NOTE:

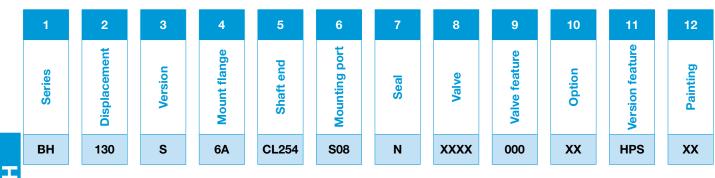
Axial or radial load on tacho shaft must be avoided. Max torque on tacho 1 Nm [0.73 lbf·ft]. The electronic sensor is not supplied: if required, please state it clearly on order form. Max pressure admissible on the shaft seal with closed drain port 25 bar [363 psi].


		BG S 050	BG S 080	BG S 100	BG S 130	BG S 160	BG S 200	BG S 250	BG S 315	BG S 400
Α	mm [in]	163 [6.41]	166 [6.53]	170 [6.69]	174 [6.85]	179 [7.04]	182 [7.16]	189 [7.44]	195 [7.67]	208 [8.18]
В	mm [in]	123 [4.84]	126 [4.96]	130 [5.11]	134 [5.27]	139 [5.47]	142 [5.59]	149 [5.86]	155 [6.10]	168 [6.61]
С	mm [in]	6.3 [0.248]	9.5 [0.374]	13.3 [0.523]	16.2 [0.63]	21.9 [0.86]	25.5 [1.003]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Weight	kg [lb]	6 [13.2]	6.1 [13.4]	6.3 [13.9]	6.4 [14.1]	6.6 [14.5]	6.8 [15.0]	7.0 [15.4]	7.3 [16.1]	7.8 [17.2]

Output signal electronic tacho

- Number of pulses per revolution = 90 Inductive principle
- Output current PNP
- Voltage 10-65 V d.c.
- Max load 300 mA
 Max frequency 100
- Max frequency 10000 Hz
- Temperature range -25C +85C
- Enclosure IP 67

Available versions:


- Sensor with 2 metres three wires cable (cod.424.0050.0000)
- Sensor with binder plug connection (cod.424.0060.0000) + binder connecting
- Plug with 5 metres three wires cable (cod.424.0080.0000)

Click \boldsymbol{l} button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BH motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

BH

	Series
BH	Orbital motor

2								
	Displacement							
050	050 50 cm ³ /giro [3.05 in ³ /rev]							
080	80 cm³/giro [4.88 in³/rev]							
100	100 cm³/giro [6.10 in³/rev]							
130	130 130 cm ³ /giro [7.93 in ³ /rev]							
160	160 cm³/giro [9.76 in³/rev]							
200	200 cm³/giro [12.20 in³/rev]							
250	250 cm ³ /giro [15.25 in ³ /rev]							
315	315 315 cm ³ /giro [19.21 in ³ /rev]							
400	400 cm³/giro [24.40 in³/rev]							

3					
Version					
S	S (standard)				

4							
Mounting Flange							
6A	6A Oval 6 bolts (standard)						
S4	4 bolts 3/8 16 UNC - Ø44.45 mm [Ø1.75 in]						
4M	4M 4 bolts M10 - Ø44.45 mm [Ø1.75 in]						

5						
Shaft end						
CL250	L250 Ø25 mm [0.97 in] Parallel keyed					
CL254						
LC250						
CS254 Ø25.4 mm [1 in] Parallel crosshole						
SE250	Splined Shaft (SAE 6B 1" 6T spline)					

Click **DANA** button to return to section index

Click \dot{l} button to return to main index

BH - Ordering Code

6								
	Main Port							
F08	F08 1/2 G BSPP Main Ports							
FS8	FS8 3/4 - 16 UNF (End Main Ports) (not 4M flange)							
S08	S08 7/8 - 14 UNF SAE10 Main Ports (not 4M flange) (BH standard)							
SS8	1/2 - 14 NPTF Main Ports (not 4M flange)							
MS8	1/2 G BSPP Main Ports (not 4M flange)							
BFL Manifold Main Ports (not 4M flange)								
BFM	Manifold Main Ports (ISO) (Only with 4M flange)							

7							
	Seal						
Ν	NBR (standard)						

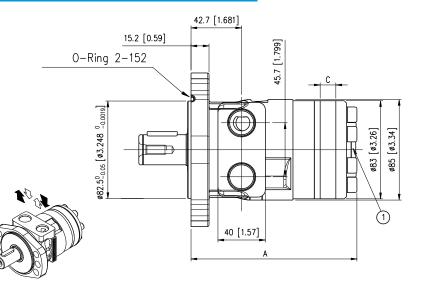
8					
	Valve				
xx Not required (standard)					

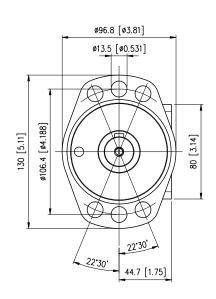
9							
	Valves features						
XX	Not required (standard)						

10					
	Option				
ххх	None				

11							
Version Feature							
HPS High Pressure Seal (without Rear Drain)							
QDR QUAD-RING version with Rear drain 1/4" G (BSPP)							
QDSQUAD-RING version with Rear drain 7/16" 20 UNF 2BDPSHigh Pressure Seal + Rear Drain - 7/16" 20 UNF 2B							
						DPM High Pressure Seal + Rear Drain - 1/4" G (BSPP)	

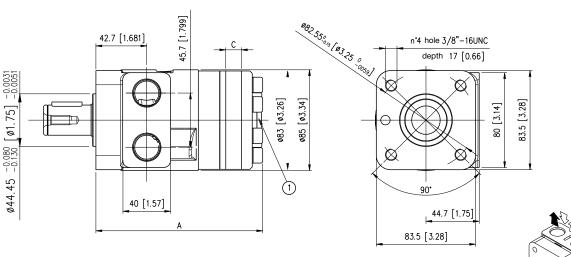
12						
Painting						
xx Not Painted						
01 Black Painted RAL 9005 (standard)						

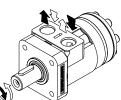

ВН


BH

4

3

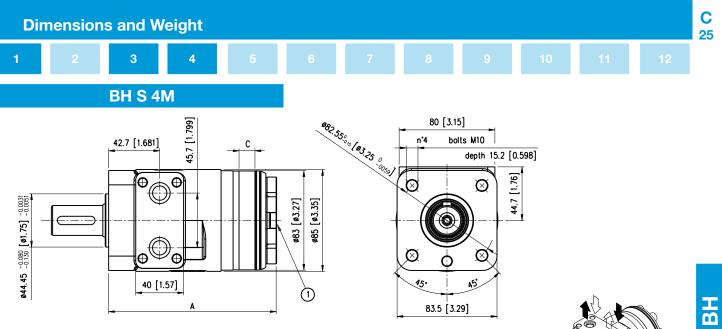




 1/4 G (BSPP) drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX) 7/16" 20UNF2B drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX)

		BH 050	BH 080	BH 100	BH 130	BH 160	BH 200	BH 250	BH 315	BH 400
Α	mm [in]	133.1 [5.24]	136.3 [5.36]	140 [5.51]	143.7 [5.65]	148.7 [5.85]	152.2 [5.99]	158.5 [6.24]	164.9 [6.49]	177.6 [6.99]
С	mm [in]	6.3 [0.248]	9.5 [0.374]	13.2 [0.519]	16.9 [0.66]	21.9 [0.86]	25.4 [1.00]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Wieght	kg [lb]	5.5 [12.12]	5.6 [12.34]	5.8 [12.78]	5.9 [13]	6 [13.4]	6.3 [13.88]	6.5 [14.3]	6.8 [14.98]	7.2 [16]

BH S S4


1/4 G (BSPP) drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX)
 7/16" 20UNF2B drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX)

		BH 050	BH 080	BH 100	BH 130	BH 160	BH 200	BH 250	BH 315	BH 400
1	A mm [in]	133.1 [5.24]	136.3 [5.36]	140 [5.51]	143.7 [5.65]	148.7 [5.85]	152.2 [5.99]	158.5 [6.24]	164.9 [6.49]	177.6 [6.99]
(C mm [in]	6.3 [0.248]	9.5 [0.374]	13.2 [0.519]	16.9 [0.66]	21.9 [0.86]	25.4 [1.00]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Wie	eght kg [lb]	5.5 [12.12]	5.6 [12.34]	5.8 [12.78]	5.9 [13]	6 [13.4]	6.3 [13.88]	6.5 [14.3]	6.8 [14.98]	7.2 [16]

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

Click \dot{l} button to return to main index

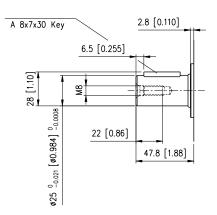
(1) 1/4 G (BSPP) drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX) 7/16" 20UNF2B drain motor thread depth 12 mm (0.472 in). Not in HPS version (XXX)

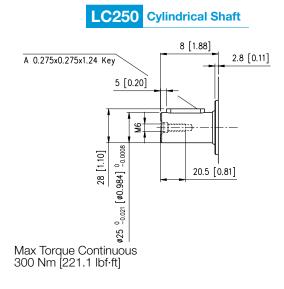
		BH 050	BH 080	BH 100	BH 130	BH 160	BH 200	BH 250	BH 315	BH 400
Α	mm [in]	133.45 [5.25]	136.65 [5.38]	140.4 [5.53]	143.9 [5.66]	149.05 [5.87]	152.65 [6]	158.85 [6.25]	165.2 [6.5]	177.9 [7]
С	mm [in]	6.3 [0.248]	9.5 [0.374]	13.2 [0.519]	16.9 [0.66]	21.9 [0.86]	25.4 [1.00]	31.7 [1.24]	38.1 [1.50]	50.8 [2.00]
Wieght	kg [lb]	5.5 [12.12]	5.6 [12.34]	5.8 [12.78]	5.9 [13]	6 [13.4]	6.3 [13.88]	6.5 [14.3]	6.8 [14.98]	7.2 [16]

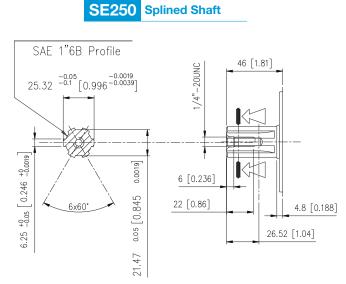
Click **DANA** button to return to section index

DANA

DC5B1A1_000000R2 - 03/2024 <

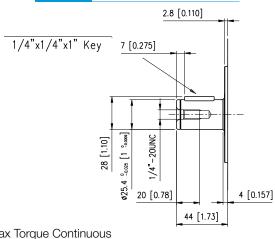

Click \dot{l} button to return to main index


BH



5

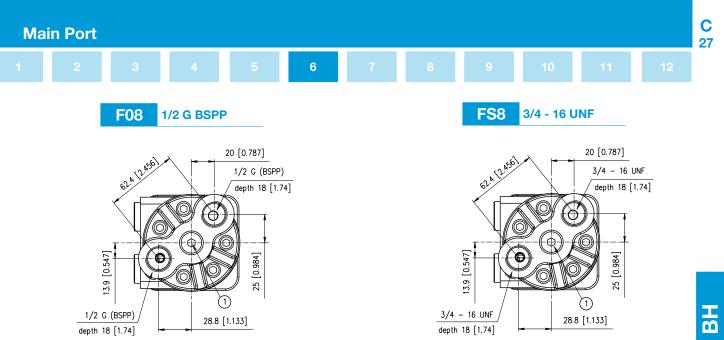
Max Torque Continuous 300 Nm [221.1 lbf·ft]



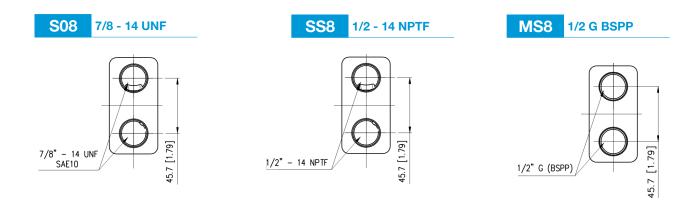
Max Torque Continuous 360 Nm [265.32 lbf·ft] Click **DANA** button to return to section index

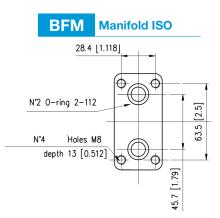
CL254 Cylindrical Shaft

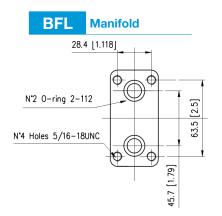
Max Torque Continuous 300 Nm [221.1 lbf·ft]


CS254 Cylindrical Crosshole Shaft


Max Torque Continuous 300 Nm [221.1 lbf·ft]


Click ${m l}$ button to return to main index





(1) 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in].

DC5B1A1_000000R2 - 03/2024

Click \boldsymbol{i} button to return to main index

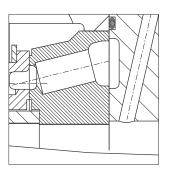
Click **DANA** button to return to section index

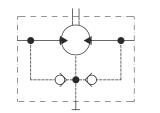
DC5B1A1_000000R2 - 03/2024

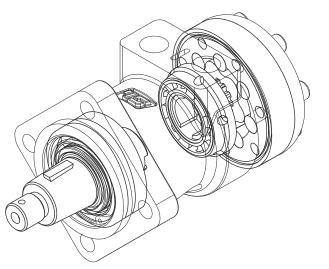
Click ${m i}$ button to return to main index

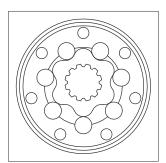
AR Orbital Motors

D

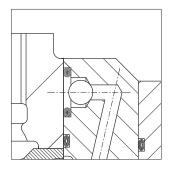

Motor Features	D2
Range	D3
Versions	D3
Motor Technical Specifications	D4
Performance Curves	D5
Pressure Data	D10
Max. Permissible Shaft Pressure	D10
Pressure Loss	D11
Other Informations	D12
Ordering Code	D13
Dimensions and Weight	D14
Shaft End	D18
Options	D19

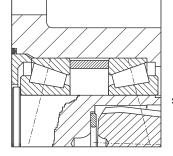

D


2


AR

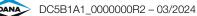
Pressure compensated valve plate maintains minimal leakage and provides compensated wear.





7 sockets - 6 teeth roller set.

Builtin check valves to relieve case pressure to the low pressure side of the motor and adeguate for application without the need to connect the drain.



Two option of bearing for heavy shaft loads.

Click **DANA** button to return to section index

DANA

Click ${m i}$ button to return to main index

Versions

AR

HPS High Pressure Seal

FP Brake motor

.../N.. Dual shaft oval flange

.../D.. Dual shaft square flange

TAC Rev-counter connection

TAC - E Electronic tachometer

ا © ا

ARS

ARSW

ARF

Available with motor

ARS

ARS - ARSW

ARS - ARF

ARS - ARF

ARS - ARF

ARS - ARF

Click DANA button to return to section index

DC5B1A1_000000R2 - 03/2024

D

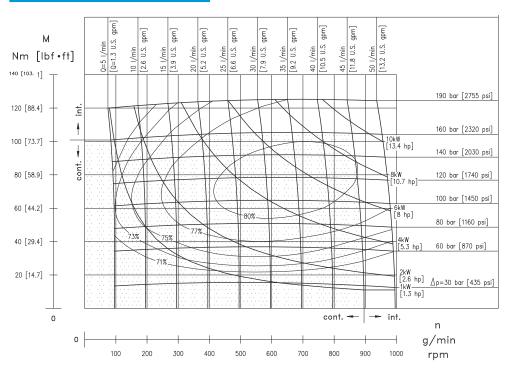
4

	Motor Displacemen cm³/rev [in³/rev		pressure		Max. differential pressure bar [psi]		Max. torque Nm [lbf·ft]		Max. flow		Max. speed		Max. power kW [hp]	
	AR 50	51.6 [3.14]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	160 [2320] 190 [2755] 250 [3625]	Cont Int ¹⁾	118 [86.9] 136 [100.2]	Cont Int ¹⁾	40 [11] 50 [13]	Cont Int ¹⁾	775 970	Cont Int ¹⁾	8.5 [11.3] 10.2 [13.6]
	AR 80	80.4 [4.9]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	160 [2320] 190 [2755] 250 [3625]	Cont Int ¹⁾	184 [135.6] 210 [154.7]		60 [16] 75 [20]	Cont Int ¹⁾	746 933	Cont Int ¹⁾	12.6 [16.8] 15.2 [20.3]
4	AR 100	100 [6.1]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	160 [2320] 190 [2755] 250 [3625]	Cont Int ¹⁾	230 [169.5] 260 [191.6]	Cont Int ¹⁾	60 [16] 75 [20]	Cont Int ¹⁾	600 750	Cont Int ¹⁾	13 [17.4] 15.5 [20.7]
4	AR 130	125.7 [7.66]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	150 [2175] 190 [2755] 250 [3625]	Cont Int ¹⁾	270 [198.9] 330 [243.2]	Cont Int ¹⁾	60 [16] 75 [20]	Cont Int ¹⁾	477 597	Cont Int ¹⁾	12 [16] 14.2 [19]
4	AR160	160 [9.76]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	150 [2175] 190 [2755] 250 [3625]	Cont Int ¹⁾	340 [250.5] 420 [309.5]	Cont Int ¹⁾	60 [16] 75 [20]	Cont Int ¹⁾	375 470	Cont Int ¹⁾	12.4 [16.6] 15.7 [21]
4	AR 200	200 [12.2]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	125 [1813] 175 [2538] 230 [3335]	Cont Int ¹⁾	350 [257.9] 480 [353.7]	Cont Int ¹⁾	65 [17] 75 [20]	Cont Int ¹⁾	325 375	Cont Int ¹⁾	10.8 [14.4] 15.5 [20.7]
A	AR 250	250 [15.2]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	110 [1595] 155 [2248] 200 [2900]	Cont Int ¹⁾	380 [280] 520 [383.2]	Cont Int ¹⁾	65 [17] 80 [21]	Cont Int ¹⁾	260 320	Cont Int ¹⁾	9.8 [13.1] 13.4 [17.9]
A	AR 315	314 [19.2]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	80 [1160] 120 [1740] 150 [2175]	Cont Int ¹⁾	340 [250.5] 510 [375.8]	Cont Int ¹⁾	65 [17] 80 [21]	Cont Int ¹⁾	207 254	Cont Int ¹⁾	6.1 [8.1] 8.5 [11.3]
	AR 400	393 [23.9]	Cont Int ¹⁾ Peak ²⁾	175 [2538] 190 [2755] 250 [3625]	Cont Int ¹⁾ Peak ²⁾	65 [943] 100 [1450] 120 [1740]	Cont Int ¹⁾	358 [263.8] 510 [375.8]	Cont Int ¹⁾	65 [17] 80 [21]	Cont Int ¹⁾	165 203	Cont Int ¹⁾	4.7 [6.2] 6 [8]

Test conditions: 37 cSt oil at 45°C.

 $^{\rm 1)}$ Intermittent duty must not exceed 10% each minute. $^{\rm 2)}$ Peak duty must not exceed 1% each minute.

Click **DANA** button to return to section index



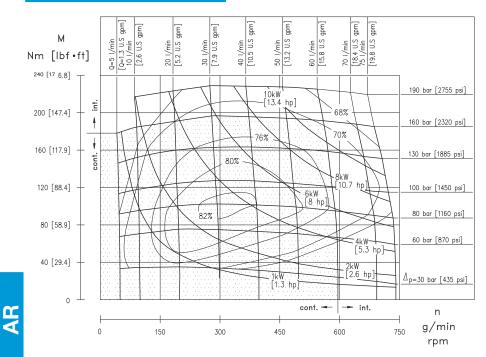
DC5B1A1_000000R2 - 03/2024

Click ${m i}$ button to return to main index

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

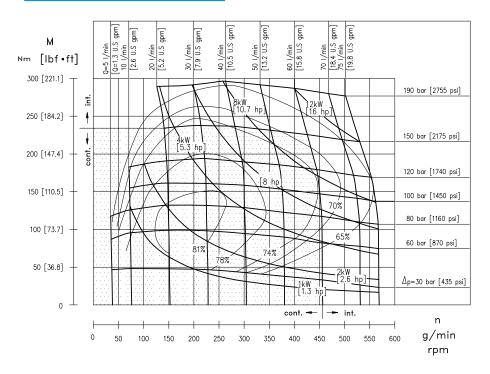
AR 80

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

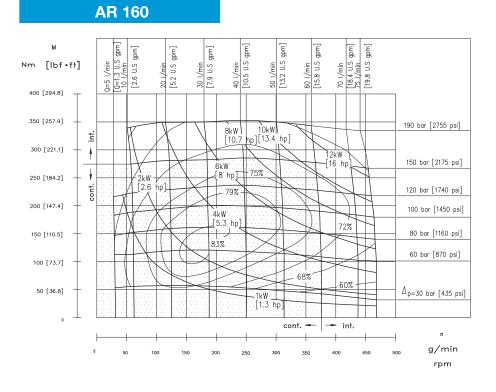


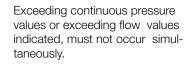
AR

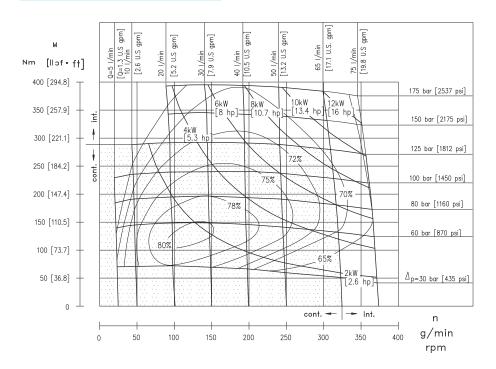
D


6

AR 100

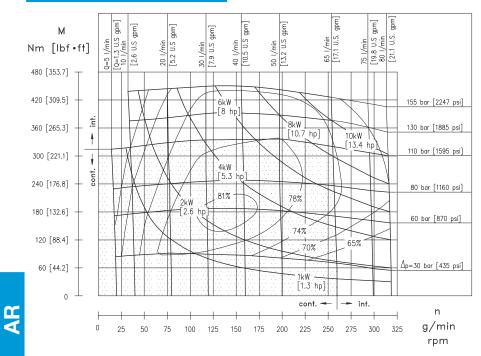

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.


AR 130


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

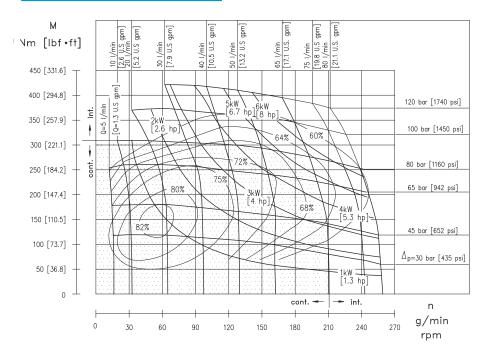
AR 200

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.


AR

DC5B1A1_000000R2 - 03/2024

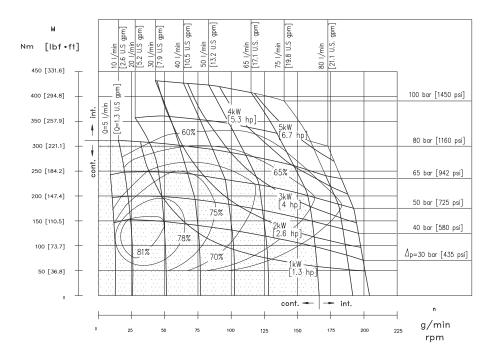
D

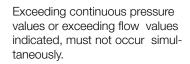

8

AR 250

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

AR 315


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.



Click $m{i}$ button to return to main index

AR 400

D

9

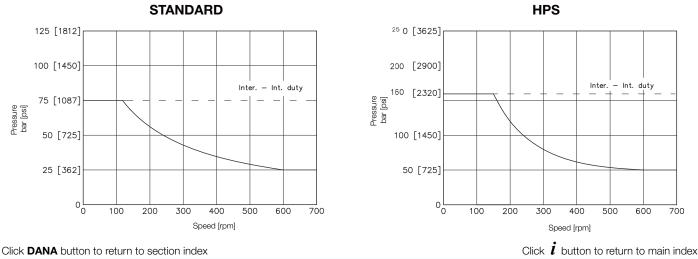
Click \dot{l} button to return to main index

Max. Pressure

[Disp	lace	ment												
		Motor		50			80			100			130			160			200			250			315			400	
		•	0	100) >	0	100	>	0	100	>	0	100	>	0	100	>	0	100	>	0	100	>	0	100	>	0	100	>
		Speed rpm	-	-		-	-		-	-		-	-		-	-		-	-		-	-		-	-		-	-	
		•	100	300	300	100	300	300	100	300	300	100	300	300	100	300	300	100	300	300	100	300	300	100	300	300	100	300	300
		ARS	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	-	75	50	-
	Max cont. Return	ARSW	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	-	75	50	-
	pressure without drain line (bar)	ARF		20			20			20			20			20			20			20			20			20	
	. ,	/FP ⁴⁾		-			-			-			-			-			-			-			-			-	
	Conversions: 75 bar = 1088 psi	/N ³⁾		20			20			20			20			20			20			20			20			20	
	55 bar = 798 psi 50 bar = 725 psi 25 bar = 363 psi	/D ³⁾	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	25	75	50	-	75	50	-
	20 bar = 290 psi	TAC		20			20			20			20			20			20			20			20			20	
		TAC-E 3)		20			20			20			20			20			20			20			20			20	
	Max return pressu- rewith drain line bar [psi]			140 [2030		[140 2030)]	I	140 2030		(140 2030]	[140 2030		[140 2030)]	l	140 2030)]		140 2030		[140 2030	
	Min starting torque	Cont.		62 [46]			120 [88]			150 [111]			187 [138]			242 [178]			282 [208]			310 [228]]		269 [198]			286 [211]	
	N [lbf]	Int. 1)		70 [51.6			139 [102]			172 [127]			230 [170]			294 [217]			390 [287]			415 [306]]		397 [293]			413 [304]	

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.

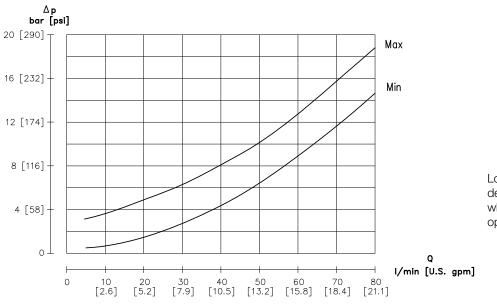

³⁾ The back up pressure must be lower between the motor and the motor version considered.

⁴⁾ In order to eliminate overheating it is necessary to use the drain port.

Max. Permissible Shaft Seal Pressure

ARS Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart). For pressure and speeds not showed in the curve below, please contact Dana Brevini.

N.B.: Tachometer and Brake versions is not available with HPS seals.

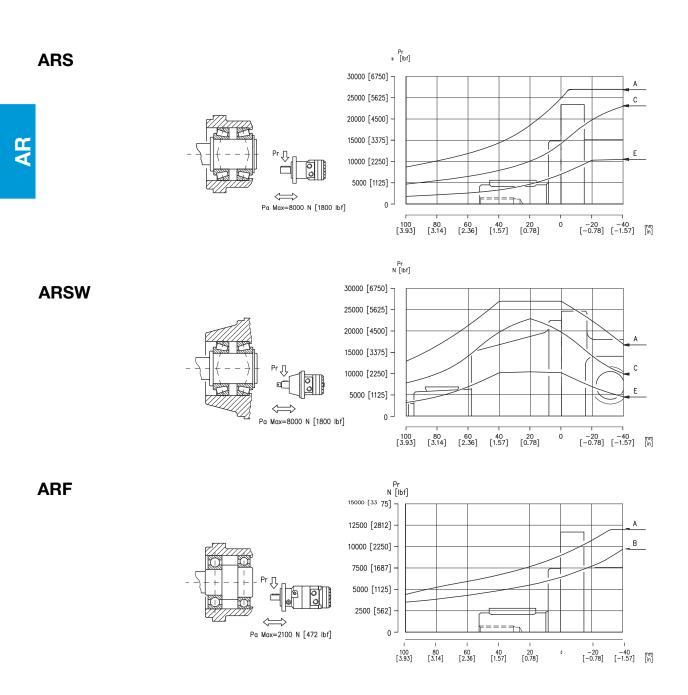


2

Pressure Loss

Low displacement motors have the tendence to operate near the "Max" curve, while high displacement ones have the opposite tendence. D

11



Shaft Load

The load diagrams are valid for an average bearings life of 1.600 hrs at 200 r.p.m. with mineral base lubricating oil containing anti-wear additives (ref. ISO 281 (3.3) standard).

The "A" curve gives the maximum static load affordable by the bearings.

- The "B" curve gives the radial load top limit without axial loading.
- The "C" curve gives the radial load top limit with an axial load of 2000 N [450 lbf].
- The "D" curve gives the radial load top limit with an axial load of 6000 N [1350 lbf].
- The "E" curve gives the radial load top limit with an axial load of 8000 N [1800 lbf].

Click \dot{l} button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the AR motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

	Series
ARS	Orbital motor
ARSW	Orbital motor
ARF	Orbital motor

2

	Displacement
050	50 cm³/giro [3.05 in³/rev]
080	80 cm³/giro [4.88 in³/rev]
100	100 cm³/giro [6.10 in³/rev]
130	130 cm³/giro [7.93 in³/rev]
160	160 cm³/giro [9.76 in³/rev]
200	200 cm ³ /giro [12.20 in ³ /rev]
250	250 cm³/giro [15.25 in³/rev]
315	315 cm³/giro [19.21 in³/rev]
400	400 cm ³ /giro [24.40 in ³ /rev]

3

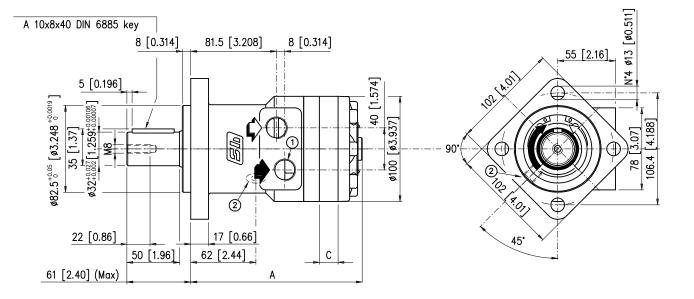
	Mounting Flongs		Series	
	Mounting Flange	ARS	ARSW	ARF
Ν	2 bolts	-	-	•
D	4 bolts	•	•	-

Shaft end **Series** ARS ARSW ARF C25 Parallel keyed Ø25 mm [0.984 in] • • • C32 Parallel keyed Ø32 mm [1.259 in] • • -S32 Splined 14T 12/24 DP • • -**SD25** Splined 1" 6B Tooth • • -CN32 Tapered • • -

5

	Ontion		Series	
	Option	ARS	ARSW	ARF
HPS	High Pressure Seal	•	-	-
FP	Brake-motor	•		-
/N	Dual shaft oval flange	•	-	•
/D	Dual shaft square flange	•	-	۲
TAC	Rev-counter connection	•	-	۲
TAC-E	Electronic tachometer	•	-	•

Available


- Not Available

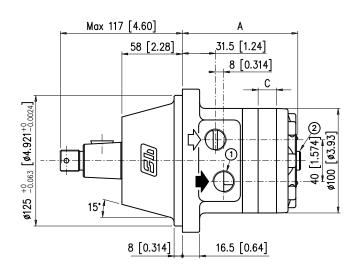
Click \boldsymbol{l} button to return to main index

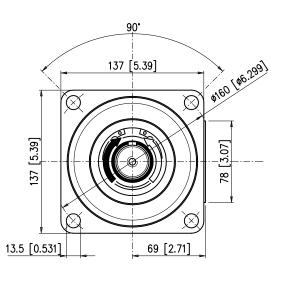
AR

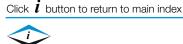
(1) No. 2 1/2 G (BSPP) main ports thread depth 18mm [0.70 in] (2) 1/4 G (BSPP) drain motor depth 12 mm [0.472 in]

		ARS 50	ARS 80	ARS 100	ARS 130	ARS 160	ARS 200	ARS 250	ARS 315	ARS 400
Α	mm [in]	152.5 [6.00]	157.5 [6.20]	160.9 [6.33]	165.3 [6.50]	171.3 [6.74]	178.3 [7.01]	187 [7.36]	198.3 [7.80]	211.8 [8.33]
С	mm [in]	9 [0.354]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.5 [16.5]	7.7 [16.9]	7.9 [17.4]	8.2 [18]	8.4 [18.5]	8.8 [19.3]	9.2 [20.2]	9.7 [21.3]	10.4 [22.9]

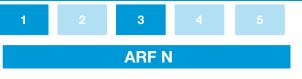
D

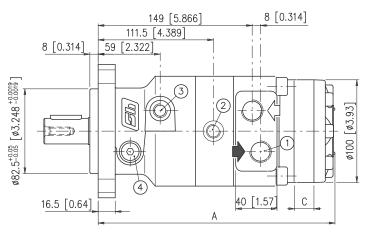

14

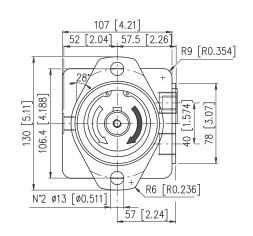


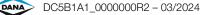


1 No. 2 1/2 G (BSPP) main ports thread depth 18mm [0.70 in] 2 1/4 G (BSPP) drain motor depth 12 mm [0.472 in]


		ARSW 50	ARSW 80	ARSW 100	ARSW 130	ARSW 160	ARSW 200	ARSW 250	ARSW 315	ARSW 400
Α	mm [in]	102.5 [4.03]	107.5 [4.23]	110.9 [4.36]	115.3 [4.53]	121.3 [4.77]	128.3 [5.05]	137 [5.39]	148.3 [5.83]	161.8 [6.37]
С	mm [in]	9 [0.354]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	9.8 [21.5]	10.1 [22.2]	10.3 [22.7]	10.5 [23.1]	10.8 [23.8]	11.2 [24.6]	16.1 [35.4]	12.1 [26.6]	12.8 [28.2]

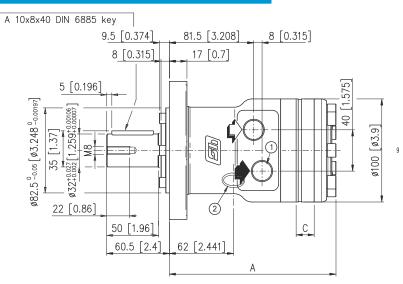

D

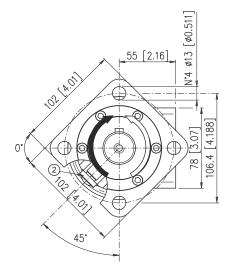

15


D

16

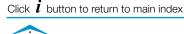
No. 2 1/2 G (BSPP) main ports thread depth 18mm [0.70 in]
 1/4 G (BSPP) drain motor depth 13 mm [0.511 in]
 Brake releasing plug 1/4 G (BSPP) thread depth 13 mm [0.511 in]
 N°2 brake filling and drain plugs 1/4 G (BSPP) thread depth 13 mm [0.511 in]


		ARF 50	ARF 80	ARF 100	ARF 130	ARF 160	ARF 200	ARF 250	ARF 315	ARF 400
Α	mm [in]	220 [8.66]	225 [8.85]	228.4 [8.99]	232.8 [9.16]	238.8 [9.40]	245.8 [9.67]	254.5 [10.01]	265.8 [10.46]	279.3 [10.99]
с	mm [in]	9 [0.354]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	t kg [lb]	13.5 [29.7]	13.8 [30.4]	14.1 [31]	14.3 [31.5]	14.6 [32.1]	15.1 [33.2]	15.8 [34.8]	16.3 [35.9]	16.9 [37.2]



ARS D C32 HPS

3

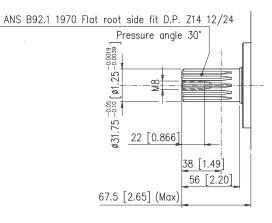


 $\begin{pmatrix}1\\0\end{pmatrix}$ No. 2 1/2 G (BSPP) main ports thread depth 18mm [0.70 in] $\begin{pmatrix}2\\0\end{pmatrix}$ 1/4 G (BSPP) drain motor depth 12 mm [0.472 in]

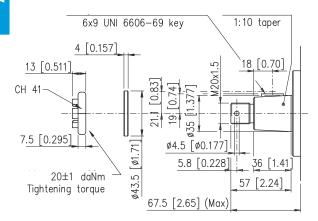
		ARS 50	ARS 80	ARS 100	ARS 130	ARS 160	ARS 200	ARS 250	ARS 315	ARS 400
Α	mm [in]	152 [5.98]	157 [6.18]	161 [6.34]	165 [6.50]	171 [6.73]	178 [7.01]	187 [7.36]	198 [7.79]	212 [8.35]
С	mm [in]	9 [0.354]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.5 [16.5]	7.7 [16.9]	7.9 [17.4]	8.2 [18]	8.4 [18.5]	8.8 [19.3]	9.2 [20.2]	9.7 [21.3]	10.4 [22.9]

D

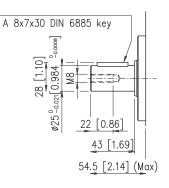
17



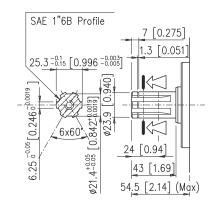
C A


S32 Splined Shaft

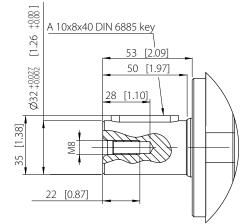
Max Torque Continuous 768 Nm [566 lbf·ft]


CN32 Tapared Shaft

Max Torque Continuous 860 Nm [633.8 lbf·ft]


C25 Cylindrical Shaft

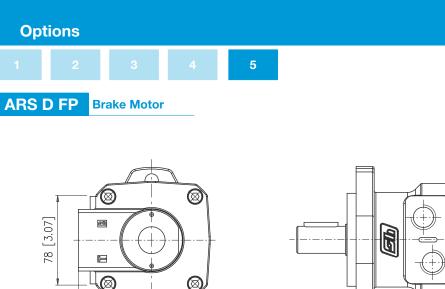
Max Torque Continuous 300 Nm [221.1 lbf·ft]

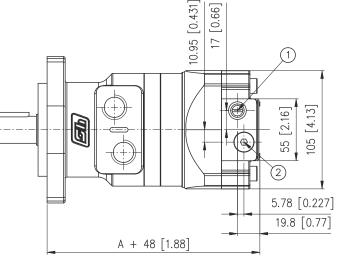

D25 Splined Shaft

Max Torque Continuous 360 Nm [225.3 lbf·ft]

C32 Cylindrical Shaft

Max Torque Continuous 768 Nm [566 lbf·ft]




Click **DANA** button to return to section index

Click ${m l}$ button to return to main index

(1)1/4 G (BSPP) brake releasing port; thread depht 13 mm [0.511 in] (2) 1/4 G (BSPP) drain port thread depth 13 mm [0.511 in]

Brake available on following engines: ARS - ARSW "A" Dimension is related to motor length without FP brake

65.5 [2.57]

Brake Feature

The ARF and FP motors have a multi-plate disc brake built in, which is hydraulically released.

This mechanical type brake has springs that push together the plates, which are mounted side by side, so that a static braking action is obtained. Whenever an hydraulic pressure acts on the piston, the brake is released.

The so called "negative brake" is suitable for duties like parking or safety brakes and/or whenever a static braking action is required. A dynamic braking action must be obtained using the hydraulic circuit. If a motor is to be used for dynamic braking (which is unadvisable) please contact Dana Brevini Engineering Service first.

High rotation speed and/ or vertical position use of the motor might cause discs to overheat, particularly in FP brakes, and consequential malfunctioning. In this case, please contact Dana Brevini Engineering Service.

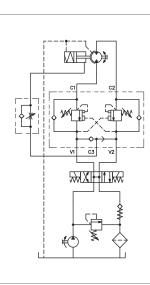
Brake features:	ARF (*)
Mimimum releare pressure	22 bar [319 psi]
Complete brake release press.	27 bar [391.5 psi]
Max. pressure	200 bar [2900 psi]
Max static torque	350 Nm [257.9 lbf·ft]

Brake features:	FP
Mimimum releare pressure	22 bar [319 psi]
Complete brake release press.	25 bar [362.5 psi]
Max. pressure	160 bar [2320 psi]
Max static torque	370 Nm [272.6 lbf·ft]
Max motor speed	350 rpm

(*): The ARF motor has a separate brake chamber which must be filled with 80 cm³ of hydraulic oil.

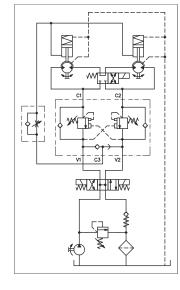
- The FP hydraulic motors must always have the drain port (on casing) directly connected with tank. This improves oil cooling, which is important to avoid brake overheating.
- It is advisable to use heat and wear resistant hydraulic oils in ARF type motors: viscosity grade ISO VG 32; viscosity index 95 ٠
- If open circuit layout is needed, it is advisable to use a flow control valve on brake piston ports, in order to avoid dynamic braking. ٠

Common application layouts on following page.


Click *l* button to return to main index

D

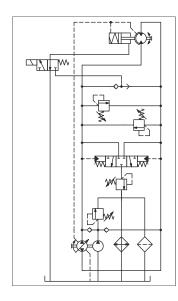
19



OPEN LOOP SYSTEM, ONE BRAKE-MOTOR, BI-DIRECTIONAL TURNING AND AUTOMATIC BRAKE OPERATION.

This configuration is typically that of a slew drive (cranes, excavators, aerial platforms, derricks, etc.).

When the pump delivers oil to the motor the consequent generation of pressure will operate the shuttle valve and activate the brake line, thus disengaging the brake itself.

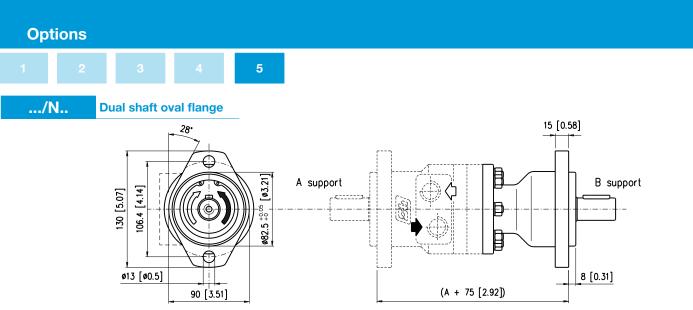

When the oil deliver y is shut off to stop the machine, a double overcentre valve will slow down the rotating mass to an almost complete stop when the static brake will engage.

OPEN LOOP SYSTEM, TWO BRAKEMOTORS, BI-DIRECTIONAL TURNING AND AUTOMATIC BRAKES OPERATION.

This is a typical layout of the travelling system of a mobile machine (aerial platforms, etc.). Fluid under pressure disengages the brakes and starts the two motors; a commutation device will connect the two motors either in series or parallel mode in order to have either speed or torque as main performance.

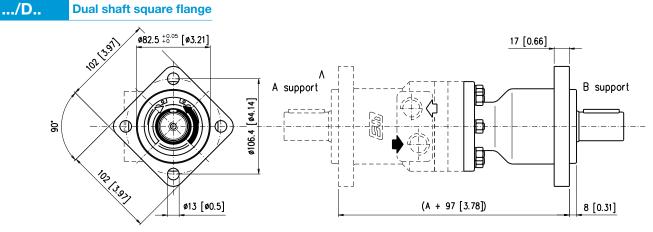
The double overcentre valve will steadily slow down the machine and bring it to an almost complete stop when the brakes will engage.

CLOSED LOOP SYSTEM, ONE BRAKEMOTOR, BI-DIRECTIONAL TURNING, AUTO-MATIC BRAKE OPERATION AND VARIABLE PUMP.


A very typical system for sweepers.

The pump delivers a variable flow of oil to the motor hence the machine can travel at variable speed.

The brake is disengaged by the deliver of flow from the shuttle valve via the electrovalve (top, right) that will also release the fluid under pressure from inside the brake piston chamber when the motor stops and the brake engages.



"A" dimension is related to motor lenght without double-shaft .../N..

Available on following motors: ARS, ARF

Available shafts for B support: C25, SD25, S25

"A" dimension is related to motor lenght without double-shaft .../D.. Available on following motors: ARS, ARF

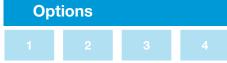
Available shafts for B support: C25, SD25, C32, S32, CN32, C31.75

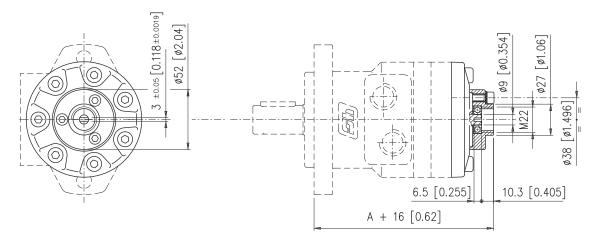
Max. trasmission torque from double-shaft motors

Motor	Displacement	Max. torque		Max. torque A shaft	Max. torque B shaft	Supp/N weight	Supp/D weight	
	cm ³ /rev [in ³ /rev]	Ν	lm [lbf ft]	Nm [lbf ft]	Nm [lbf·ft]	kg [lbs]	kg [lbs]	
AR 50	51.6 [3.14]	Cont Int	100 [74] 115 [85]	85 [63] 95 [70]	45 [33] 50 [37]	3.5 [7.71]	4.5 [9.92]	
AR 80	80.4 [4.9]	Cont Int	170 [125] 200 [147]	115 [85] 130 [96]	115 [85] 130 [96]	3.5 [7.71]	4.5 [9.92]	
AR 100	100 [6.1]	Cont Int	200 [147] 230 [170]	125 [92] 140 [103]	125 [92] 140 [103]	3.5 [7.71]	4.5 [9.92]	
AR 130	125.7 [7.66]	Cont Int	240 [177] 300 [221]	200 [147] 230 [170]	200 [147] 230 [170]	3.5 [7.71]	4.5 [9.92]	
AR 160	160 [9.76]	Cont Int	290 [214] 355 [262]	200 [147] 230 [170]	200 [147] 230 [170]	3.5 [7.71]	4.5 [9.92]	
AR 200	200 [12.2]	Cont Int	295 [217] 395 [291]	200 [147] 230 [170]	200 [147] 230 [170]	3.5 [7.71]	4.5 [9.92]	
AR 250	250 [15.2]	Cont Int	335 [247] 455 [335]	335 [247] 455 [335]	200 [147] 230 [170]	3.5 [7.71]	4.5 [9.92]	
AR 315	314.5 [19.1]	Cont Int	310 [228] 425 [313]	310 [228] 425 [313]	310 [228] 425 [313]	3.5 [7.71]	4.5 [9.92]	
AR 400	393 [23.9]	Cont Int	315 [232] 435 [321]	315 [232] 435 [321]	315 [232] 435 [321]	3.5 [7.71]	4.5 [9.92]	

Click \boldsymbol{i} button to return to main index

Click **DANA** button to return to section index


DC5B1A1_000000R2 - 03/2024


D

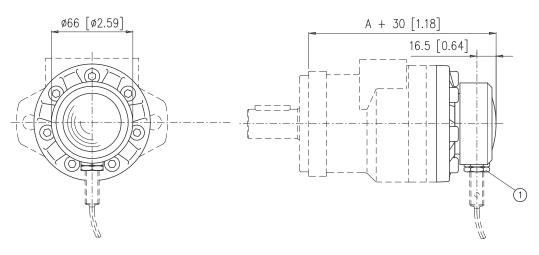
21

AR

TAC* Rev-counter connection

"A" dimension is related to motor length without tacho.

NOTE:


2

Axial or radial load on tacho shaft must be avoided. Max torque on tacho shaft 1 Nm [0.73 lbf·ft].

WARNING:

The tacho shaft revolution speed is 6 times more than the motor one and opposite direction of rotation.

TAC-E* Electronic tachometer

(1) Sensor thread M8x1

"A" dimension is related to motor length without electronic tacho.

Number of pulses per revolution = 90

WARNING:

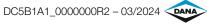
The electronic sensor is not supplied: if required, please state it clearly on order form. Max case pressure admissible on the shaft seal with closed drain port: 20 bar [290 psi].

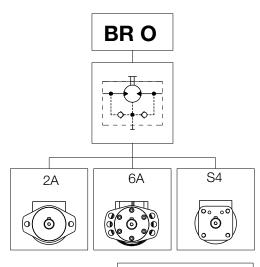
* Tachometer is not available on ARSW motor

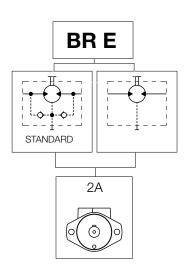
Click **DANA** button to return to section index

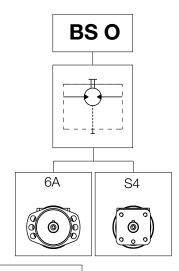
DANA

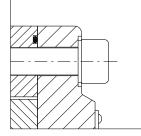
Click ${\it i}$ button to return to main index

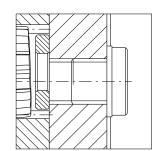

Motion Systems

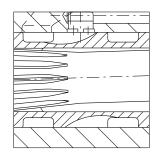

BR - BS Orbital Motors


	Page
Motor Features	E2
Motor Technical Specifications	E3
Performance Curves	E5
Pressure Data	E10
BR - Max. Permissible Shaft Seal Pressure	E10
BR - Pressure Loss	E11
BS - Max. Permissible Shaft Seal Pressure	E11
Other Informations	E12
BR - Ordering Code	E14
BR - Dimensions and Weight	E17
BR - Shaft End	E20
Version Feature	E22
BS - Ordering Code	E26
BS - Dimensions and Weight	E28
BS - Shaft End	E29
BS - Main Port	E30



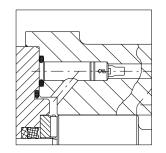




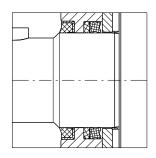


High resistance stainless steel screws capable of withstanding the stress induced by high pressure.

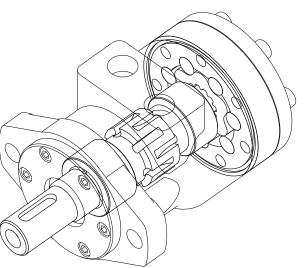
Case drain at rear (shown with plug).



Spool valve integral to the output shaft of new design features optimizing clearance geometry and so minimizing the oil slippage.


Click ${\it i}$ button to return to main index

High-performance roller for improved efficiency and life.



Built in check valves: to relieve case pressure to the low pressure side of the motor.

Dust seal to protect the high pressure shaft seal from dust and debris.

BR / BS MOTOR TECHNICAL DATA WITH CL250 AND LC254 PARALLEL KEYED SHAFT

Motor	Displacement	р	ax. input pressure	p	k. differential pressure		ax. torque Nm [lbf·ft]		lax. flow		ix. speed		ax. power
BR-BS 050		Cont Int ¹⁾ Peak ²⁾	bar [psi] 175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	bar [psi] 140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	103 [75.9] 126 [92.8]	Cont Int ¹⁾	40 [10.6] 50 [13.2]	Cont Int ¹⁾	rpm 775 969	Cont Int ¹⁾	6.8 [9.1] 8.4 [11.2]
BR-BS 065	64.9 [3.95]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	150 [2175] 185 [2682] 225 [3262]	Cont Int ¹⁾	140 [103.1] 166 [122.3]	Cont Int ¹⁾	50 [13.2] 60 [15.9]	Cont Int ¹⁾	770 924	Cont Int ¹⁾	9.2 [12.3] 10.6 [14.2]
BR-BS 080	80.4 [4.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int* Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int*	197 [145.1] 218 [160.6]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	746 933	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BR-BS 100	100 [6.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	237 [174.6] 277 [204.1]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	600 750	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BR-BS 130	125.7 [7.66]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	300 [221.1] 340 [250.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	477 597	Cont Int ¹⁾	12.5 [16.8] 14.5 [19.4]
BR-BS 160	160 [9.76]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	296 [218.1] 375 [276.3]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	375 469	Cont Int ¹⁾	10 [13.4] 12.5 [16.8]
BR-BS 200	200 [12.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	115 [1667] 140 [2030] 225 [3262]	Cont Int ¹⁾	297 [218.8] 380 [280]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	300 375	Cont Int ¹⁾	8.5 [11] 10 [13.4]
BR-BS 250	250 [15.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	90 [1305] 120 [1740] 225 [3262]	Cont Int ¹⁾	297 [218.8] 377 [277.8]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	240 300	Cont Int ¹⁾	7.1 [9.5] 8.5 [11]
BR-BS 315	314.5 [19.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	70 [1020] 100 [1450] 210 [3045]	Cont Int ¹⁾	300 [221.1] 420 [309.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	191 238	Cont Int ¹⁾	5 [6.7] 6.6 [8.8]
BR-BS 400	393 [23.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	55 [800] 85 [1230] 175 [2537]	Cont Int ¹⁾	292 [215.2] 425 [313.2]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	153 191	Cont Int ¹⁾	4.1 [5.4] 6.1 [8.1]

BR MOTOR TECHNICAL DATA WITH SD250 SPLINED SHAFT BS MOTOR TECHNICAL DATA WITH SE250 SPLINED SHAFT

Motor	Displacement		x. input essure		differential ressure	Ma	x. torque	Ma	ıx. flow	Max	. speed	Ma	ix. power
	cm³/rev [in³/rev]		ar [psi]	•	par [psi]	N	lm [lbf·ft]	l/min	[U.S. gpm]	ı.	rpm	I	<w [hp]<="" th=""></w>
BR-BS 050	51.6 [3.14]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	103 [75.9] 126 [92.8]	Cont Int ¹⁾	40 [10.6] 50 [13.2]	Cont Int ¹⁾	775 969	Cont Int ¹⁾	6.8 [9.1] 8.4 [11.2]
BR-BS 065	64.9 [3.95]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	150 [2175] 185 [2682] 225 [3262]	Cont Int ¹⁾	140 [103.1] 166 [122.3]	Cont Int ¹⁾	50 [13.2] 60 [15.9]	Cont Int ¹⁾	770 924	Cont Int ¹⁾	9.2 [12.3] 10.6 [14.2]
BR-BS 080	80.4 [4.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int* Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int*	197 [145.1] 218 [160.6]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	746 933	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BR-BS 100	100 [6.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	237 [174.6] 277 [204.1]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	600 750	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BR-BS 130	125.7 [7.66]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	300 [221.1] 340 [250.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	477 597	Cont Int ¹⁾	12.5 [16.8] 14.5 [19.4]
BR-BS 160	160 [9.76]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	165 [2390] 200 [2900] 225 [3262]	Cont Int ¹⁾	350 [257.9] 428 [315.4]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	375 469	Cont Int ¹⁾	11.8 [15.8] 14.3 [19.1]
BR-BS 200	200 [12.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	130 [1890] 165 [2390] 225 [3262]	Cont Int ¹⁾	335 [246.8] 446 [328.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	300 375	Cont Int ¹⁾	9.7 [12.9] 12 [16]
BR-BS 250	250 [15.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	105 [1522] 135 [1957] 225 [3262]	Cont Int ¹⁾	347 [255.7] 424 [312.4]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	240 300	Cont Int ¹⁾	8.3 [11.1] 9.6 [12.8]
BR-BS 315	314.5 [19.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	85 [1232] 115 [1670] 210 [3045]	Cont Int ¹⁾	362 [266.7] 484 [356.7]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	191 238	Cont Int ¹⁾	6 [8] 7.6 [10.1]
BR-BS 400	393 [23.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	65 [942] 90 [1310] 175 [2537]	Cont Int ¹⁾	345 [254.2] 450 [331.6]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	153 191	Cont Int ¹⁾	4.9 [6.5] 6.5 [8.7]

¹⁾ Intermittent duty must not exceed 10% each minute. ²⁾ Peak duty must not exceed 1% each minute.

Click \boldsymbol{i} button to return to main index

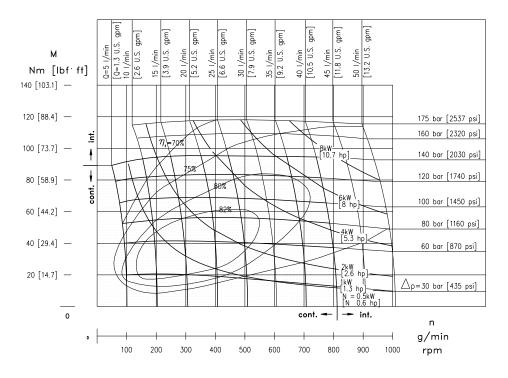
BR MOTOR TECHNICAL DATA WITH CL320, C3175 PARALLEL KEYED SHAFT AND CN320 TAPERED SHAFT

Motor	Displacement cm³/rev [in³/rev]	Max. input pressure bar [psi]	Max. differential pressure bar [psi]	Max. torque	Max. flow	Max. speed	Max. power kW [hp]
BR 050	51.6 [3.14]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 140 [2030] Int ¹⁾ 175 [2540] Peak ²⁾ 225 [3262]	Cont 103 [75.9] Int ¹⁾ 126 [92.8]	Cont 40 [10.6] Int ¹⁾ 50 [13.2]	Cont 775 Int ¹⁾ 969	Cont 6.8 [9.1] Int ¹⁾ 8.4 [11.2]
BR 065	64.9 [3.95]	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 150 [2175] Int ¹⁾ 185 [2682] Peak ²⁾ 225 [3262]	Cont 140 [103.1] Int ¹⁾ 166 [122.3]	Cont 50 [13.2] Int ¹⁾ 60 [15.9]	Cont 770 Int ¹⁾ 924	Cont 9.2 [12.3] Int ¹⁾ 10.6 [14.2]
BR 080	80.4 [4.9]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 175 [2537] Int* 200 [2900] Peak ²⁾ 225 [3262]	Cont 197 [145.1] Int* 218 [160.6]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 746 Int ¹⁾ 933	Cont 13 [17.4] Int ¹⁾ 15 [20.1]
BR 100	100 [6.1]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 237 [174.6] Int ¹⁾ 277 [204.1]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 600 Int ¹⁾ 750	Cont 13 [17.4] Int ¹⁾ 15 [20.1]
BR 130	125.7 [7.66]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 300 [221.1] Int ¹⁾ 340 [250.5]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 477 Int ¹⁾ 597	Cont 12.5 [16.8] Int ¹⁾ 14.5 [19.4]
BR 160	160 [9.76]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 370 [272.6] Int ¹⁾ 428 [315.4]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 375 Int ¹⁾ 469	Cont 12.5 [16.8] Int ¹⁾ 14.3 [19.1]
BR 200	200 [12.2]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 450 [331.6] Int ¹⁾ 540 [397.9]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 300 Int ¹⁾ 375	Cont 13.4 [17.9] Int ¹⁾ 14.4 [19.2]
BR 250	250 [15.2]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262]	Cont 175 [2537] Int ¹⁾ 200 [2900] Peak ²⁾ 225 [3262]	Cont 578 [425.9] Int ¹⁾ 630 [464.3]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 240 Int ¹⁾ 300	Cont 13.8 [18.4] Int ¹⁾ 14.2 [19]
BR 315	314.5 [19.1]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262]	Cont 135 [1960] Int ¹⁾ 175 [2537] Peak ²⁾ 210 [3045]	Cont 575 [423.7] Int ¹⁾ 736 [542.4]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 191 Int ¹⁾ 238	Cont 9.6 [12.8] Int ¹⁾ 11.5 [15.4]
BR 400	393 [23.9]	Cont 175 [2537 Int ¹⁾ 200 [2900 Peak ²⁾ 225 [3262	Cont115 [1670]Int1)150 [2180]Peak2)175 [2537]	Cont 612 [451] Int ¹⁾ 750 [552.7]	Cont 60 [15.9] Int ¹⁾ 75 [19.8]	Cont 153 Int ¹⁾ 191	Cont 8.6 [11.5] Int ¹⁾ 10.8 [14.4]

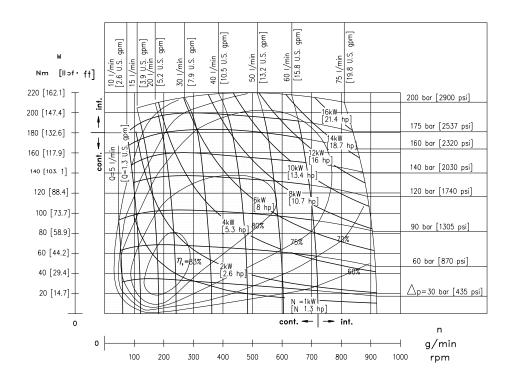
Ε

4

 $^{\rm 1)}$ Intermittent duty must not exceed 10% each minute. $^{\rm 2)}$ Peak duty must not exceed 1% each minute.

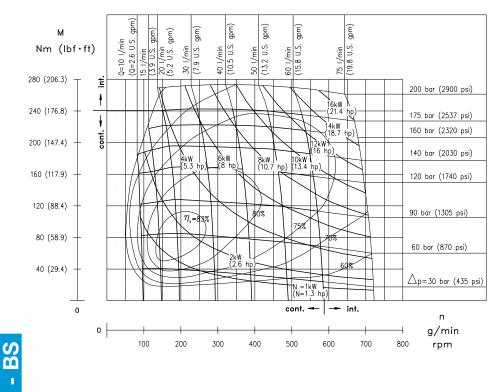

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024


Click \dot{l} button to return to main index

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

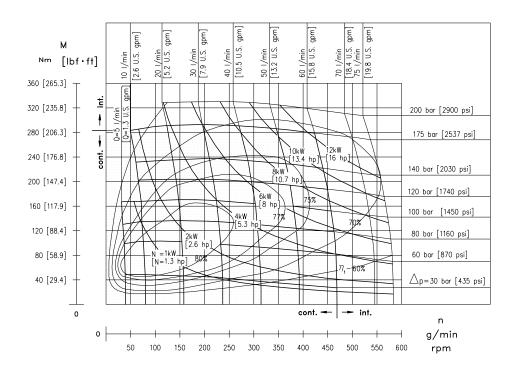
BR - BS 80


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click $\boldsymbol{\dot{l}}$ button to return to main index

Click **DANA** button to return to section index

BR - BS



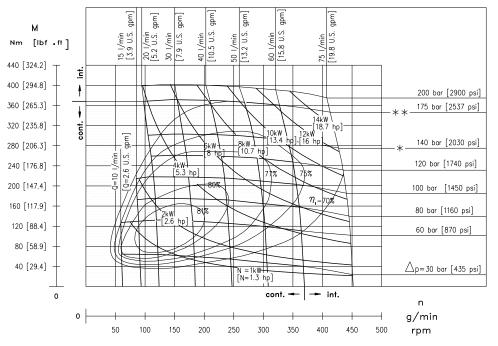
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Ε

6

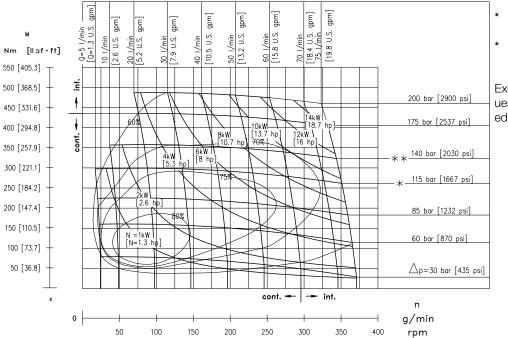
BR - BS 130

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.


Click **DANA** button to return to section index

DANA

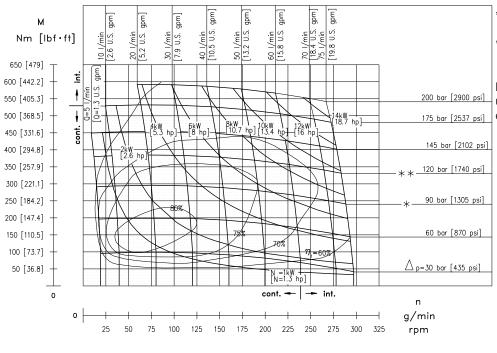
Click ${m l}$ button to return to main index


BR - BS 160

- Constant maximum pressure for Ø25 shaft model.
- * Intermittent maximum pressure for Ø25 shaft model.

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

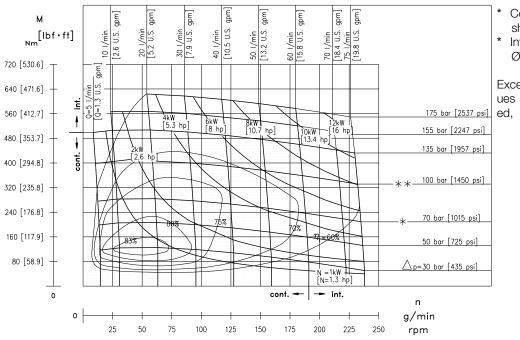
BR - BS 200



- Constant maximum pressure for Ø25 shaft model.
- Intermittent maximum pressure for Ø25 shaft model.

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click \boldsymbol{l} button to return to main index

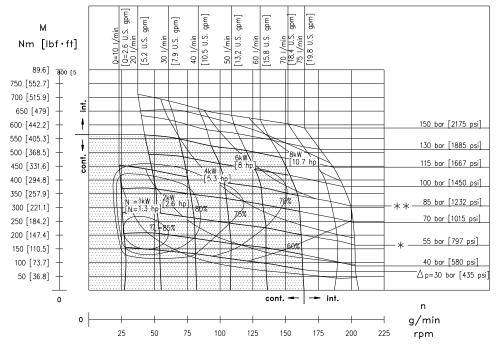


- Constant maximum pressure for Ø25 shaft model.
- Intermittent maximum pressure for Ø25 shaft model.

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

BR - BS 315

- * Constant maximum pressure for Ø25 shaft model.
- * Intermittent maximum pressure for Ø25 shaft model.


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Click DANA button to return to section index

Click \dot{l} button to return to main index

- * Constant maximum pressure for Ø25 shaft model.
- * Intermittent maximum pressure for Ø25 shaft model.

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Ε

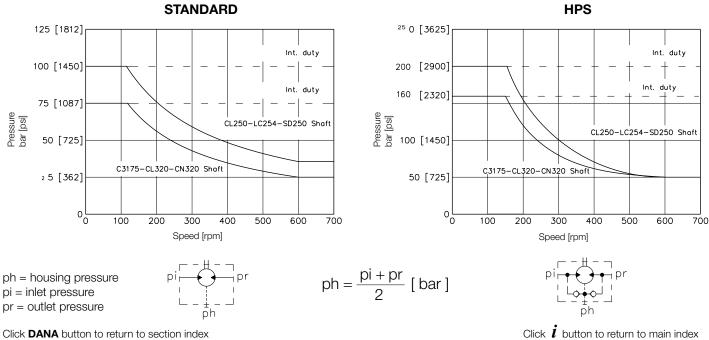
10

Motor		back pressure i th drain line bar[psi]	Max starting pressure in unloaded conditions bar[psi]	М		ting torque llbf-ft]	Oil flow in the drain		Min speed ⁵) rpm
BR 050	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	at ∆p max at ∆p max	Cont Int [*]	75 [55.3] 95 [70.0]	at Δp=100 bar [1450 psi] at Δp=140 bar [2030 psi]	0.7 [0.2]	10
BR 065	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	at ∆p max at ∆p max	Cont Int [*]	120 88.4] 140[103.1]	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 080	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	at ∆p max at ∆p max	Cont Int [*]	160 [118] 180 [133]	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 100	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	at ∆p max at ∆p max	Cont Int [*]	200 [147] 225 [166]	at Δp=100 bar [1450 psi] at Δp=140 bar [2030 psi]		10
BR 130	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	9 [131]	at ∆p max at ∆p max	Cont Int [*]	255 [188] 290 [214]	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 160	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	7 [102]	at ∆p max at ∆p max	Cont Int [*]	310 (250) [228 (184)] ³⁾ 360 (300) [265 (221)] ³⁾	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 200	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	at ∆p max at ∆p max	Cont Int [*]	390 (250) [287 (184)] ³⁾ 450 (320) [332 (236)] ³⁾	at Δp=100 bar [1450 psi] at Δp=140 bar [2030 psi]		10
BR 250	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	at ∆p max at ∆p max	Cont Int [*]	490 (250) [361 (184)] ³⁾ 560 (310) [413 (228)] ³⁾	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 315	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	at ∆p max at ∆p max	Cont Int [*]	470 (250) [346 (184)] ³⁾ 610 (300) [450 (221)] ³⁾	at ∆p=100 bar [1450 psi] at ∆p=140 bar [2030 psi]		10
BR 400	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	at ∆p max at ∆p max	Cont Int⁺	510 (250) [376 (184)] ³⁾ 670 (320) [494 (236)] ³⁾	at Δp=100 bar [1450 psi] at Δp=140 bar [2030 psi]		10

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.

³⁾ The values in brackets are referred to CL250/LC254/SD250 shaft.

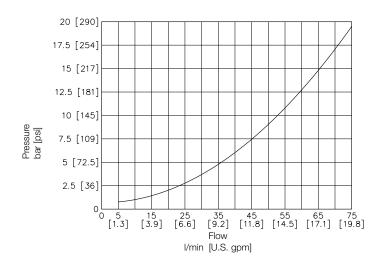

⁴⁾ Oil Viscosity 37 cSt.

⁵⁾ For applications at lower rpm or at high radial loads pls. consult Brevini Fluid Power.

Max. Permissible Shaft Seal Pressure BR

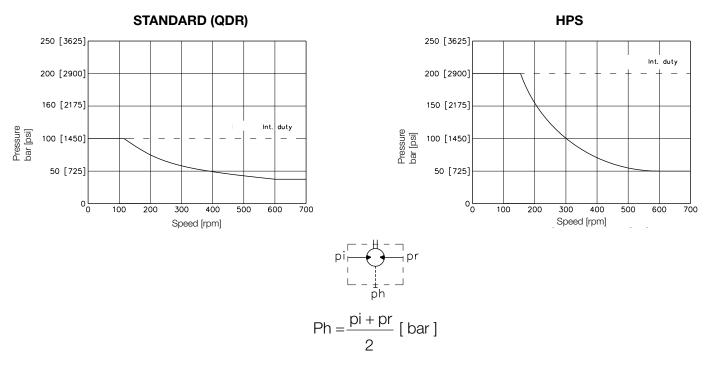
Max. return pressure without drain line or max. pressure in the drain line. Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart). For pressure and speeds not showed in the curve below, please contact Brevini Fluid Power.

Note: Tachometer or Brake versions is not available with HPS seals.



DANA

button to return to main index



Curve according tests carried out with a relevant number of motors and using hydraulic oil with cinematic viscosity of 37 cSt at 45° C temperature.

Max. Permissible Shaft Seal Pressure BS

Max. return pressure without drain line or max. pressure in the drain line. Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart).

For pressure and speeds not showed in the curve below, please contact Brevini Fluid Power.

ph = housing pressure pi = inlet pressure

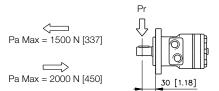
pr = outlet pressure

- The case pressure without drain line is the average between inlet and return pressure. •
- As standard, BS motors are supplied with drain port (STANDARD). ٠
- Max. permissible return (back) pressure with drain line 175 bar [2540 psi]

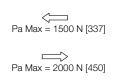
Click \dot{l} button to return to main index

Shaft Load

The permissibile radial shaft load depends on


- Speed (n)
- Distance (L) from the point of load to the mounting flange

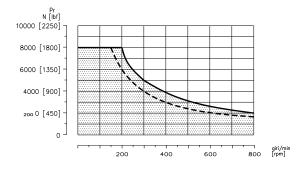
BR


- Mounting flange version
- Shaft version

m

Radial load capacity (Pr) cur ve according to speed (n) and distance (L) from flange, valid for the 2 -bolt flange type "2A" and 6-bolt flange type "6A".

Radial load capacity (Pr) cur ve according to speed (n) and distance (L) from flange, valid for the 4-bolt flange type "S4".



Shafts	2A Flange	6A Flange
CL250 LC254 SD250	$Pr = \frac{800}{n} \bullet \frac{250000}{95 + L} [N]$	$Pr = \frac{800}{n} \bullet \frac{250000}{95 + L} [N]$
C3175 CL320 CN320		$Pr = \frac{800}{n} \bullet \frac{187500}{95 + L} [N]$

Shafts	S4 Flange
CL250 LC254 SD250	$Pr = \frac{800}{n} \cdot \frac{242000}{97 + L} [N]$

This formula being valid for n>= 200 rpm For n< 200 rpm Prmax = 8000 N [1800 lbf]

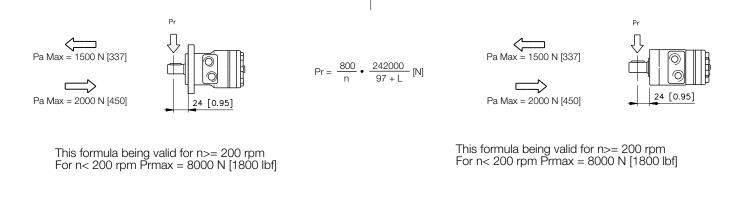
This formula being valid for n>= 200 rpm For n< 200 rpm Prmax = 8000 N [1800 lbf]

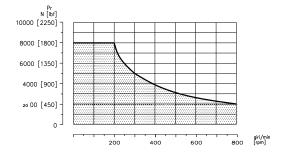
The curve show the relation between (Pr) and (n)

- L= 30 mm [1.18 in] for motors with 2A and 6A flange
- L= 24 mm [0.95 in] for motors with S4 flange

--- For shafts C3175-CL320-CN320 ---- For shafts CL250-LC254-SD250

Shaft Load

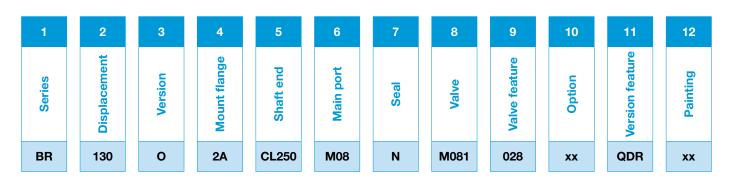

The permissibile radial shaft load depends on


- Speed (n)
- Distance (L) from the point of load to the mounting flange
- Mounting flange version

Radial load capacity (Pr) cur ve according to speed (n) and distance (L) from flange, valid for the 6-bolt flange type "6A".

BS

Radial load capacity (Pr) cur ve according to speed (n) and distance (L) from flange, valid for the 4-bolt flange type "S4".



The curve show the relation between (Pr) and (n) • L= 24 mm [0.95 in] for motors with S4 and 6A flange

Click $\boldsymbol{\dot{l}}$ button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BR motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

	2	
		Displacement
BR	050	50 cm³/giro [3.05 in³/rev]
Ξ	065	65 cm³/giro [3.965 in³/rev]
	080	80 cm³/giro [4.88 in³/rev]
	100	100 cm³/giro [6.1 in³/rev]
	130	130 cm³/giro [7.93 in³/rev]
	160	160 cm³/giro [9.76 in³/rev]
	200	200 cm³/giro [12.2 in³/rev]
	250	250 cm³/giro [15.25 in³/rev]
	315	315 cm³/giro [19.21 in³/rev]
	400	400 cm ³ /giro [24.4 in ³ /rev]

3	
	Version
0	O Version (standard)
E	E Version

4					
	Mounting Flongs		sion		
	Mounting Flange				
2A	Oval 2 bolts (standard BR)	•	•		
6A	6A Oval 6 bolts (standard BS)				

Available

- Not Available

Click **DANA** button to return to section index

Click \dot{l} button to return to main index

BR - Ordering codes

5					
			Vers	sion	
	Shaft end		0		E
	Shart end		Flange		Flange
		2A	6A	S4	2A
CL250	Ø25 mm [0.97 in] Parallel keyed (standard BR)	•	•	•	•
LC254	Ø25.4 mm [1 in] Parallel keyed (standard BS)	•	•	•	•
C3175	Ø31.75 mm [1.23 in] Parallel keyed	-	•	-	-
CN320	Tapered Shaft (special on request)	-	•	-	-
CL320	Ø32 mm [1.24 in] Parallel keyed	-	•	-	-
SD250	Splined Shaft (SAE 6B 1" 6T spline)	•	•	٠	•
SE250	Splined Shaft (SAE 6B 1" 6T spline)	•	•	•	•

	6			
Γ		Main Port	Vers	sion
		0	Е	
	M08	1/2 G BSPP (40x8) Main Ports (standard BR)	•	-
	R08	1/2 G BSPP (36x36) Main Ports	-	•

7	
	Seal
N	NBR (standard)
v	FKM (Not available in HPS version)

8						
	Valve	Main	port			
	Valve	M08	R08			
хххх	Not required (standard)	•	•			
M081	VAF 08 - D pressure relief valve	•	-			
M082	VAF 08 - D/AF pressure relief valve	•	-			
M083	M083 VAAF 31 anticavitation and Anti-Shock Valve					
M084	AF shuttle-valve	•	-			
M085	VCD 08 - S/AF overcentre Valve	•	-			
M086	VCR1 08 - D/AF double-acting overcentre valve with shuttle valve	•	-			
M087	VCR1 08 D/AF LDP double-acting overcentre valve with shuttle valve	•	-			
R081 ⁽¹⁾	VAF E8 - D pressure relief valve	-	•			
R082 ⁽¹⁾	VCD E8 - S/AF overcentre Valve	-	•			
R083 ⁽¹⁾	1/2 G BSP VCR1 E8 - D/AF double-acting overcentre valve with shuttle valve P (36x36) Main Ports	-	•			
R084 ⁽¹⁾	VCR1 E8 D/AF LDP double-acting overcentre valve with shuttle valve (36x36) Main Ports	_	٠			

¹⁾ Minimum quantity for order 20 pieces

Available

- Not Available

Click \boldsymbol{i} button to return to main index

Click **DANA** button to return to section index

BR

Ε

15

BR - Ordering codes

9													
	Valve feature	xxxx	M081	M082	M083	M084		ve M086	M087	R081	R082	R083	R084
000	Feature not necessary (standard)	•	-	-	-	•	-	-	-	-	-	-	-
028	Not Set 30÷70 bar [435 to 1015 psi]	-	•	•	-	-	-	-	-	-	-	-	-
017	Not Set 70÷200 bar [1015 to 2900 psi]	-	•	•	-	-	-	-	-	-	-	-	-
031	Not Set 50÷130 bar [725 to 1885 psi]	-	-	-	•	-	-	-	-	•	-	-	-
021	Not Set 100÷250 bar [1450 to 3625 psi]	-	-	-	•	-	-	-	-	-	-	-	-
020	Not Set 100÷200 bar [1450 to 2900 psi]	-	-	-	-	-	-	-	-	•	-	-	-
425	Pilot Ratio 4.25:1	-	-	-	-	-	-	•	•	-	-	•	•
800	Pilot Ratio 8:1	-	-	-	-	-	-	•	•	-	-	-	-
70D	Pilot Ratio 7:1 - Direction of rotation CW	-	-	-	-	-	•	-	-	-	-	-	-
35D	Pilot Ratio 3.5:1 - Direction of rotation CW	-	-	-	-	-	•	-	-	-	•	-	-
70S	Pilot Ratio 7:1 - Direction of rotation CCW	-	-	-	-	-	•	-	-	-	-	-	-
35S	Pilot Ratio 3.5:1 - Direction of rotation CCW	-	-	-	-	-	•	-	-	-	•	-	-

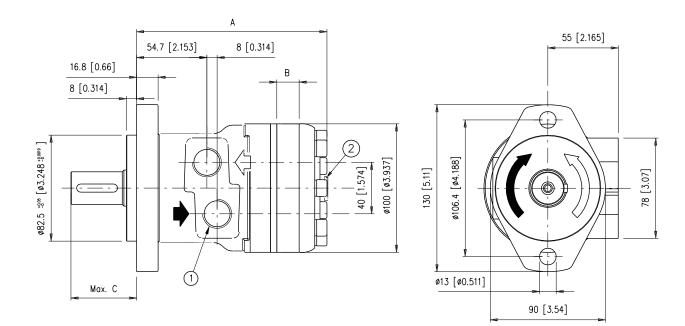
10	
	Option
xx	None

	11			
Ĩ		Version Feature	Vers O	sion E
Ω	QDR	QUAD-RING version with Rear drain 1/4" G (BSPP) (standard BR)	•	•
	HPS	High Pressure Seal (without Rear Drain)	•	٠
	TC1	TAC/U tachometer (with sensor arrangement)	٠	٠
	TC4	TAC/M tachometer	٠	-
	TC5	TAC/M-E tachometer (with sensor arrangement)	•	-
	SV0	Version without built-in check valves + Rear Drain - 1/4" G (BSPP)	-	•
	SVH	Version without built-in check valves + High Pressure Seal (without Rear Drain)	-	•
	SVA	Version without built-in check valves + High Pressure Seal + Rear Drain - 1/4"G (BSPP)	-	٠
	FP0	Brake	•	-
	DPM	High Pressure Seal + Rear Drain - 1/4" G (BSPP)	•	•

12											
	Painting										
xx	Not Painted (standard)										
01	Black Painted RAL 9005										
02	Blue Painted RAL 5015										
05	Grey Painted RAL 7016										
06	Grey Painted RAL 7015										
22	Grey Painted RAL 7035										
23	Grey Painted RAL 7036										

 Available - Not Available

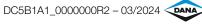
Click **DANA** button to return to section index

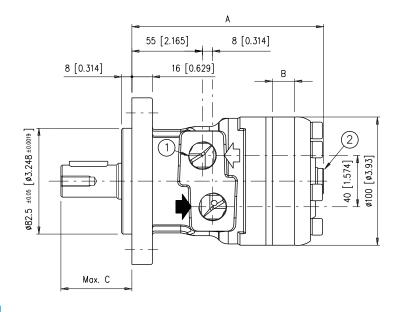


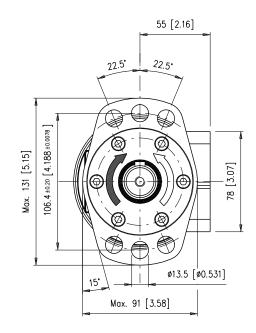
DC5B1A1_0000000R2 - 03/2024

Click \dot{l} button to return to main index

No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in]
 1/4 G (BSPP) drain motor thread depth 15 mm [0.59 in] Max. Not in HPS version.

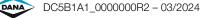

For shafts dimensions see page


SHAFT		CL250	LC254	SD250
С	mm [in]	54 [2.12]	54 [2.12]	54 [2.12]


		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
Α	mm [in]	139.5 [5.49]	141.8 [5.58]	144.5 [5.68]	147.7 [5.81]	152.1 [5.98]	158.2 [6.22]	165.3 [6.50]	173.9 [6.84]	185.1 [7.28]	198.4 [7.81]
в	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.2 [15.8]	7.4 [16.3]	7.5 [16.5]	7.7 [16.9]	8 [17.6]	8.3 [18.2]	8.6 [18.9]	9.1 [20]	9.8 [21.5]	10.1 [22.2]

No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in]
 1/4 G (BSPP) drain motor thread depth 15 mm [0.59 in]

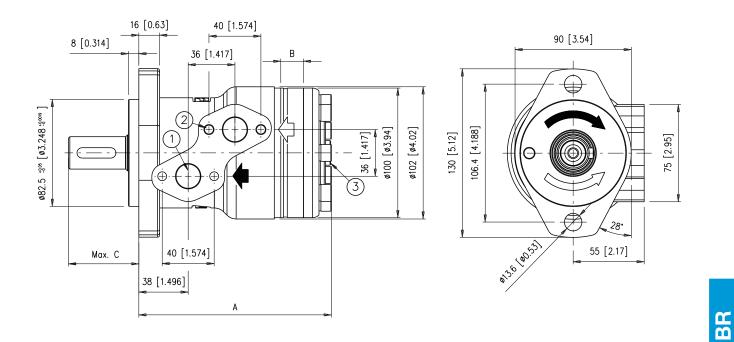
For shafts dimensions see page



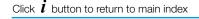
SI	HAFT	CL250	LC254	SD250	CL320	C3175	CN320
С	mm [in]	55.3 [2.17]	55.3 [2.17]	55.3 [2.17]	68.3 [2.68]	59.1 [2.32]	68.5 [2.69]

		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
Α	mm [in]	139.5 [5.49]	141.8 [5.58]	144.5 [5.68]	147.7 [5.81]	152.1 [5.98]	158.2 [6.22]	165.3 [6.50]	173.9 [6.84]	185.1 [7.28]	198.4 [7.81]
В	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.3 [16] ¹⁾ 7.4 [16.3]	7.5 [16.5] ¹⁾ 7.6 [16.7]	7.6 [16.7] ¹⁾ 7.7 [16.9]	7.8 [17.1] ¹⁾ 9 [19.8]	8.1 [17.8] ¹⁾ 8.3 [18.2]	8.4 [18.5] ¹⁾ 8.6 [18.9]	8.7 [19.1] ¹⁾ 9 [19.8]	9.2 [20.2] ¹⁾ 9.5 [20.9]	9.9 [21.8] ¹⁾ 10.2 [22.4]	10.2 [22.4] ¹⁾ 10.5 [23.1]

1) The values are referred to CL250 / LC254 / SD250 shaft

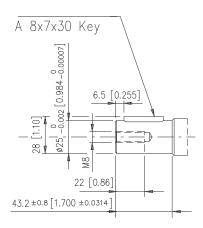

Click **DANA** button to return to section index

Click \dot{l} button to return to main index

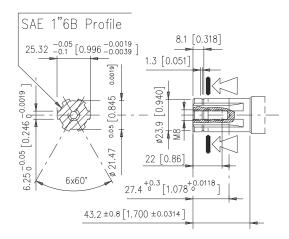


No. 2 1/2 G (BSPP) main ports thread depth 18 mm [0.70 in]
 No. 4 M8 thread depth 15 mm [0.59 in]
 1/4 G (BSPP) drain motor thread depth 12 mm [0.472 in] (not in HPS version)

E20 For shafts dimensions see page


SHAFT	CL250	LC254	SD250
C mm [in]	54 [2.12]	54 [2.12]	54 [2.12]

		BR E 050	BR E 065	BR E 080	BR E 100	BR E 130	BR E 160	BR E 200	BR E 250	BR E 315	BR E 400
Α	mm [in]	139.8 [5.50]	144.8 [5.70]	148.2 [5.83]	152.6 [6.01]	158.6 [6.24]	165.6 [6.52]	174.3 [6.86]	185.6 [7.31]	199.2 [7.84]	142.1 [5.59]
В	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.2 [15.8]	7.4 [16.3]	7.5 [16.5]	7.7 [16.9]	8 [17.6]	8.3 [18.2]	8.6 [18.9]	9.1 [20]	9.8 [21.5]	10.1 [22.2]


Max Torque Continuous 300 Nm [221.1 lbf·ft]

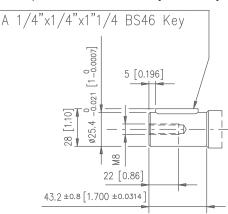
5


SD250 Splined Shaft

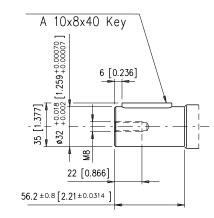
Max Torque Continuous 360 Nm [265.32 lbf·ft]

C3175 Cylindrical Shaft

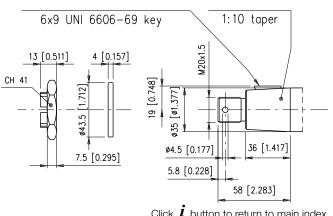
Max. Torque Continuos 768 Nm [566 lbf·ft])


Click **DANA** button to return to section index

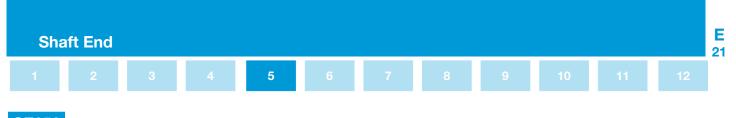
DC5B1A1_000000R2 – 03/2024


LC254 Cylindrical Shaft

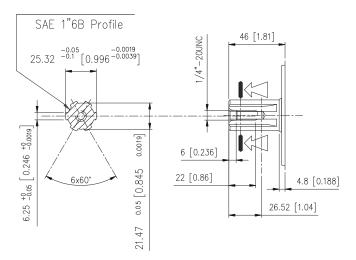
Max Torque Continuous 300 Nm [221.1 lbf·ft]



Max. Torque Continuos 768 Nm [566 lbf·ft])


CN320 Tapered Shaft

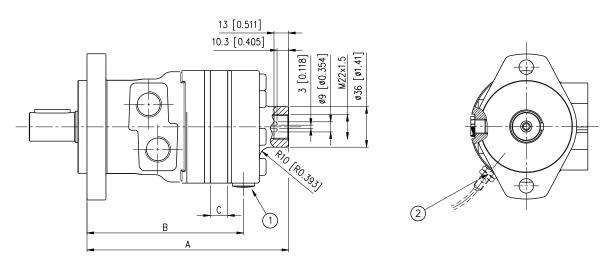
Max Torque Continuous 860 Nm [633.82 lbf·ft]


Click \dot{l} button to return to main index

SE250 Splined Shaft

Max Torque Continuous 360 Nm [265.32 lbf·ft]

Click \boldsymbol{l} button to return to main index


Click $\ensuremath{\textbf{DANA}}$ button to return to section index

DC5B1A1_000000R2 - 03/2024

TC1 TAC/U tachometer

1) 1/4 G (BSPP) drain motor thread depth 12mm [0.472 in]

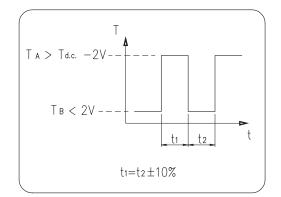
2) Sensor connection M8x1

WARNING:

m

m

Tacho shaft has a 6 times higher revolution speed than the motor shaft and opposite direction of rotation. **NOTE:**


Axial or radial load on tacho shaft must be avoided. Max torque on tacho 1 Nm [0.737 lbf·ft].

The electronic sensor is not supplied: if required, please state it clearly on order form.

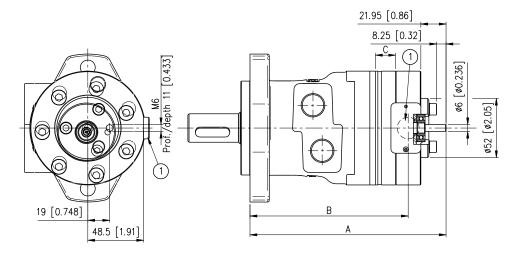
Max pressure admissible on the shaft seal with closed drain port 25 bar [362.5 psi].

		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
Α	mm [in]	172 [6.77]	174.3 [6.86]	177 [6.96]	180.4 [7.10]	184.8 [7.27]	190.8 [7.51]	197.8 [7.78]	206.5 [8.12]	217.8 [8.57]	231.3 [9.10]
В	mm [in]	132 [5.19]	134.3 [5.28]	137 [5.39]	140.4 [5.52]	144.8 [5.70]	150.8 [5.93]	157.8 [6.21]	166.5 [6.55]	177.8 [7.00]	191.3 [7.53]
с	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.7 [16.9]	7.9 [17.4]	8 [17.6]	8.2 [18]	8.5 [18.7]	8.8 [19.3]	9.1 [20]	9.6 [21.1]	10.3 [22.7]	10.6 [23.3]

Output signal electronic tacho

- Number of pulses per revolution = 90 Inductive principle
- Ouput current PNP
- Voltage 10-65 V d.c.
- Max load 300 mA
- Max frequency 10000 Hz
- Temperature range -25C +85C
- Enclosure IP 67

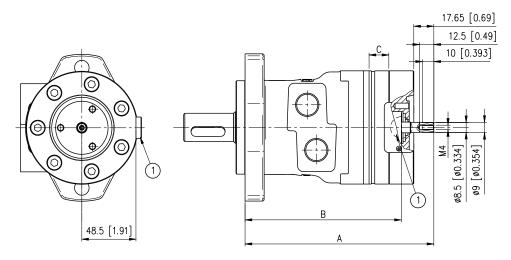
Available versions:


- Sensor with 2 metres three wires cable (cod.424.0050.0000)
- Sensor with binder plug connection (cod.424.0060.0000) + binder connecting
- Plug with 5 metres three wires cable (cod.424.0080.0000)

1) 1/4 G (BSPP) drain motor thread depth 13 mm [0.511 in]

WARNING:

Tacho shaft has a 6 times higher revolution speed than the motor shaft and opposite direction of rotation. **NOTE:**


Axial or radial load on tacho shaft must be avoided.

		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
A	mm [in]	162.2 [6.38]	164.5 [6.48]	167.2 [6.58]	170.5 [6.71]	175 [6.89]	181 [7.12]	188 [7.40]	196.6 [7.74]	208 [8.19]	221.5 [8.72]
в	mm [in]	129.3 [5.09]	131.6 [5.18]	134.3 [5.29]	137.7 [5.42]	142.1 [5.59]	148.1 [5.83]	155.1 [6.11]	163.8 [6.45]	175.1 [6.89]	188.7 [7.43]
с	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.7 [16.9]	7.9 [17.4]	8 [17.6]	8.2 [18]	8.5 [18.7]	8.8 [19.3]	9.1 [20]	9.6 [21.1]	10.3 [22.7]	10.6 [23.3]

TAC/M-E tachometer TC5

1) 1/4 G (BSPP) drain motor thread depth 13 mm [0.511 in]

WARNING:

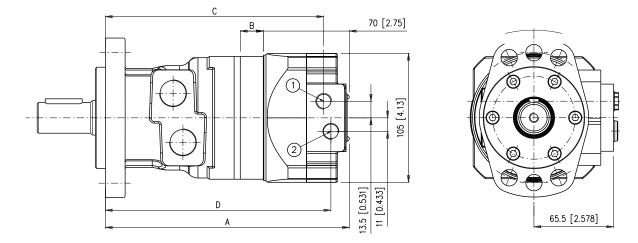
Tacho shaft has a 6 times higher revolution speed than the motor shaft and opposite direction of rotation. NOTE:

Axial or radial load on tacho shaft must be avoided.

BB

		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
Α	mm [in]	157.9 [6.21]	160.2 [6.31]	162.9 [6.41]	166.2 [6.54]	170.7 [6.72]	176.7 [6.96]	183.7 [7.23]	192.3 [7.57]	203.7 [8.02]	217.2 [8.55]
в	mm [in]	129.3 [5.09]	131.6 [5.18]	134.3 [5.29]	137.7 [5.42]	142.1 [5.59]	148.1 [5.83]	155.1 [6.11]	163.8 [6.45]	175.1 [6.89]	188.7 [7.43]
с	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	7.7 [16.9]	7.9 [17.4]	8 [17.6]	8.2 [18]	8.5 [18.7]	8.8 [19.3]	9.1 [20]	9.6 [21.1]	10.3 [22.7]	10.6 [23.3]

Click \dot{l} button to return to main index

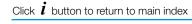


FP0 Brake

1) 1/4 G (BSPP) brake releasing thread depth 13 mm [0.511 in]

2) 1/4 G (BSPP) drain motor thread depth 13 mm [0.511 in]

		BR O 050	BR O 065	BR O 080	BR O 100	BR O 130	BR O 160	BR O 200	BR O 250	BR O 315	BR O 400
Α	mm [in]	187.9 [7.39]	190.2 [7.48]	192.9 [7.59]	196.3 [7.72]	200.7 [7.90]	206.7 [8.13]	213.7 [8.41]	222.4 [8.75]	233.7 [9.20]	247.2 [9.73]
В	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
С	mm [in]	169.9 [6.68]	172.2 [6.77]	174.9 [6.88]	178.3 [7.01]	182.7 [7.19]	188.7 [7.42]	195.7 [7.70]	204.4 [8.04]	215.7 [8.49]	229.2 [9.02]
D	mm [in]	173 [6.81]	175.3 [6.90]	178 [7.00]	181.4 [7.14]	185.8 [7.31]	191.8 [7.55]	198.8 [7.82]	207.5 [8.16]	218.8 [8.61]	232.2 [9.14]
Weigl	ht kg [lb]	10.6 [23.4]	10.7 [23.6]	10.8 [23.8]	11 [24.3]	11.2 [24.7]	11.9 [26.2]	11.8 [26]	12.2 [26.9]	12.7 [28]	13.3 [29.3]


The brakes integrated in FP motors are holding brakes type (negative brake) and cannot be used for dynamic braking action.

Installation layout

The FP hydraulic motors must always have the drain port (on casing) directly connected with tank

If open circuit layout is needed, it is advisable to use a flow control valve on brake piston ports (in order to avoid dynamic braking), on overcentre valve and a open -centre directional valve.

Motor-brake features	
Minim release pressure	22 bar [319 psi]
Complete brake release pressure	25 bar [362.5 psi]
Max. brake pressure	160 bar [2320 psi]
Max. static torque	370 Nm [272.7 lbf·ft]
Max. motor speed	350 rpm

Click **DANA** button to return to section index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BS motors.

Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

	2	
		Displacement
BS	050	50 cm³/giro [3.05 in³/rev]
ш	065	65 cm³/giro [3.965 in³/rev]
	080	80 cm³/giro [4.88 in³/rev]
	100	100 cm³/giro [6.1 in³/rev]
	130	130 cm³/giro [7.93 in³/rev]
	160	160 cm ³ /giro [9.76 in ³ /rev]
	200	200 cm ³ /giro [12.2 in ³ /rev]
	250	250 cm³/giro [15.25 in³/rev]
	315	315 cm ³ /giro [19.21 in ³ /rev]
	400	400 cm ³ /giro [24.4 in ³ /rev]

3					
	Version				
0	O Version (standard)				

4	
	Mounting Flange
6A	Oval 6 bolts (standard BS)
S4	4 bolts 3/8 16 UNC - Ø44.45 mm [Ø1.75 in]

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

Click \dot{l} button to return to main index

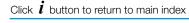
BS - Ordering codes

5	
	Shaft end
CL254	Ø25.4 mm [1 in] Parallel keyed (standard)
SE250	Splined Shaft (SAE 6B 1" 6T spline)

6								
	Main Port							
S08	7/8" - 14 UNF SAE10 (standard)							
SS8	1/2" - 14 NPTF							
BFL	Manifold							
MS8	1/2 G BSPP							

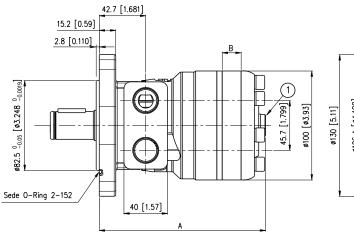
7	
	Seal
Ν	NBR (standard)
v	FKM

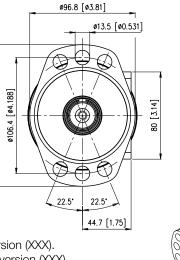
8				
Valve				
хххх	Not required (standard)			

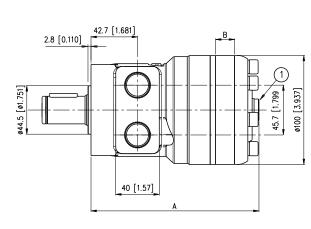

9					
Valve feature					
000	Feature not necessary (standard)				

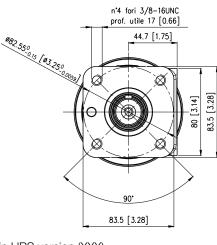
10	
	Option
xx	None

11								
	Version Feature							
HPS	High Pressure Seal (without Rear Drain)							
QDR	QUAD-RING version with Rear drain 1/4" G (BSPP)							
QDS	QUAD-RING Version with Rear drain 7/16" 20UNF2B							
DPS	High Pressure Seal with Rear drain 7/16" 20UNF2B							
DPM	High Pressure Seal with Rear drain 1/4 G (BSPP)							


12							
	Painting						
xx	Not Painted (standard BR)						
01	Black Painted RAL 9005						


¹⁾ Minimum quantity for order 20 pieces





1) 1/4 G (BSPP) drain motor thread depth 15 mm [0.59 in] Max. Not in HPS version (XXX). 7/16" 20UNF2B drain motor thread depth 15 mm [0.59 in] Max. Not in HPS version (XXX).

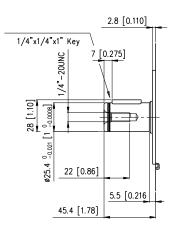
			BS 050	BS 065	BS 080	BS 100	BS 130	BS 160	BS 200	BS 250	BS 315	BS 400
	Α	mm [in]	143.7 [5.65]	146 [5.74]	148.7 [5.85]	152.1 [5.98]	156.5 [6.16]	162.5 [6.39]	169.5 [6.67]	178.2 [7.01]	189.5 [7.46]	203 [7.99]
S	В	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
	Weight	kg [lb]	6.8 [14.96]	7 [15.42]	7.1 [15.62]	7.4 [16.28]	7.7 [16.94]	8 [17.6]	8.4 [18.48]	8.9 [19.58]	9.6 [21.12]	9.9 [21.78]

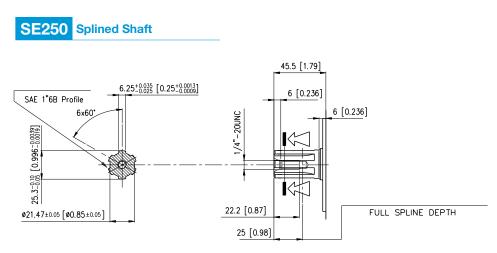
BS O S4

		BS 050	BS 065	BS 080	BS 100	BS 130	BS 160	BS 200	BS 250	BS 315	BS 400
Α	mm [in]	145 [5.70]	147.3 [5.79]	150 [5.90]	153.5 [6.04]	158 [6.22]	164 [6.45]	171 [6.73]	179.5 [7.06]	191 [7.51]	204.5 [8.05]
В	mm [in]	9 [0.354]	11.3 [0.444]	14 [0.551]	17.4 [0.68]	21.8 [0.85]	27.8 [1.09]	34.8 [1.37]	43.5 [1.71]	54.8 [2.15]	68.38 [2.69]
Weight	kg [lb]	6.8 [14.96]	7 [15.42]	7.1 [15.62]	7.4 [16.28]	7.7 [16.94]	8 [17.6]	8.4 [18.48]	8.9 [19.58]	9.6 [21.12]	9.9 [21.78]

Click **DANA** button to return to section index

Click $m{i}$ button to return to main index



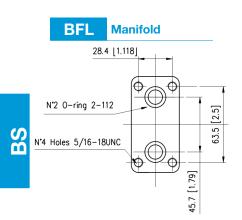

Ε

28

Max Torque Continuous 292 Nm [215.2 lbf·ft]

Max Torque Continuous 345 Nm [254.26 lbf·ft]

Click \boldsymbol{l} button to return to main index


Click $\ensuremath{\textbf{DANA}}$ button to return to section index

DC5B1A1_000000R2 - 03/2024

E 30 Main port 6 **S08** Main Port **SS**8 Main Port MS8 Main Port

1/2" - 14 NPTF

45.7 [1.79]

45.7 [1.79]

7/8" – 14 UNF SAE10

DC5B1A1_000000R2 - 03/2024

Click \dot{l} button to return to main index

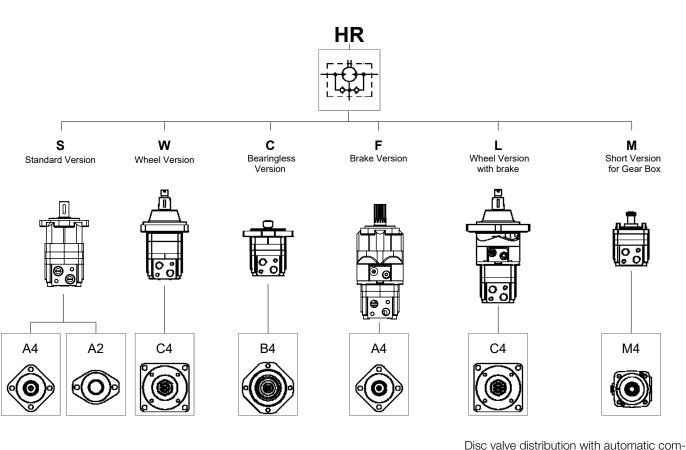
45.7 [1.79]

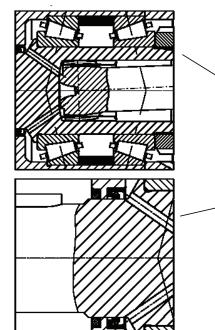
1/2" G (BSPP)

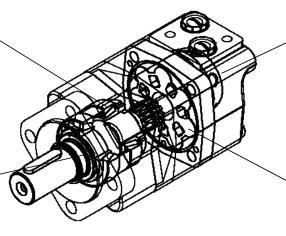
HR Orbital Motors

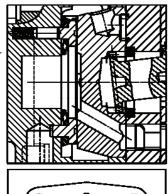
Page

Motor Features	F2
Motor Technical Specifications	F3
Performance Curves	F4
Pressure Data	F8
Max. Permissible Shaft Seal Pressure	F8
Pressure Loss	F8
Other Informations	F9
Ordering Code	F10
Dimensions and Weight	F14
Brake feature F/L version	F18
Dimensions and Weight	F20
Shaft End	F24
Main Ports	F26
Special version	F28
Options	F29

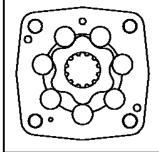

Click ${m l}$ button to return to main index


Click $\ensuremath{\textbf{DANA}}$ button to return to section index


F



Shaft supported by two heavy duty tapered roller bearings that ensure outstanding radial load capacity Max 40000 N [Max. 9000 lbf].


pensation of backlash done by fluid under

pressure: lower drain figures are then gua-

The motor is supplied with internally built-in

ranteed together with high efficiency.

check valves.

Heavy duty, roller type stator meant to work at high pressure and to guarantee extra long lasting.

Click \dot{l} button to return to main index

Dust Seal for high pressure of the output

Click **DANA** button to return to section index

shaft. The motor can work with casing

pressure up to 160 bar [2320 psi].

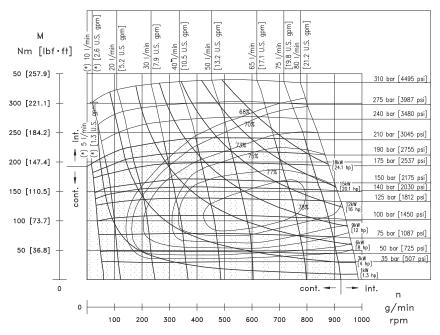
F 2

Motor	Displacement cm ³ /rev [in ³ /rev]	p	Max. input pressure bar [psi]		Max. differential pressure bar [psi]		Max. torque		Max. flow		Max. speed		Max. power	
HR 080	80.4 [4.9]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 310 [4495] 310 [4495]	Cont Int ¹⁾	235 [173] 345 [254]	Cont Int ¹⁾	75 [19.8] 80 [21.1]	Cont Int ¹⁾	932 995	Cont Int ¹⁾	23 [30.8] 36 [48.2]	
HR 100	100 [6.1]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 310 [4495] 310 [4495]	Cont Int ¹⁾	295 [217] 445 [328]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	750 950	Cont Int ¹⁾	23.1 [30.9] 44.2 [59.2]	
HR 130	125.7 [7.66]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 310 [4495] 310 [4495]	Cont Int ¹⁾	375 [276] 545 [401]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	596 755	Cont Int ¹⁾	23.4 [31.3] 43.1 [57.7]	
HR 160	160 [9.76]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 260 [3770] 310 [4495]	Cont Int ¹⁾	465 [342] 570 [420]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	468 593	Cont Int ¹⁾	18.2 [24.3] 22.5 [30.1]	
HR 200	200 [12.2]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 260 [3770] 310 [4495]	Cont Int ¹⁾	580 [427] 670 [494]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	375 475	Cont Int ¹⁾	15.2 [20.3] 22.5 [30.1]	
HR 250	250 [15.25]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 260 [3770] 310 [4495]	Cont Int ¹⁾	710 [523] 820 [604]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	300 380	Cont Int ¹⁾	14.2 [19] 19.5 [26.1]	
HR 315	314.5 [19.18]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	205 [2972] 240 [3480] 310 [4495]	Cont Int ¹⁾	885 [652] 960 [707]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	238 302	Cont Int ¹⁾	11 [14.7] 19.5 [26.1]	
HR 400	393 [23.97]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 310 [4495] 310 [4495]	Cont Int ¹⁾ Peak ²⁾	155 [2247] 190 [2755] 225 [3250]	Cont Int ¹⁾	860 [633] 980 [722]	Cont Int ¹⁾	75 [19.8] 95 [25]	Cont Int ¹⁾	190 241	Cont Int ¹⁾	11 [14.7] 13 [17.4]	

		HR 080	HR 100	HR 130	HR 160	HR 200	HR 250	HR 315	HR 400
Max starting pressure with no load	bar [psi]	11 [159]	10 [145]	10 [145]	8 [116]	8 [116]	8 [116]	8 [116]	8 [116]
Min. starting torque (At. Max ∆p)	Nm [lbf·ft]	Cont. 180 [133] Int. 270 [199]			Cont. 370 [272] Int. 440 [324]				

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.

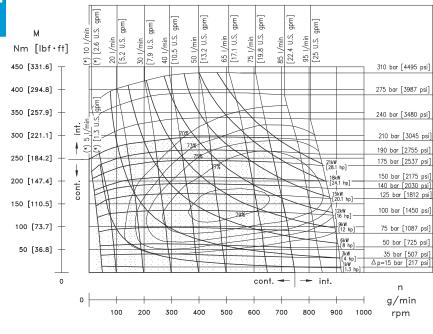

* For motors with the shafts in the table below the Max. admis-sible torque is reduced as follows:

		CL	254 CYLINDRICAL SHAFT	SE	250 SPLINED SHAFT
* Max. admissible torque	Nm [lbf.ft]	Cont	300 [221]	Cont	360 [265]
for shaft type	Nm [lbf·ft]	Int ¹⁾	410 [302]	Int ¹⁾	450 [332]

¹⁾ Intermittent duty must not exceed 10% each minute.

ШШ

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

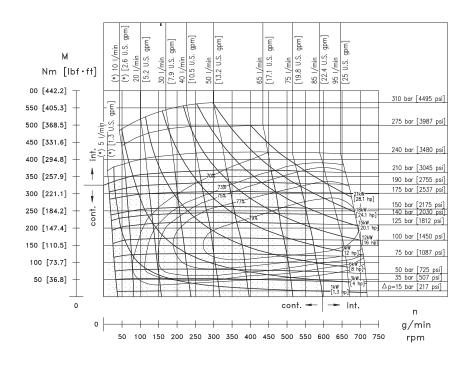

(*) Performances data are referred to standard motors.

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

HR 100

F

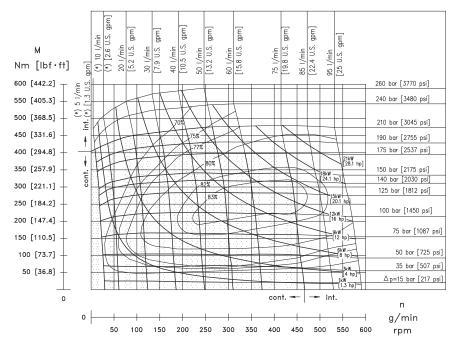
4


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously. (*) Performances data are referred to standard

motors. For obtain higher performances, when the motor

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

Click DANA button to return to section index

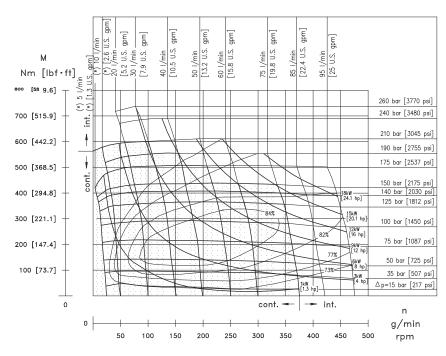


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

(*) Performances data are referred to standard motors.

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

HR 160


Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

(*) Performances data are referred to standard motors.

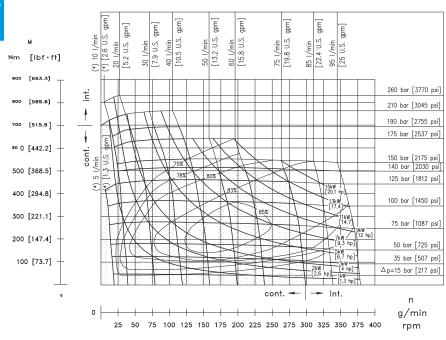
For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

Click ${m l}$ button to return to main index

ЦП

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

(*) Performances data are referred to standard motors.

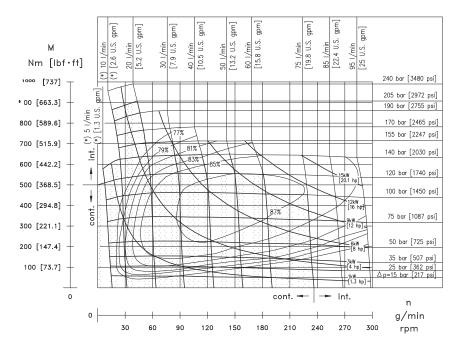

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

HR 250

Ц Ц

F

6

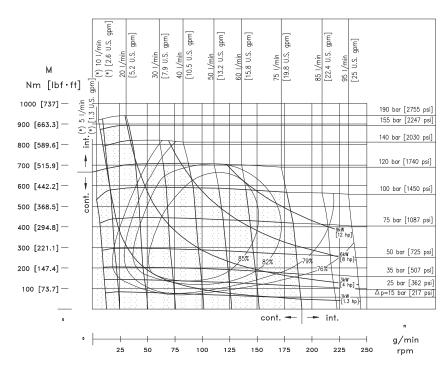

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously. (*) Performances data are referred to standard

motors.

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

Click DANA button to return to section index

DANA



Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

(*) Performances data are referred to standard motors.

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

HR 400

F

7

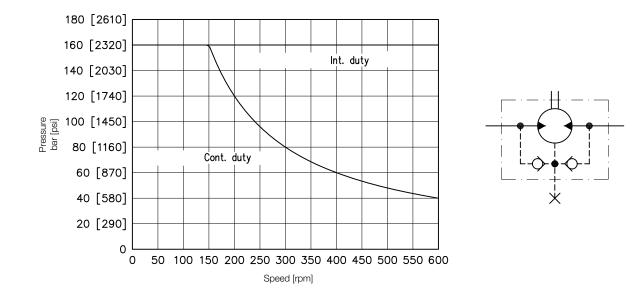
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

(*) Performances data are referred to standard motors.

For obtain higher performances, when the motor is used with flow < 10 l/min [< 2.64 U.S. gpm], we suggest to use LW (Low Leakage) version.

Click \boldsymbol{l} button to return to main index

Click DANA button to return to section index



F

8

Max. Permissible Shaft Seal Pressure

Max. return pressure without drain line or max. pressure in the drain line. For pressure and speeds not showed in the curve below, please contact Dana Brevini.

Pressure Loss

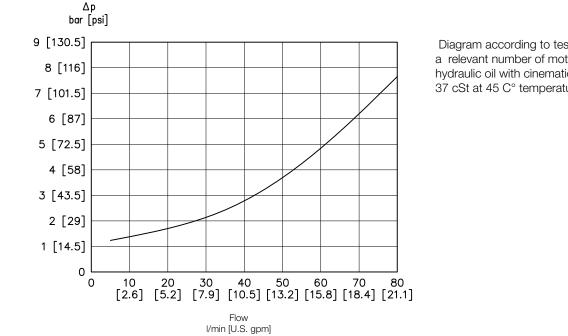
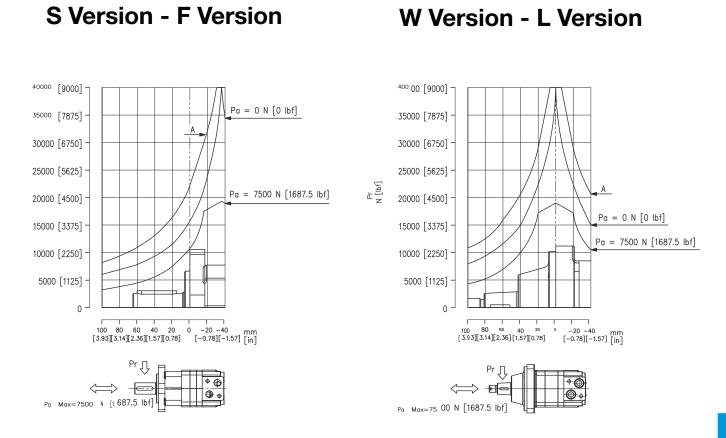



Diagram according to tests done with a relevant number of motors and using hydraulic oil with cinematic viscosity of 37 cSt at 45 C° temperature.

DC5B1A1_000000R2 - 03/2024

Loads diagram is for a bearings life L_{10h} of 1600 hours at 200 rpm when mineral base hydraulic oil with a sufficient content of anti-wear additives is used. Bearing life calculation refers to a 90% degree of reliability.

Curve "A" shows the maximum radial load that can be taken by the bearings uner maximum static load duty.

F


9

Click \boldsymbol{l} button to return to main index

The following alphanumeric digits system has been developed to identify all of the configuration options for the HR motors. Use the model code below to specify the desired features. All alphanumeric digits system of the code must be present when ordering. We recommend to carefully read the catalogue before filling the ordering code.

1	
	Series
HR	Orbital motor

2									
	Displacement								
080	80 cm³/giro [4.88 in³/rev]								
100	100 cm ³ /giro [6.1 in ³ /rev]								
130	130 cm³/giro [7.93 in³/rev]								
160	160 cm³/giro [9.76 in³/rev]								
200	200 cm³/giro [12.2 in³/rev]								
250	250 cm³/giro [15.25 in³/rev]								
315	315 cm³/giro [19.21 in³/rev]								
400	400 cm ³ /giro [24.4 in ³ /rev]								

Ц Ц

3							
	Version						
S	Standard Version						
w	Wheel Version						
С	Bearingless Version						
м	Short Bearingless Version for Gear Box						
F	Brake Version						
L	Wheel Version with brake						

4							
	Mounting Flange			Vers	sion		
		S	W	С	М	F	L
M4	Short flange for Gear Box	-	-	-	•	-	-
A4	4 Bolt Ø 82.5 mm [Ø 3.2 in]	•	-	-	-	•	-
A2	SAE A 2 Bolt	•	-	-	-	1)	-
B4	ISO 4 Bolt Ø 100 mm [Ø 3.9 in]	_	-	•	_	_	-
СМ	ISO 4 Bolt Ø 125 mm [Ø 4.9 in]	-	•	-	-	-	•

1) On request

Available

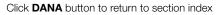
- Not Available

Click **DANA** button to return to section index

Click \dot{l} button to return to main index

5

				Ver	sion		
	Shaft end	S	w	С	м	F	L
DB001	Dog Bone T=12 12/24 DP	-	-	•	•	_	-
CL025	Parallel keyed Ø25 mm [0.97 in]	•	-	-	-	-	-
CL254	Parallel keyed Ø25.4 mm [1 in]	•	-	-	-	-	-
C3175	Parallel keyed Ø31.75 mm [1.23 in]	•	-	-	-	-	-
CL320	Parallel keyed Ø32 mm [1.24]	•	•	-	-	•	•
CN320	Tapered Shaft	•	•	-	-	•	•
SE250	Splined Shaft (SAE 6B 1" spline)	•	-	-	-	-	-
SC320	Splined Shaft (ASA 12/24 spline) - Europe Version	•	•	-	-	-	-
SE320	Splined Shaft (ASA 12/24 spline) - USA Version	•	-	-	-	-	-
SE350	Splined Shaft (P.t.o. DIN 9611 Form1)	•	-	-	-	-	-


6							
	Main Part			Vers	sion		
	Main Port	S	W	С	М	F	L
M09	1/2 G BSPP (32x22) Main Ports (standard)	•	•	•	٠	•	•
S09	7/8" - 14 UNF (32x22) Main Ports	•	•	•	-	•	•
L09	1" 1/16 - 12 UN (Main Ports Positioned 180° apart)	•	•	•	-	•	•
F09	1" 1/16 - 12 UN (End Main Ports)	•	•	•	-	•	•

7	
	Seal
N	NBR (standard)
v	FKM

8			

	Valve			Main Port						
	valve	M09	S09	L09	F09					
хххх	Not required	•	•	•	•					
M091	Pressure relief valve VAF 09 - D	•	-	-	-					
M092	Anticavitation and Anti-Shock Valve VAAF 09 / 40	•	-	-	-					
M093	Overcentre Valve with VCD1 09 - S/AF	•	-	-	-					
M094	Double-acting overcentre valve with shuttle valve VCR1 09 - D/AF	•	-	-	-					
M095	Double-acting overcentre valve with shuttle valve VCR1 09 D/AF LDP	•	-	-	-					
M096	Flow Control Valve VRP 09	•	-	-	-					
M097	Pressure relief valve VAF 09 - D/AF	•	-	-	-					

F

11

alve

F

12

9

	Velue				Va	lve	-		
	Valve	xxxx	M091	M092	M093	M094	M095	M096	M097
000	Feature not necessary	•	-	-	-	-	-	-	-
032	Not Set (50÷100 bar [725 to 1450 psi])	-	•	-	-	-	-	-	-
018	Not Set (50÷210 bar [725 to 3045 psi])	-	-	•	-	-	-	-	-
029	Not Set (30÷220 bar [435 to 3190 psi])	-	-	-	-	•	•	-	-
019	Not Set (Max pressure 315 bar [4567 psi])	-	-	-	-	-	-	•	-
020	Not Set (100÷200 bar [1450 to 2900 psi])	-	•	-	-	-	-	-	-
022	Not Set (100÷280 bar [1450 to 4060 psi])	-	-	-	-	-	-	-	•
70D	Pilot Ratio 7:1 - Control rotation CW	-	-	-	•	-	-	-	-
70S	Pilot Ratio 7:1 - Control rotation CCW	-	-	-	•	-	-	-	-
30D	Pilot Ratio 3:1 - Control rotation CW	-	-	-	•	-	-	-	-
30S	Pilot Ratio 3:1 - Control rotation CCW	-	-	-	•	-	-	-	-

10

	Eluphing Volue (*)	Main Port							
Flushing Valve (*)			S09	L09	F09				
хх	Not required	•	•	•	•				
06	VSC/F Flushing valve - 6 I/min [1.58 U.S. gpm]	•	•	-	-				
09	VSC/F Flushing valve - 10.5 l/min [2.77 U.S. gpm]	•	•	-	-				
15	VSC/F Flushing valve - 15 I/min [3.96 U.S. gpm]	•	•	-	-				
09	VSC/F Flushing valve - 10.5 l/min [2.77 U.S. gpm]	•	• • •	-					

11							
	Option			Vers	sion		
	Οριστ	S	W	С	М	F	L
хх	None	•	•	•	•	•	
03	Reverse rotation	•	•	•	•	•	
ΤZ	Tachometer + sensor 2-channel-Hall effect (30 pulse)	•	-	-	-	-	-
ZT	Tachometer + sensor 2-channel-Hall effect (55 pulse)	•	-	-	-	-	-
ZJ	Tachometer + 9046087 sensor Hall effect (55 pulse)	•	-	-	-	-	-

ц П

12										
	Shaft end	Version								
	Shart end	S	W	С	М	F	L			
ххх	Standard version	•	•	-	-	•	•			
ОКК	Double drain port 1/4 G (BSPP) (at delivery side)	•	•	-	-	-	-			
SKK	Double drain port 7/16" - 20UNF (at delivery side)	•	•	-	-	-	-			
LWK	Low leakage	•	•	•	•	•	•			
SWK	Double drain port 7/16" - 20UNF (at delivery side) + Low leakage	•	•	• ¹⁾	-	-	-			
KWK	Double drain port 1/4 G (BSPP) (at delivery side) + Low leakage	•	•	• 1)	-	-	-			
03K	Brevini SDU31 gear box Version + Low leakage	-	-	-	•	-	-			
04K	12 Springs / 10 Contacts Version (available with displacement 100-315)	-	-	-	-	•	•			
05K	8 Springs Version (available with displacement 250 - 315 - 400)	-	-	-	-	•	•			
06K	Increased braking torque Version (available with displacement 200-250)	-	-	-	-	•	•			
08K	Low leakage + 8 Springs Version (available with displacement 250 - 315 - 400)	-	-	-	-	•	•			
09K	Increased braking torque Version (available with displacement 200-250) + Low leakage	-	-	-	-	•	•			
10K	Brake housing SAE ports	-	-	-	-	-	-			

*) It is possible to combine the flushing valves only with VAF 09 - D valve.

1) Assembly, please contact Dana Brevini for further information.

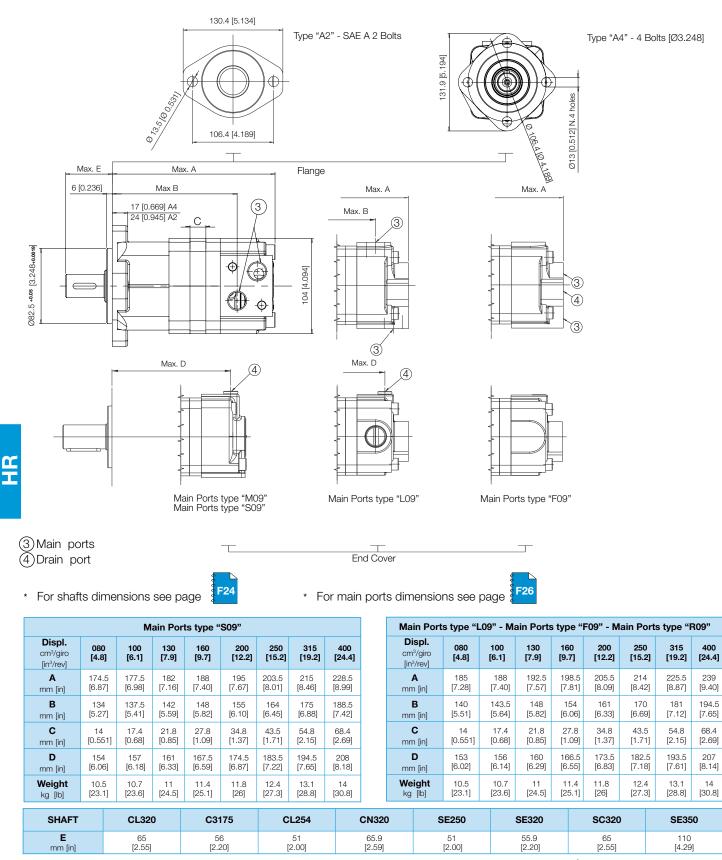
Available


- Not Available

Click **DANA** button to return to section index

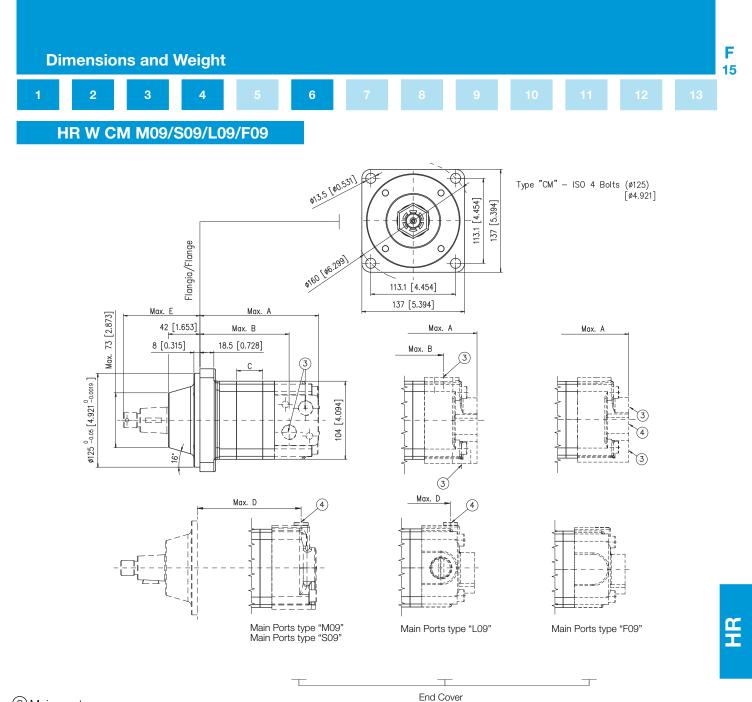
Click \dot{l} button to return to main index

13	
	Painting
xx	Not Painted
01	Black Painted RAL 9005
02	Blue Painted RAL 5015
05	Gray Painted RAL 7016


Click $\ensuremath{\textbf{DANA}}$ button to return to section index

DC5B1A1_000000R2 - 03/2024

HR S A2/A4 M09/S09/L09/F09



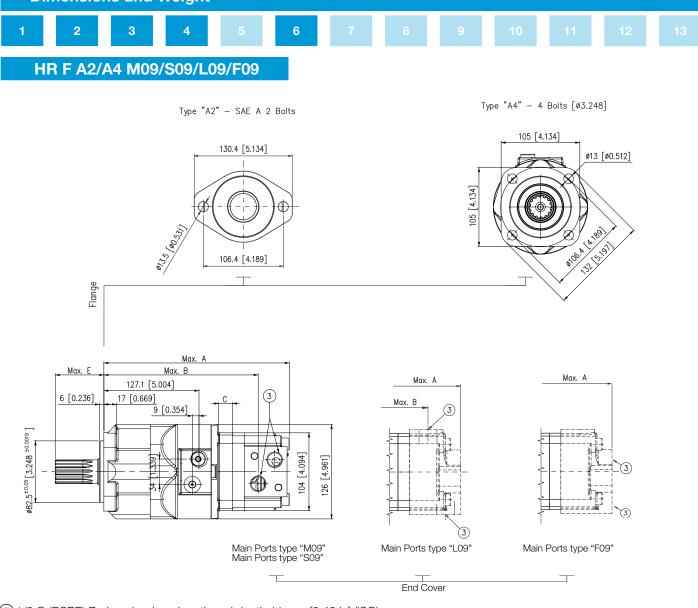
Click **DANA** button to return to section index

Click \dot{l} button to return to main index

(3) Main ports(4) Drain port

* For shafts dimensions see page

	Main Ports type "M09" - Main Ports type "S09"										
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]			
A	136.5	140	144.5	150.5	157.5	166	177.5	191			
mm [in]	[5.37]	[5.51]	[5.68]	[5.92]	[6.20]	[6.53]	[6.98]	[7.51]			
B	97.5	101	105.3	111.3	118.3	127	138.5	152			
mm [in]	[3.83]	[3.97]	[4.14]	[4.38]	[4.65]	[5.00]	[5.45]	[5.98]			
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4			
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]			
D	117	120.5	124.8	130.8	137.8	146.5	158	171.5			
mm [in]	[4.60]	[4.74]	[4.91]	[5.14]	[5.42]	[5.76]	[6.22]	[6.75]			
Veight	10.9	11.1	11.5	11.8 [26]	12.2	12.9	13.6	14.4			
kg [lb]	[24]	[24.4]	[25.3]		[26.8]	[28.4]	[29.9]	[31.7]			


Main Ports	Main Ports type "L09" - Main Ports type "F09" - Main Ports type "R09"										
Displ. cm ³ /giro [in ³ /rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]			
A	149.5	153	157.5	163.5	170.5	179	190.5	204			
mm [in]	[5.88]	[6.02]	[6.20]	[6.43]	[6.71]	[7.04]	[7.50]	[8.03]			
B	103.5	107	111.3	117.3	124.3	133	144.5	158			
mm [in]	[4.07]	[4.21]	[4.38]	[4.61]	[4.89]	[5.23]	[5.68]	[6.22]			
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4			
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]			
D	114.5	118	122.3	128.3	135.5	144	155.5	169			
mm [in]	[4.50]	[4.64]	[4.81]	[5.05]	[5.33]	[5.66]	[6.12]	[6.65]			
Weight	10.9	11.1	11.5	11.8	12.2	12.9	13.6	14.4			
kg [lb]	[24]	[24.4]	[25.3]	[26]	[26.8]	[28.4]	[29.9]	[31.7]			

SHAFT	CL320	CN320	SC320
E mm [in]	101 [3.97]	102 [4.01]	101 [3.97]
•			

Click $\boldsymbol{\check{l}}$ button to return to main index

Click **DANA** button to return to section index

1/18 G (BSPP) Brake releasing plug, thread depth 11 mm [0.42 in] (ISO) 7/16" - 20 UNF Brake releasing plug, thread depth 11mm [0.42 in] (SAE)

(2) 1/4 G (BSPP) Drain port, thread depth 11 mm [0.42 in] (ISO)
 7/16" - 20 UNF Drain port, thread depth 11 mm [0.42 in] (SAE)

F18

③ Main ports

Ц Ц

* For shafts dimensions see page

ge **F2**4

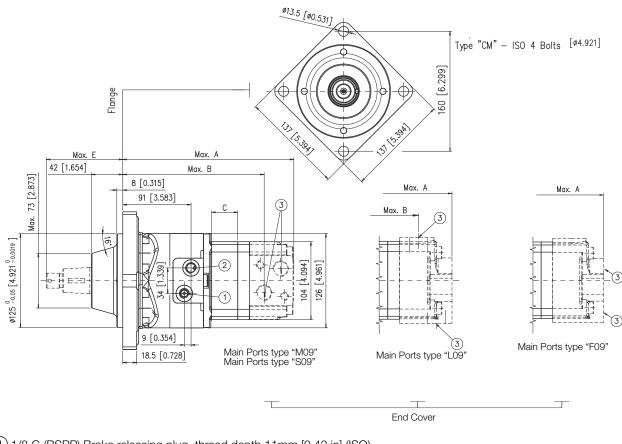
* For main ports dimensions see page

* For brake feature see page

Main Ports type "M09" - Main Ports type "S09"										
080	100	130	160	200	250	315	400			
[4.8]	[6.1]	[7.9]	[9.7]	[12.2]	[15.2]	[19.2]	[24.4]			
243.3	246.7	251.1	257.1	264.1	272.8	284.1	297.7			
[9.57]	[9.71]	[9.88]	[10.12]	[10.39]	[10.74]	[11.18]	[11.72			
203.8	207.2	211.6	217.6	224.6	233.3	244.6	258.2			
[8.02]	[8.15]	[8.33]	[8.56]	[8.84]	[9.18]	[9.62]	[10.16			
14	17.4	21.8	27.8	34.8	43.5	54.8	68.4			
[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]			
17.3	17.5	17.9	18.2	18.6	19.3	20	20.8			
[38.1]	[38.5]	[39.4]	[40.1]	[40.9]	[42.5]	[44]	[45.8]			
	080 [4.8] 243.3 [9.57] 203.8 [8.02] 14 [0.551] 17.3	080 100 [4.8] 100 243.3 246.7 [9.71] [9.71] 203.8 207.2 [8.02] [8.15] 14 17.4 [0.5511] [0.68] 17.3 17.5	080 100 130 [4.8] [6.1] [7.9] 243.3 246.7 251.1 [9.57] [9.71] [9.88] 203.8 207.2 211.6 [8.02] [8.15] [8.33] 14 17.4 218 [0.551] [0.68] [0.85] 17.3 17.5 17.9	080 [4.8] 100 [6.1] 130 [7.9] 160 [9.7] 243.3 [9.57] 246.7 [9.71] 251.1 [9.88] 257.1 [10.12] 203.8 [8.02] 207.2 [8.15] 211.6 [8.33] 217.6 [8.56] 14 17.4 [0.68] 218.8 [0.851] 27.8 [0.85] 17.3 17.5 17.9 18.2	080 [4.8] 100 [6.1] 130 [7.9] 160 [9.7] 200 [12.2] 243.3 [9.57] 246.7 [9.71] 251.1 [9.88] 257.1 [10.12] 264.1 [10.39] 203.8 [8.02] 207.2 [8.15] 211.6 [8.33] 224.6 [8.56] 246.6 [8.84] 14 17.4 21.8 [0.68] 27.8 [1.09] 34.8 [1.37] 17.3 17.5 17.9 18.2 18.6	080 [4.8] 100 [6.1] 130 [7.9] 160 [9.7] 200 [12.2] 250 [15.2] 243.3 [9.57] 246.7 [9.71] 251.1 [9.88] 257.1 [10.12] 264.1 [10.39] 272.8 [10.74] 203.8 [8.02] 207.2 [8.15] 211.6 [8.33] 217.6 [8.56] 224.6 [8.84] 233.3 [9.8] 14 17.4 [0.68] 21.8 [0.85] 10.09 [1.37] 1.751 17.9 17.3 17.5 17.9 18.2 18.6 19.3	080 [4.8] 100 [6.1] 130 [7.9] 160 [9.7] 200 [12.2] 250 [15.2] 315 [19.2] 243.3 [9.57] 246.7 [9.71] 251.1 [9.88] 257.1 [10.12] 264.1 [10.39] 272.8 [10.74] 284.1 [11.18] 203.8 [8.02] 207.2 [8.15] 211.6 [8.33] 224.6 [8.56] 233.3 [8.84] 244.6 [9.18] 14 17.4 21.8 [0.651] 27.8 [1.37] 54.8 [2.15] 17.3 17.5 17.9 18.2 18.6 19.3 20			

Main Ports type "L09" - Main Ports type "F09" - Main Ports type "R09"											
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]			
A	254.3	257.7	262.1	268.1	275.1	283.8	295.1	308.7			
mm [in]	[10.01]	[10.14]	[10.31]	[10.55]	[10.83]	[11.17]	[11.61]	[12.15]			
B	209.8	213.2	217.6	223.6	230.6	239.3	250.6	264.2			
mm [in]	[8.25]	[8.39]	[8.56]	[8.80]	[9.07]	[9.42]	[9.86]	[10.40]			
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4			
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]			
Weight	17.3	17.5	17.9	18.2	18.6	19.3	20	20.8			
kg [lb]	[38.1]	[38.5]	[39.4]	[40.1]	[40.9]	[42.5]	[44]	[45.8]			

SHAFT	CL320	CN320
E mm [in]	65 [2.55]	65.9 [2.59]
	[=*]	[=]


Click **DANA** button to return to section index

Click $\boldsymbol{\dot{l}}$ button to return to main index

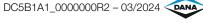
1/8 G (BSPP) Brake releasing plug, thread depth 11mm [0.42 in] (ISO)

- 7/16" 20 UNF Brake releasing plug, thread depth 11mm [0.42 in] (SAE)
- (2) 1/4 G (BSPP) Drain port, thread depth 11 mm [0.42 in] (ISO) 7/16" - 20 UNF Drain port, thread depth 11 mm [0.42 in] (SAE)
- ③ Main ports
- * For shafts dimensions see page

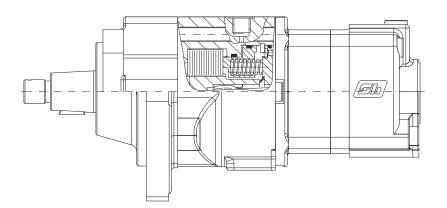
ge **F24**

* For main ports dimensions see page

* For brake feature see page
 Main Ports type "M09" - Main Ports type "S09"


	Main Po	oris typ	e "WO9"	- Main F	orts ty	pe ~509		
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]
A	207.2	210.6	215	221	228	236.7	248	261.6
mm [in]	[8.15]	[8.29]	[8.46]	[8.70]	[8.97]	[9.31]	[9.76]	[10.29]
B	167.7	171.1	175.5	181.5	188.5	197.2	208.5	222.1
mm [in]	[6.60]	[6.73]	[6.90]	[7.14]	[7.42]	[7.76]	[8.20]	[8.74]
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]
Weight	17.7	17.9	18.3	18.6	19	19.7	20.4	21.2
kg [lb]	[39]	[39.4]	[40.3]	[40.9]	[41.8]	[43.4]	[44.9]	[46.7]

Main Ports	Main Ports type "L09" - Main Ports type "F09" - Main Ports type "R09"										
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]			
A	218.2	221.6	226	232	239	247.7	259	272.6			
mm [in]	[8.59]	[8.72]	[8.89]	[9.13]	[9.40]	[9.75]	[10.19]	[10.73]			
B	173.7	177.1	181.5	187.5	194.5	203.2	214.5	228.1			
mm [in]	[6.83]	[6.97]	[7.14]	[7.38]	[7.65]	[8.00]	[8.44]	[8.98]			
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4			
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]			
Weight	17.7	17.9	18.3	18.6	19	19.7	20.4	21.2			
kg [lb]	[39]	[39.4]	[40.3]	[40.9]	[41.8]	[43.4]	[44.9]	[46.7]			


SHAFT	CL320	CN320
E	101	102
mm [in]	[3.97]	[4.01]

Click $\boldsymbol{\dot{l}}$ button to return to main index

Click **DANA** button to return to section index

F Version - L Version

Starting release pressure	25 bar [362 psi]
Full release pressure	30 bar [435 psi]
Brake control pressure Max.	210 bar [3045 psi]

	STATIC BRAKING TORQUE							
MOTOR	STANDARD	12 Springs / 10 Contacts	8 Springs	Increased Braking Torque				
F Version - L Version 080	210 Nm [154.7 lbf·ft]							
F Version - L Version 100	280 Nm [206.3 lbf·ft]	259 Nm [190.8 lbf·ft]						
F Version - L Version 130	340 Nm [250.5 lbf·ft]							
F Version - L Version 160	340 Nm [250.5 lbf·ft]							
F Version - L Version 200	420 Nm [309.5 lbf·ft]			560 Nm [412.7 lbf·ft]				
F Version - L Version 250	470 Nm [346.3 lbf·ft]		313 Nm [230.6 lbf·ft]	560 Nm [412.7 lbf·ft]				
F Version - L Version 315	560 Nm [412.7 lbf•ft]	259 Nm [190.8 lbf·ft]	373 Nm [274.9 lbf•ft]					
F Version - L Version 400	560 Nm [412.7 lbf·ft]		373 Nm [274.9 lbf·ft]					

The brakes built into F version and L version motors are multidisc pressure released ones for static operation. With no pressure from the pump to the motor, a set of springs will push the discs one against the other, hence the motor shaft will not be allowed to rotate unless the shaft itself is driven with a torque widely exceeding the max. static torque of the brake.

By sending pressure to the motor a shuttle valve (to be included in the system) will send pressure to the brake, overcome the resistance of the springs and release the brake hence allowing the start of the motor. Wheel motors require some care in the engineering of the machine. The major aspects to consider are:

- Hub and motor shaft tapers must be perfectly matching, in order to avoid excessive key stress, which can occur in case of bottoming of shaft tip washer and nut at the end of the thread.
- A proper service factor should be considered in case of shocks to the shaft (eg. With the machine travelling on very uneven soil).
- L version brake motors operating mobile machines should always have a flanged on double overcentre + shuttle valve, in order to ensure safe slow-down of the machine and engaging of brake when a complete stop has been reached.

Click DANA button to return to section index

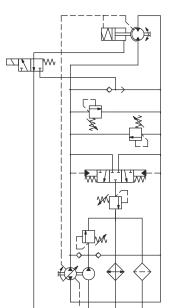
Click \dot{l} button to return to main index

OPEN LOOP SYSTEM, ONE BRAKE-MOTOR, BI-DIRECTIONAL TURNING AND AUTOMATIC BRAKE OPERATION.

This configuration is typically that of a slew drive (cranes, excavators, aerial platforms, derricks, etc.).

When the pump delivers oil to the motor the consequent generation of pressure will operate the shuttle valve and activate the brake line, thus disengaging the brake itself. When the oil delivery is shut off to stop the machine, a double overcentre valve will slow down the rotative mass to an almost complete stop when the static brake will engage.

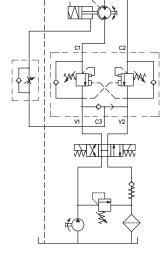
OPEN LOOP SYSTEM, TWO BRAKE-MOTORS, BI-DIRECTIONAL TURNING AND AUTOMATIC BRAKES OPERATION.

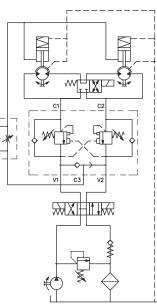

This is a typical layout of the travelling system of a mobile machine (aerial platforms, etc.). Fluid under pressure disengages the brakes and starts the two motors; a commutation device will connect the two motors either in series or parallel mode in order to have either speed or torque as main performance.

The double overcentre valve will steadily slow down the machine and bring it to an almost complete stop when the brakes will engage.

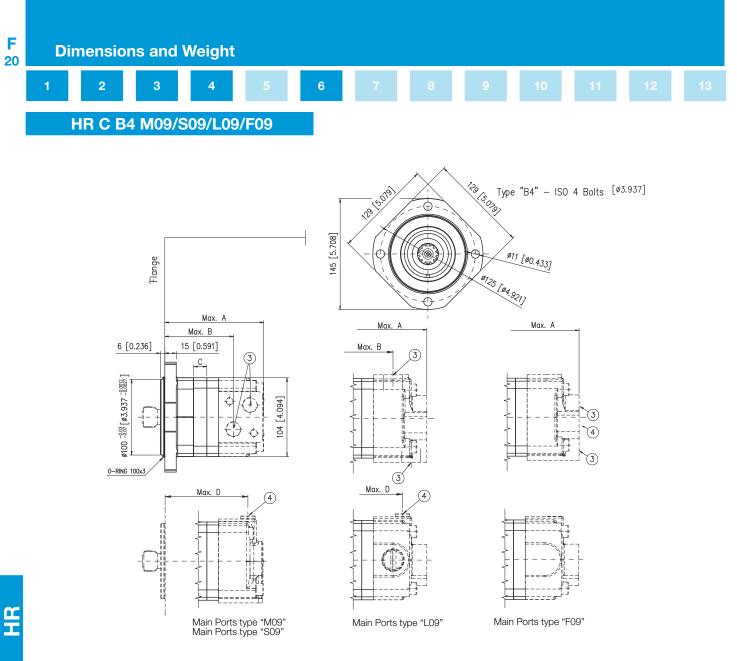
CLOSED LOOP SYSTEM, ONE BRAKEMOTOR, BI-DIRECTIONAL TURNING, AUTOMATIC BRAKE OPERATION AND VARIABLE PUMP.

A very typical system for sweepers. The pump delivers a variable flow of oil to the motor hence the machine can travel at variable speed.


The brake is disengaged by the delivery of flow from the shuttle valve via the electro-valve (top, right) that will also release the fluid under pressure from inside the brake piston chamber when the motor stops and the brake engages.



Click DANA button to return to section index



Click \dot{l} button to return to main index

ЦП

End Cover

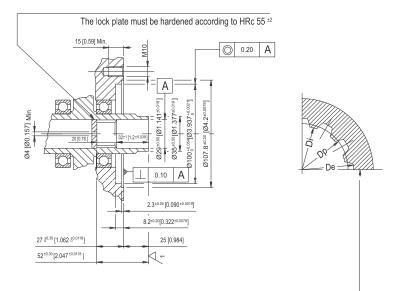
③ Main ports (4) Drain port

- F26 * For main ports dimensions see page
- F21 * For interface drawing see page

	Main Ports type "M09"- Main Ports type "S09"											
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]				
A	127.7	131	135.5	141.5	148.5	157.2	168.5	182				
mm [in]	[5.02]	[5.15]	[5.33]	[5.57]	[5.84]	[6.18]	[6.63]	[7.16]				
B	87.2	90.6	95	101	108	116.7	128	141.6				
mm [in]	[3.43]	[3.56]	[3.74]	[3.97]	[4.25]	[4.59]	[5.03]	[5.57]				
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4				
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]				
D	106.7	110	114.5	120.5	127.5	136.2	147.5	161				
mm [in]	[4.20]	[4.33]	[4.50]	[4.74]	[5.01]	[5.36]	[5.80]	[6.33]				
Weight	8	8.2	8.6	8.9	9.3	10	10.7	11.5				
kg [lb]	[17.6]	[18]	[18.9]	[19.6]	[20.4]	[22]	[23.5]	[25.3]				

Click **DANA** button to return to section index

Main Ports type "L09" - Main Ports type "F09" - Main Ports type "R09"										
Displ. cm³/giro [in³/rev]	080 [4.8]	100 [6.1]	130 [7.9]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]		
A	140.7	144	149.5	154.5	161.5	170.2	181.5	195		
mm [in]	[5.53]	[5.66]	[5.88]	[6.08]	[6.35]	[6.70]	[7.14]	[7.67]		
B	93.2	96.6	101	107	114	122.7	134	147.6		
mm [in]	[3.66]	[3.80]	[3.97]	[4.21]	[4.48]	[4.83]	[5.27]	[5.81]		
C	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4		
mm [in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]		
D	104.2	107.5	112	118	125	133.7	145	158.5		
mm [in]	[4.10]	[4.23]	[4.40]	[4.64]	[4.92]	[5.26]	[5.70]	[6.24]		
Weight	8	8.2	8.6	8.9	9.3	10	10.7	11.5		
kg [lb]	[17.6]	[18]	[18.9]	[19.6]	[20.4]	[22]	[23.5]	[25.3]		


Click \dot{l} button to return to main index

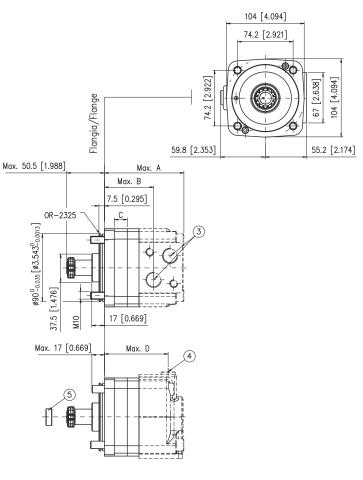
Spline ANS B 92.1 + 1970 Class 5 (corrected m·x=0.8)					
Diametral pitch	12/24				
Number of teeth	Z=12				
Pitch diameter	Dp=25.4				
Pressure angle	30°				
Module	m=2.1166				
Minor diameter	Di=23.0	+0.033			
	DI-20.0	0			
Major diameter D	De=28.0	0			
	D6-20.0	-0.1			
Max measurement between pins*	17.62	+0.15			
Max measurement between pins	17.02	0			
Pins diameter	4.835	±0.001			
* Finished dimensions (when hardened)					



NiCr steel with case hardening, induction hardening and tempering treatment, with hardness HRc 580

F

21



Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

Main Ports type "M09"

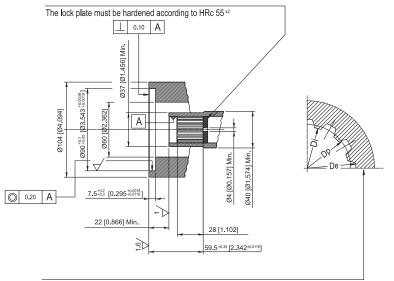
End Cover

(3) Main ports
(4) Drain port
(5) The motors are supplied with spacer

* For interface drawing see page

Main Ports type "M09"								
Displ. (cm³/giro)	080	100	130	160	200	250	315	400
[in³/rev]	[4.8]	[6.1]	[7.9]	[9.7]	[12.2]	[15.2]	[19.2]	[24.4]
A mm	102.6	106	110.4	116.4	123.4	132.1	143.4	157
[in]	[4.03]	[4.17]	[4.34]	[4.58]	[4.85]	[5.20]	[5.64]	[6.18]
B mm	62.2	65.6	70	76	83	91.7	103	116.6
[in]	[2.44]	[2.58]	[2.75]	[2.99]	[3.26]	[3.61]	[4.05]	[4.59]
C mm	14	17.4	21.8	27.8	34.8	43.5	54.8	68.4
[in]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]
D mm	81.6	85	89.4	95.4	102.4	111.1	122.4	136
[in]	[3.21]	[3.34]	[3.51]	[3.75]	[4.03]	[4.37]	[4.81]	[5.35]
Weight kg	6.5	6.7	7.1	7.5	8	8.6	9.4	10.3
(lb)	[14.3]	[14.7]	[15.6]	[16.5]	[17.6]	[18.9]	[20.7]	[22.7]

Click **DANA** button to return to section index

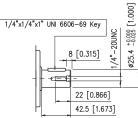


Click ${m l}$ button to return to main index

Spline ANS B 92.1 + 1970 Class 5 (corrected m·x=0.8)					
Diametral pitch	12/24				
Number of teeth	Z=12				
Pitch diameter	Dp=25.4				
Pressure angle	30°				
Module	m=2.1166				
Minor diameter	Di=23.0 ^{+ 0.033} ₀				
Major diameter	De=28.0 _0.1				
Max measurement between pins*	17.62 ^{+ 0.15} 0.1				
Pins diameter	4.835 + 0.001 - 0.001				
* Finished dimensions (when hardened)					

INTERFACE DRAWING FOR HR MOTOR "M" VERSION

NiCr steel with case hardening, induction hardening and tempering treatment, with hardness HRc 58 0


F

23

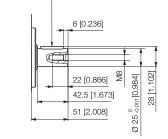
Click \dot{l} button to return to main index

Click **DANA** button to return to section index

Max. admissible Torque (Cont. 300 Nm [221 lbf·ft] - Int. 410 Nm [302 lbf·ft])

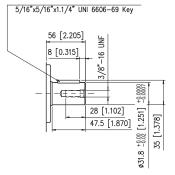
Splined Shaft

SAE 6B 1" (6T) spline

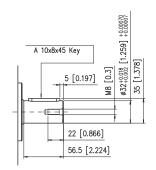

-

1/4"-20UNC \$25.4 [1.000]

22 [0.866]

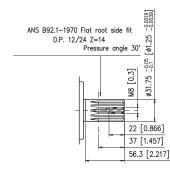

24 [0.945] 42.5 [1.673]

SE250


Max. admissible Torque (Cont. 300 Nm [221 lbf·ft] - Int. 410 Nm [302 lbf·ft])

Max. admissible Torque (Cont. 768 Nm [566 lbf·ft])

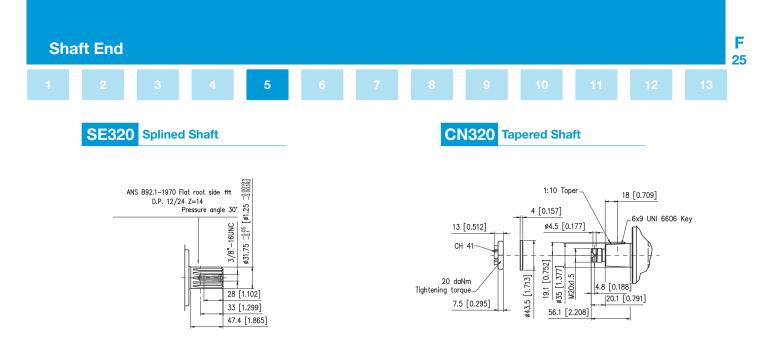
CL320 Cylindrical Shaft



Max. admissible Torque (Cont. 768 Nm [566 lbf·ft])

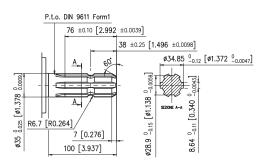
Max. admissible Torque (Cont. 360 Nm [265 lbf·ft] - Int. 450 Nm [332 lbf·ft])

SC320 Splined Shaft


Max. admissible Torque (Cont. 768 Nm [566 lbf·ft])

Click DANA button to return to section index

Click \boldsymbol{i} button to return to main index

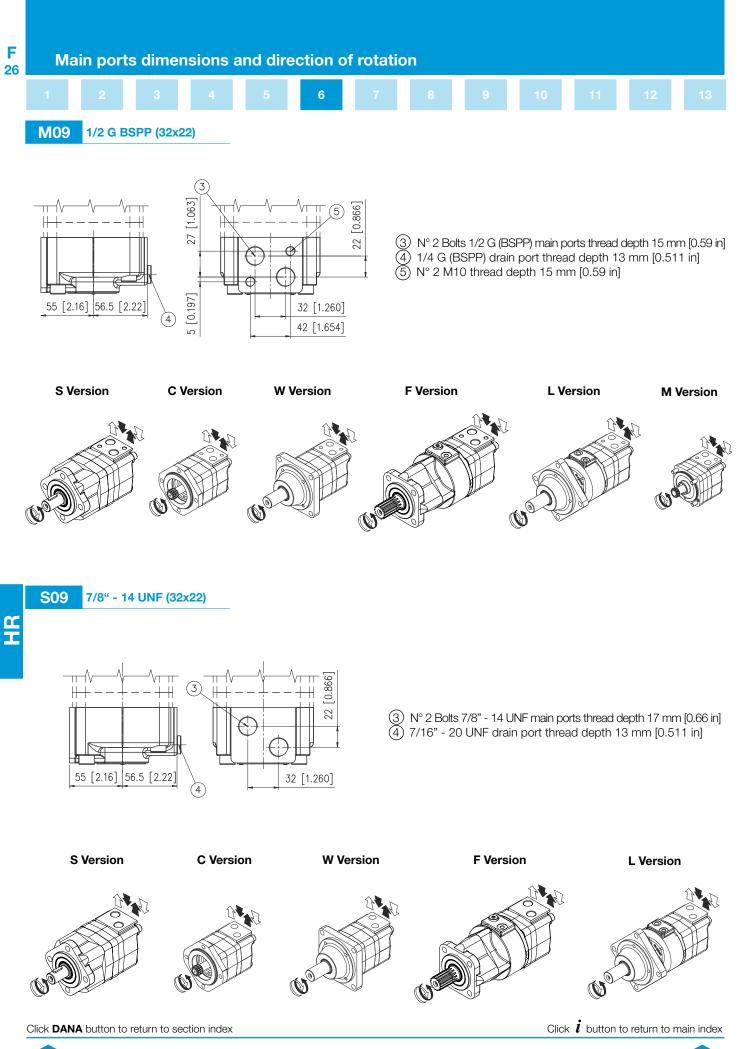


Max. admissible Torque

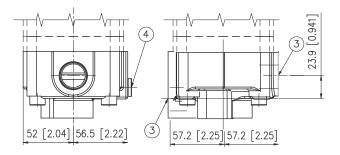
(Cont. 860 Nm [633.82 lbf·ft])

Max. admissible Torque (Cont. 768 Nm [566 lbf·ft])

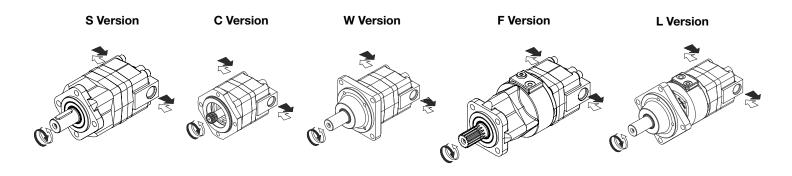
Max. admissible Torque (Cont. 860 Nm [633.82 lbf·ft])

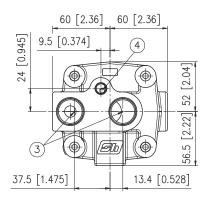

Click \boldsymbol{i} button to return to main index

Click **DANA** button to return to section index

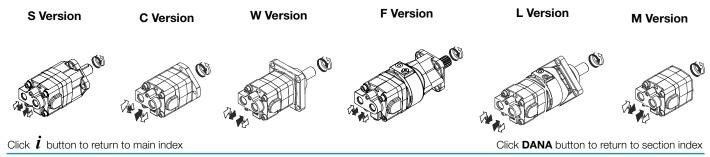

DC5B1A1_000000R2 - 03/2024

DC5B1A1_0000000R2 - 03/2024



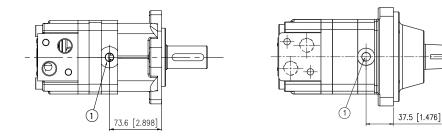

(3) N° 2 Bolts 1" 1/16 - 12 UN main ports thread depth 20 mm [0.78 in] (4) 7/16" - 20 UNF drain port thread depth 13 mm [0.511 in]

> Ц Ц


DC5B1A1_000000R2 - 03/2024

S09 1" 1/16 - 12 UN (End Main Ports)

(3) N° 2 Bolts 1" 1/16 - 12 UN main ports thread depth 17 mm [0.66 in]
 (4) 7/16" - 20 UNF drain port thread depth 13 mm [0.511 in]



SECONDARY DRAIN PORT (AT DELIVERY SIDE)

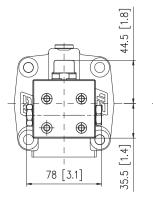
For the motor with S-W version, it is possible to put a secondary drain port (at delivery side).

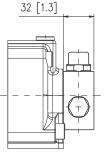
If it is necessary on the motor a secondary drain port, to specify in the purchase order the value "OKK" for metric version or "SKK" for SAE version (See position 12 of ordering code)

S Version

W Version

 1/4 G (BSPP) drain port (OK) 7/16" - 20 UNF drain port (SK)


LOW LEAKAGE


For applications with low flow and high working pressure, it is recommended the Low Leakage version. The Low Leakage version differs from the standard version for the different internal components.

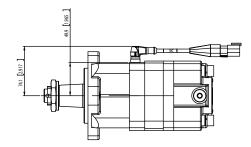
SPECIAL COVER FOR FLUSHING VALVE

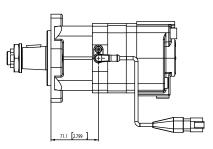
The mount the flushing valve on motors, it is necessary to use a special cover. This is only possible with the "M09 - S09" main ports.

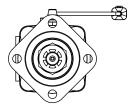
If it is necessary to assembly the flushing valve on motors, to specify in the purchase order the valves type 06-09-15-21 (See position 10 of ordering code)

For more informations on the Flushing valve, see the Valves and Accessories section or Service Bulletin - 05-0082-A04

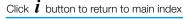
Click **DANA** button to return to section index


DANA


Click ${m l}$ button to return to main index



ΤZ Tachometer + sensor 2-channel-Hall effect (55 pulse)



Main features:

2-channel differential-hall effect operating principle sensor

Output: dual-channel (90°) Power supply: 8-32 VDC Frequency : 0-20000 Hz Operating temperature: -40°C / +125°C Number of pulses per revolution: 55

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

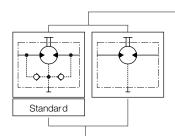
Click DANA button to return to section index

DC5B1A1_000000R2 - 03/2024

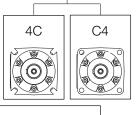
Click ${m i}$ button to return to main index

HT Orbital Motors

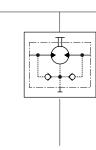
G 1


Motor Features	G2
Technical Specifications	G3
Performance Curves	G4
Pressure Data	G7
MAx. Permissible Shaft Seal Pressure	G7
Pressure Loss	G8
Other Informations	G9
Ordering Code	G10
Dimensions and Weight	G14
Brake Feature	G18
Shaft End	G19
Version Features	G21
Other Informations	G23




Click **DANA** button to return to section index

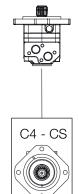
G


2

Heavy duty, roller type stator meant to work at high pressure ant to guarantee extra long lasting.

HT

F


Brake Version

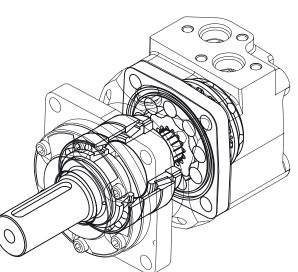
æ

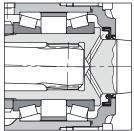
0


C4



Separate disc valves drive to


guarantee sharp phase.


Built-in check valves to recirculate internally drained fluid through return line (standard version).

D m st io ra ci

Click **DANA** button to return to section index

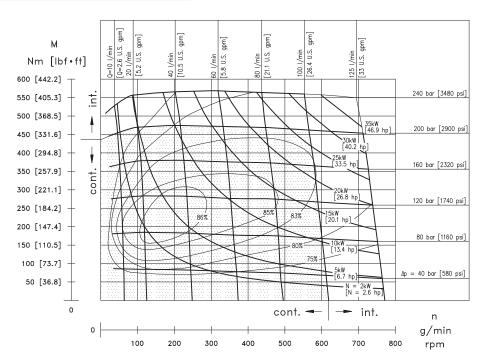
Disc valve distribution with automatic compensation of backlash done by fluid under pressure: lower drain figures are then guaranteed together with high efficiency. The presence of seals with back-up ring guarantee greater reliability. Shaft supported by two heavy duty tapered roller bearings that ensure outstanding radial load capacity.

Click $m{i}$ button to return to main index

Motor	Displacement		ix. input ressure		differential ressure	Ma	x. torque	м	ax. flow	Ma	x. speed	Ma	ix. power
	cm³/rev [in³/rev]		ar [psi]	•	oar [psi]	N	lm [lbf·ft]	l/min	[U.S. gpm]		rpm	I	kW [hp]
HT 160	161.1 [9.8]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	200 [2900] 240 [3480] 280 [4060]	Cont Int ¹⁾ Peak ²⁾	470 [346.3] 560 [412.7] 660 [486.4]	Cont Int ¹⁾	100 [26.4] 125 [33]	Cont Int ¹⁾	625 780	Cont Int ¹⁾	27.5 [36.8] 32 [42.8]
HT 200	201.4 [12.2]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	200 [2900] 240 [3480] 280 [4060]	Cont Int ¹⁾ Peak ²⁾	590 [434.8] 710 [523.2] 820 [604.3]	Cont Int ¹⁾	125 [33] 150 [39.6]	Cont Int ¹⁾	625 750	Cont Int ¹⁾	33.5 [44.8] 40 [53.6]
HT 250	251.8 [15.3]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	200 [2900] 240 [3480] 280 [4060]	Cont Int ¹⁾ Peak ²⁾	730 [538] 880 [648.5] 1020 [751.7]	Cont Int ¹⁾	125 [33] 150 [39.6]	Cont Int ¹⁾	500 600	Cont Int ¹⁾	33.5 [44.8] 40 [53.6]
HT 315	326.3 [19.9]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	200 [2900] 240 [3480] 280 [4060]	Cont Int ¹⁾ Peak ²⁾	950 [700.1] 1140 [840.1] 1330 [980.2]	Cont Int ¹⁾	125 [33] 150 [39.6]	Cont Int ¹⁾	380 460	Cont Int ¹⁾	33.5 [44.8] 40 [53.6]
HT 400	410.9 [25.06]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	180 [2610] 210 [3045] 240 [3480]	Cont Int ¹⁾ Peak ²⁾	1080 [795.9] 1260 [928.6] 1440 [1061.2]	Cont Int ¹⁾	125 [33] 150 [39.6]	Cont Int ¹⁾	305 365	Cont Int ¹⁾	30 [40.2] 35 [46.9]
HT 500	523.6 [31.9]	Cont Int ¹⁾ Peak ²⁾	210 [3045] 250 [3625] 300 [4350]	Cont Int ¹⁾ Peak ²⁾	160 [2320] 180 [2610] 210 [3045]	Cont Int ¹⁾ Peak ²⁾	1220 [899.1] 1370 [1009.6] 1600 [1179.2]	Cont Int ¹⁾	125 [33] 150 [39.6]	Cont Int ¹⁾	240 285	Cont Int ¹⁾	26.5 [35.5] 30 [40.2]

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.
 ³⁾ Oil viscosity 35 cSt.



Click **DANA** button to return to section index

HT 160

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

G

4

Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.

[mdb mdb [mdf gpm] gpm] 125 I/min [33 U.S. gpm] М 40 I/min [10.5 U.S. 1/min 3 U.S. 1 U.S. /min U.S. /min U.S. Nm [lbf•ft] 60 1/1 [15.8 80 I, [21.1 26.4 150 1/ 750 [552.7] 700 [515.9] 240 bar [3480 psi] int. 650 [479] ¥0kW√ 1 _[53.6_hp]_ 600 [442.2] ł 200 bar [2900 psi] 550 [405.3] 35kW | [46.9 hp] 500 [368.5] ł 30kW 450 [331.6] 160 bar [2320 psi] cont. 400 [294.8] 350 [257.9] 120 bar [1740 psi] 300 [221.1] 20kW 26.8 250 [184.2] ≦15kW [20.1] 200 [147.4] 80 bar [1160 psi] 85% 80% 150 [110.5] =10kW [13.4 hp] 100 [73.7] 5kW [6.7 Δp = 40 bar [580 psi] 50 [36.8] + N = [N = 0 cont. int. n 0 g/min

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

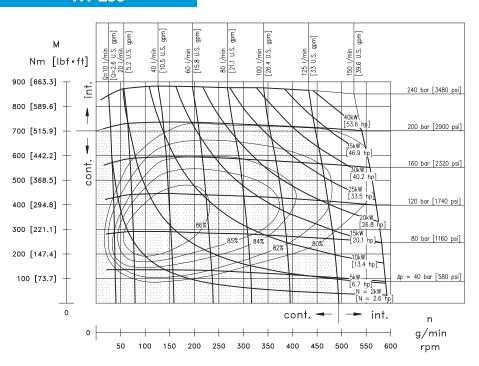
Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

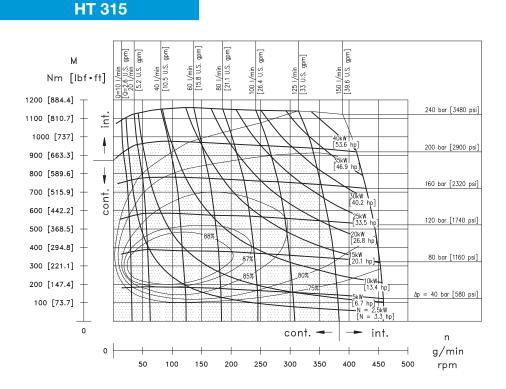
Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.

rpm

Click DANA button to return to section index


HT 200

Click \dot{l} button to return to main index



Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

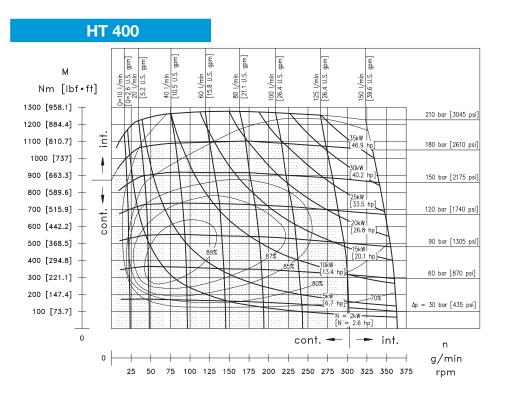
Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

늪

Note:

Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.


Click $\boldsymbol{\dot{l}}$ button to return to main index

Click **DANA** button to return to section index

G

6

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at 45 C° temperature.

map mdb gpm dpm М gpm 60 I/min [15.8 U.S. o 80 I/min [21.1 U.S. 150 I/min [39.6 U.S. o 100 1/min [26.4 U.S. 40 I/min [10.5 U.S. 125 I/min [33 U.S. g vin U.S.U Nm [lbf•ft] 2 1500 [1105.5] 180 bar [2610 psi] int 1250 [921.2] 30kW 40.2 160 bar [2320 psi] 4 140 bar [2030 psi] 1000 [737] hp] ł 120 bar [1740 psi] cont. 20kW [26.8 750 [552.7] 90 bar [1305 psi] 15kW 500 [368.5] 60 bar [870 psi] 80% 10kW | [13.4 hp] 85% 250 [184.2] _5kW | -[6.7 hp]_ Δp = 30 bar [435 psi] [2.6 hp] 0 cont. int. n 0 g/min 175 25 50 75 100 125 150 200 225 250 275 300 rpm

Exceeding continuous pressure values or exceeding flow values indicated, must not occur simultaneously.

Note:

Diagram according to tests done with a relevant number of motors and using hydraulic oil with kinematic viscosity of 37 cSt at $45 \, \text{C}^{\circ}$ temperature.

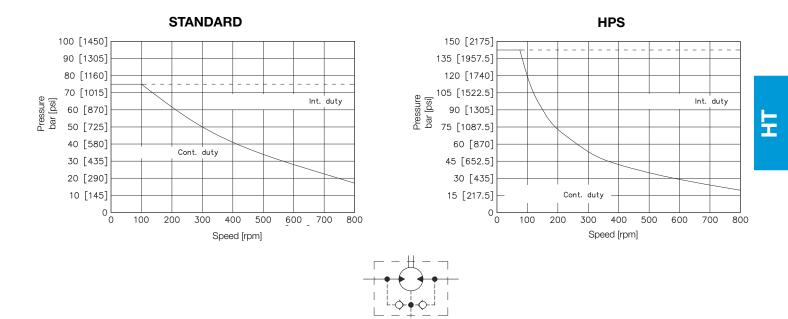
Click **DANA** button to return to section index

HT 500

Click \dot{l} button to return to main index

Motor	Max. Outlet pressure whit Drain line (cont.) bar [psi]		Max. starting pressure with no load	Min	. starting t	orque	Min. speed
			bar [psi]		Nm [lbf·ft]]	rpm
HT 160	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	340 [250.5] 410 [302.1]	10
HT 200	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	430 [316.9] 520 [383.2]	9
HT 250	Cont Int* Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	530 [390.6] 630 [464.3]	8
HT 315	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	740 [545.3] 890 [655.9]	7
HT 400	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	840 [619] 970 [714.8]	6
HT 500	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2537] 210 [3045]	10 [145]	A Δp max. At max. Δp	Cont Int ¹⁾	950 [700.1] 1060 [781.2]	5

¹⁾ Intermittent duty must not exceed 10% each minute.


²⁾ Peak duty must not exceed 1% each minute.

³⁾ Oil viscosity 35 cSt.

Max. Permissible Shaft Seal Pressure

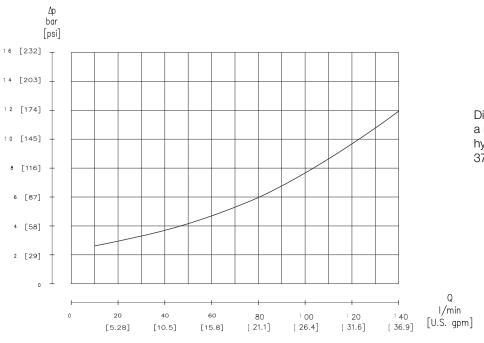
Max. return pressure without drain line or max. pressure in the drain line. Motor are supplied in standard seal version (Standard chart) or in HPS seal version (HPS chart).

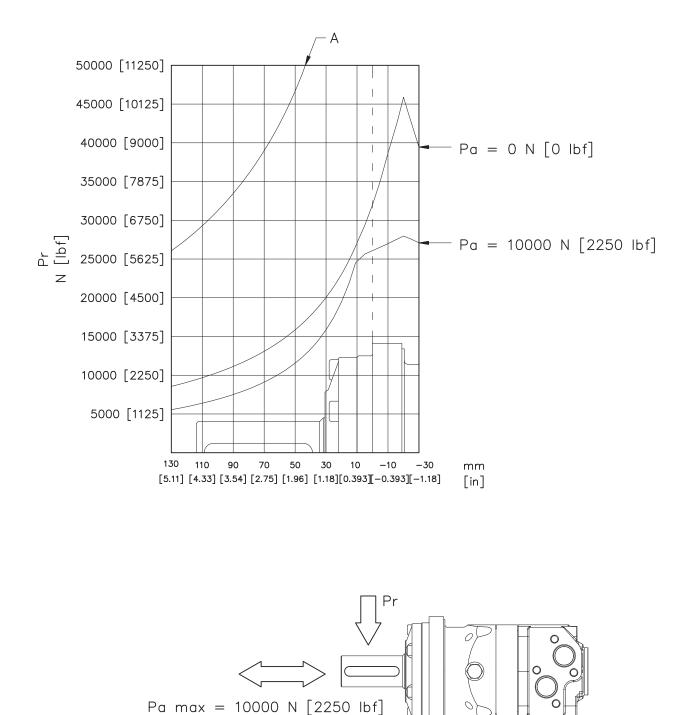
For pressure and speeds not showed in the curve below, please contact Dana Brevini.

DC5B1A1_000000R2 - 03/2024

G

8




Diagram according to tests done with a relevant number of motors and using hydraulics oil with kinematic viscosity of 37 cSt at 45 °C temperature.

i

Shaft loads diagram is for a bearings life L10h of 3000 hours at 200 rpm when mineral base hydraulic oil with a sufficient content of anti-wear additives is used. Bearing life calculation refers to a 90% degree of reliability.

Curve "A" shows the maximum radial load that can be taken by the bearings uner maximum static load duty.

눞

G

9

Click DANA button to return to section index

DC5B1A1_000000R2 - 03/2024

The following alphanumeric digits system has been developed to identify all of the configuration options for the HT motors. Use the model code below to specify the desired features. **All alphanumeric digits system of the code must be present when ordering.** We recommend to carefully read the catalogue before filling the ordering code.

1					
Series					
HT	Orbital motor				

2								
	Displacement							
160	160 cm³/giro [9.76 in³/rev]							
200	200 cm ³ /giro [12.2 in ³ /rev]							
250	250 cm³/giro [15.25 in³/rev]							
315	315 cm³/giro [19.215 in³/rev]							
400	400 cm ³ /giro [24.4 in ³ /rev]							
500	500 cm³/giro [30.5 in³/rev]							

	3	
		Version
	S	Standard Version
	С	Bearingless Version
с.	F	Brake Version
I	w	Wheel Version

4									
	Mounting Flongs		Version						
	Mounting Flange	S	С	F	W				
4C	SAE C 4 Bolt	•	-	-	-				
C4	ISO 4 Bolt Ø 125 mm [Ø 4.9 in] - Drain port 1/4 G (BSPP)	•	•	•	-				
CS	ISO 4 Bolt Ø 125 mm [Ø 4.921 in] - Drain port 9/16" - 18 UNF	-	•	-	-				
CW	ISO 4 Bolt Ø 160 mm [Ø 6.299 in] - Drain port 1/4 G (BSPP)	-	-	-	•				

Available

- Not Available

Click **DANA** button to return to section index

Click ${m l}$ button to return to main index

Ordering codes

5

0

	Choff End		Version						
	Shaft End	S	С	F	W				
DB002	Dog Bone T=16 12/24 DP	-	•	-	-				
CL400	Ø40 mm [1.56 in] Parallel keyed	•	-	•	•				
C3800	Ø38 mm [1.48 in] Parallel keyed	•	-	-	-				
CN400	Tapered Shaft (Available only with mount flange C4 and M10 Main Ports)	•	-	•	•				
SC380	Splined Shaft (ANS B 92.1 / 1970 12/24 DP Z=17 spline)	٠	-	٠	•				

	U					
	Main Port			Vers	sion	
			S	С	F	W
	M10	3/4 G BSPP (23x40) Main Ports (Standard)	•	•	•	•
l	M1Z	3/4 G BSPP (23x40) Main Ports, Without M10 threads	-	-	•	-
	S10	1" 1/16 - 12 UN Main Ports	٠	•	-	•

7								
	Seals							
N	NBR (Standard)							
V	FKM							

8					
	Valve		Main Por	t	
		M10	M1Z	S10	Valve
XXXX	Not Required	•	•	•	ф
M101	Pressure relief valve VAF 10 - D	•	-	-	
M102	Double-acting overcentre valve with shuttle valve VCR1 10 - D/AF	•	-	-	
M103	Overcentre Valve with VCD2 10 - S/AF	•	-	-	

9								
	Valve Features	Valve						
	valve reatures	XXXX	M101	M102	M103			
000	Feature not necessary	•	-	-	-			
023	Not Set 100÷350 bar [1450 to 5075 psi] - Direction of rotation CW	-	-	-	•			
024	Not Set 100÷350 bar [1450 to 5075 psi] - Direction of rotation CCW	-	-	-	•			
026	Not Set 30÷210 bar [435 to 3045 psi] - Direction of rotation CW	-	-	-	•			
027	Not Set 30÷210 bar [435 to 3045 psi] - Direction of rotation CCW	-	-	-	•			
020	Not Set 100÷200 bar [1450 to 2900 psi]	-	•	-	-			
025	Not Set 210÷300 bar [3045 to 4350 psi]	-	•	-	-			
700	Pilot Ratio 7:1	-	-	•	-			
100	Pilot Ratio 10:1	-	-	•	-			

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

늪

10								
	Flushing Valve (1)							
ХХ	Not Required							
06	VSC/F Flushing valve - 6 I/min [1.58 U.S. gpm]							
09	VSC/F Flushing valve - 10.5 l/min [2.77 U.S. gpm]							
15	VSC/F Flushing valve - 15 l/min [3.96 U.S. gpm]							

11	
	Option
ХХ	None

12		
	Version Feature	s
XXXX	Standard version	•
HPS	High Pressure Sea	•
HD0	Heavy duty (available only with M10 Main ports, CL400-CN400-SC380 shats and without internal check valves)	•
DH0	Heavy duty (available only with M10 Main ports, CL400-CN400-SC380 shats and without internal check valves) + High Pressure Seal	•
TC7	Tachometer with sensor arrangement (available only with C4 flange and M10 main ports and C4 flange and M10 main ports)	•
TC8	Tachometer with sensor with 2 metres cable (available only with C4 flange and M10 main ports and C4 flange and M10 main ports)	•
FD0	Brake and Drain Ports 1/8 G	_

13	
	Painting
ХХ	Not painted
01	Black Painted RAL 9005
21	Blue Painted RAL 5021

 $^{\scriptscriptstyle (1)}$ It is possible to combine the flushing valves only with VAF 10 - D valve.

Available

- Not Available

Click **DANA** button to return to section index

DC5B1A1_0000000R2 - 03/2024

Click ${\it i}$ button to return to main index

Version

F

•

_

-

-

-

-

•

W

ullet

_

-

-

-

-

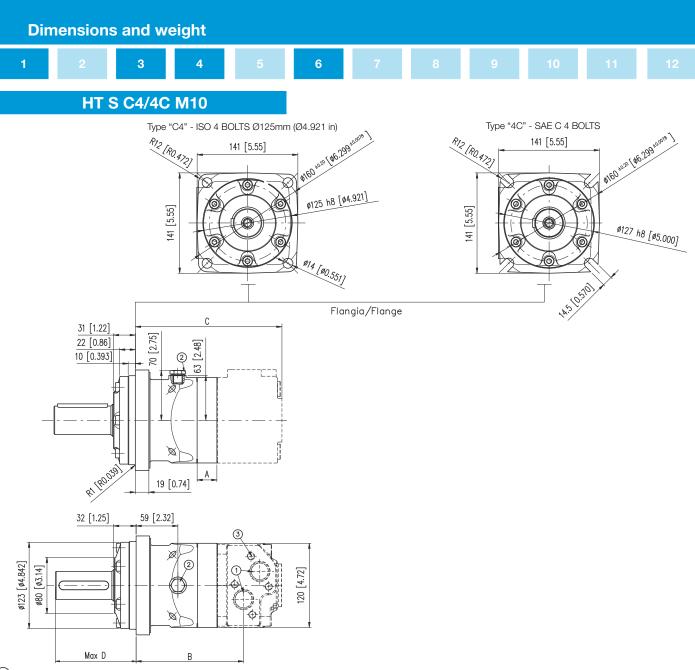
-

С

ullet

_

-


-

-

-

-

(1) Main ports

2 1/4 G (BSPP) drain port thread depth 12 mm [0.472 in] (With C4 flange version)

③ M10 hole (With M10 main ports version)

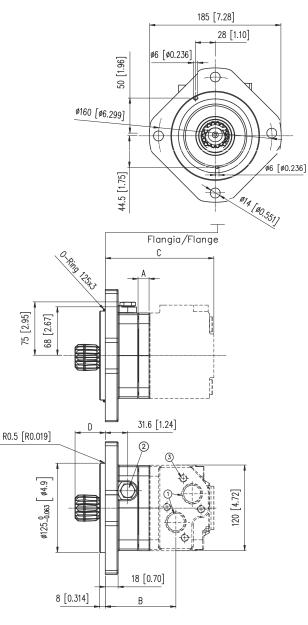
Displ. cm³/giro [in³/rev]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]	500 [30.5]
A	17	22	28.2	37.5	48	62
mm [in]	[0.67]	[0.87]	[1.11]	[1.48]	[1.89]	[2.44]
B	140	145	153.2	160.5	171	185
mm [in]	[5.51]	[5.71]	[6.03]	[6.32]	[6.73]	[7.28]
C	193.6	198.6		214.1	224.6	238.6
mm [in]	[7.62]	[7.82]		[8.43]	[8.84]	[9.39]
Weight	20	20.5	21	22	23	24
kg [lb]	[44]	[45.1]	[46.2]	[48.4]	[50.6]	[52.8]
SHAFT	CL400		C3800	CN400		SC380
D mm [in]	113.8 [4.48]		91.2 [3.59]	113.6 [4.47]		113.7 [4.47]

Click \dot{l} button to return to main index

Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

노


G

13

^{9/16 - 18} UNF drain port thread depth 13 mm [0.511 in] (With 4C flange version)

HT C C4/CS M10

6

Type "C4-CS" - ISO 4 BOLTS Ø125mm (Ø4.921 in)

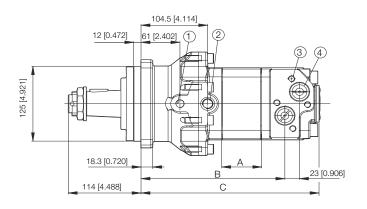
1 Main ports

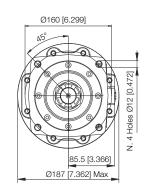
 $\overline{(2)}$ 1/4 G (BSPP) drain port thread depth 14 mm [0.551 in] (With C4 flange version)

9/16 - 18 UNF drain port thread depth 14 mm [0.551 in] (With CS flange version)

③ M10 hole (With M10 main ports version)

Displ. cm³/giro [in³/rev]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]	500 [30.5]
A	17 [0.67]	22	28.2	37.5	48	62
mm [in]		[0.87]	[1.11]	[1.48]	[1.89]	[2.44]
B	99.5	104.5	110.7	120	130.5	144.5
mm [in]	[3.92]	[4.11]	[4.36]	[4.72]	[5.14]	[5.69]
C	154	159	165.2	174.5	185	199
mm [in]	[6.06]	[6.26]	[6.50]	[6.87]	[7.28]	[7.83]
D	45	45	45	45	45	45
mm [in]	[1.77]	[1.77]	[1.77]	[1.77]	[1.77]	[1.77]
Weight	14.5	14.75	15	15.3	15.78	16.3
kg [lb]	[31.9]	[32.5]	[33]	[33.8]	[34.8]	[36]

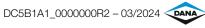

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

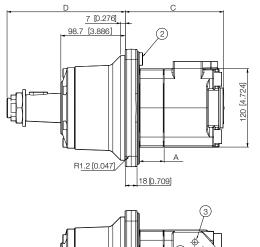

Click $\boldsymbol{\dot{l}}$ button to return to main index

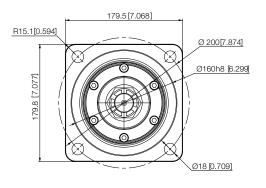
1) Brake release port G 1/4 -12 mm [0.47] deep

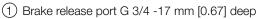
Drain connection G 3/8 -14 mm [0.55] deep

2 Drain connection G 3/8 -14
 3 M10 - 10 mm [0.39] deep


(4) G 3/4 - 17 mm [0.67] deep


Displ. cm ³ /giro [in ³ /rev]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]	500 [30.5]
A	17	22	28.2	37.5	48	62
mm [in]	[0.67]	[0.87]	[1.11]	[1.48]	[1.89]	[2.44]
B	180	185	191.2	200.5	211	225
mm [in]	[7.09]	[7.28]	[7.53]	[7.89]	[8.31]	[8.86]
C	233.6	225.6	244.8	254.1	264.6	278.6
mm [in]	[9.20]	[8.88]	[9.64]	[10]	[10.42]	[10.97]
Weight	25,5	25,8	26,1	26,3	27,3	28,2
kg [lb]	[56,22]	[56,88]	[57,54]	[57,98]	[60,19]	[62,17]


SHAFT	CL400	C3800	CN400	SC380
D (mm)	113.8	91.2	113.6	113.7
[in]	[4.48]	[3.59]	[4.47]	[4.47]


Click **DANA** button to return to section index

В

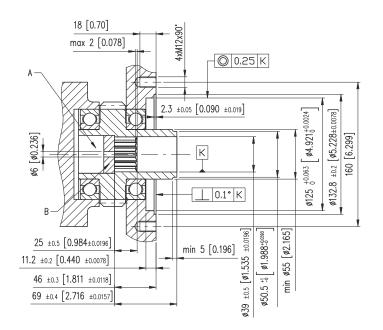
(2) Drain connection G 1/4 -12 mm [0.47] deep
(3) M10 - 10 mm [0.39] deep

G

Ξ	Displ. cm³/giro [in³/rev]	160 [9.7]	200 [12.2]	250 [15.2]	315 [19.2]	400 [24.4]	500 [30.5]
	A	17	22	28.2	37.5	48	62
	mm [in]	[0.67]	[0.87]	[1.11]	[1.48]	[1.89]	[2.44]
	B	75.5	80.5	88.7	96	106.5	120.5
	mm [in]	[2.97]	[3.17]	[3.49]	[3.78]	[4.19]	[4.74]
	C	129.1	134.1	142.3	149.6	160.1	174.1
	mm [in]	[5.08]	[5.28]	[5.60]	[5.89]	[6.30]	[6.80]
	Weight	21.2	21.7	22.2	23.2	24.2	25.2
	kg [lb]	[46.6]	[47.8]	[48.9]	[51.0]	[53.2]	[55.4]

SHAFT	CN400
D (mm)	178.1
[in]	[7.012]

Click **DANA** button to return to section index



Click \dot{l} button to return to main index

Т

- A: Oil circulation hole
- B: Hardened stop plate

SR Di

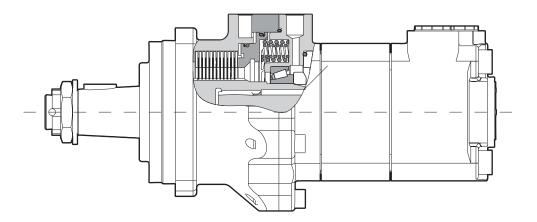
Material:

NiCr steel with case hardening, induction hardening and tempering treatment or with hardness of 58 HRC.

Internal involute spline Standard ANS B92.1 - 1970 classe 5 (corrected m · x = 1)						
Diametral Pich		12/24				
Number of theeeth	Z	16				
Pich diameter	Dp	33.866				
Pressure angle		30°				
Module	m	2.1166				
Minor diameter	Di	32.15 ^{+0.25} 0				
Major diameter	De	38.4 ^{+0.25}				
Max measurament between pins*	Lr	26.9 ^{+0.15} 0				
Pins diameter	Dr	4.834 h5				
* Finished dimensions (when hardened)						

Drain line:

A drain line must be used when the return line pressure exceed the permissible pressure in the attachesd component. The drain line can be connected at two different points:


1) At the motor drain connection.

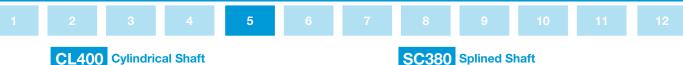
2) At the drain connection of the attached component.

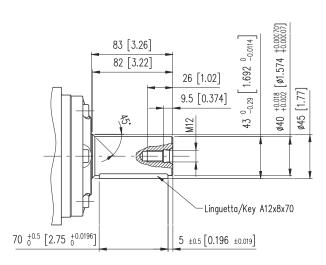
Click \dot{l} button to return to main index

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

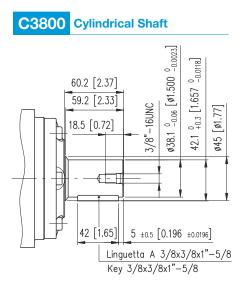
Minimum brake static torque	142 daNm [1047 lb.ft]
Starting release pressure	30 bar [435 psi]
Full release pressure	35 bar [508 psi]
Max pressure drain line	5 bar [73 psi]
Max pressure in brake line	280 bar [4060 psi]

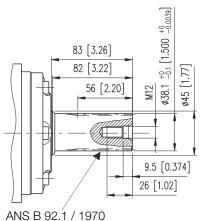
The brakes built into F version motors are multidisc pressure released ones for static operation. With no pressure from the pump to the motor, a set of springs will push the discs one against the other, hence the motor shaft will not be allowed to rotate unless the shaft itself is driven with a torque widely exceeding the max. static torque of the brake.


By sending pressure to the motor a shuttle valve (to be included in the system) will send pressure to the brake, overcome the resistance of the springs and release the brake hence allowing the start of the motor. Wheel motors require some care in the engineering of the machine.

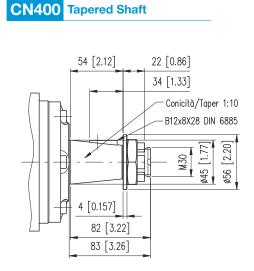

The major aspects to consider are:

- Hub and motor shaft tapers must be perfectly matching, in order to avoid excessive key stress, which can occur in case of bottoming of shaft tip washer and nut at the end of the thread.
- A proper service factor should be considered in case of shocks to the shaft (eg. With the machine travelling on very uneven soil) stop has been reached.

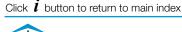

Click $\boldsymbol{\dot{l}}$ button to return to main index

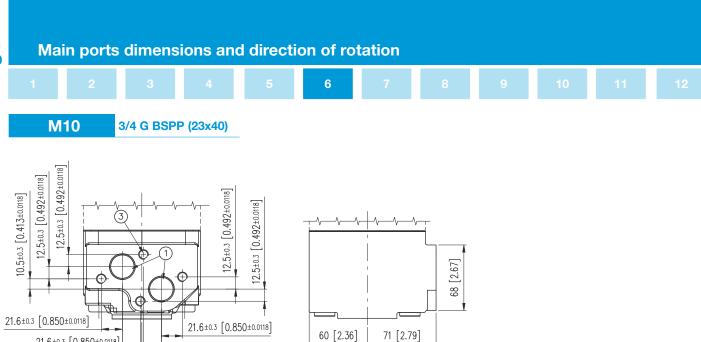


Max. admissible Torque Cont. 1220 Nm [899.14 lbf·ft]


Max. admissible Torque Cont. 1220 Nm [899.14 lbf·ft]

SC380 Splined Shaft


12/24" D.P. Z=17 Flat root classe 5


Max. admissible Torque Cont. 1220 Nm [899.14 lbf·ft]

Max. admissible Torque Cont. 1220 Nm [899.14 lbf·ft] G

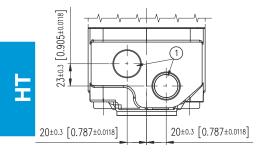
19

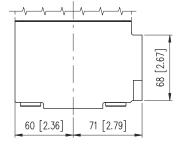
1) N.2 3/4 G (BSPP) main ports thread depth 17 mm [0.66 in] 3) N.4 M10 hole thread depth 12 mm [0.472 in]

S Version

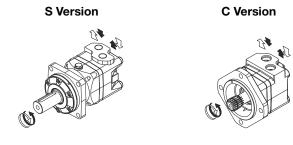
21.6±0.3 [0.850±0.0118]

20±0.3 [0.787±0.0118]

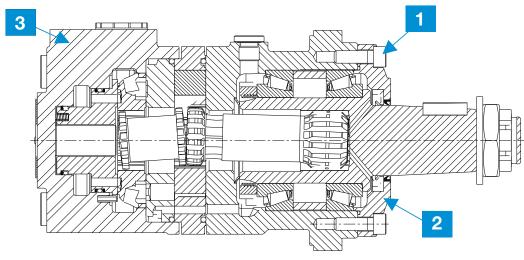

C Version

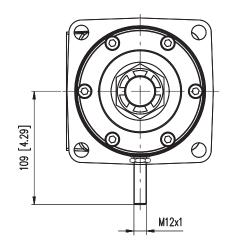


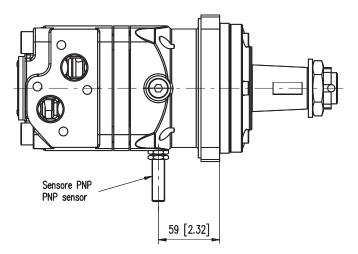
21.6±0.3 [0.850±0.0118]

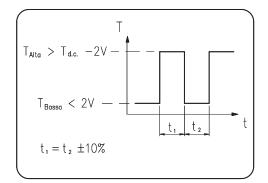

20±0.3 [0.787±0.0118]

1) N.2 1"1/16 - 12 UN main ports thread depth 20 mm [0.78 in]

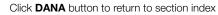



Compared to the standard version, the heavy duty has the following differences:


- 1) The screw in the seal cover are fitted with thread locker toprevent the screws being loosened by vibration.
- 2) Seal cover with reinforced material.
- 3) The check valves have been omitted because a drain line is always used in applications where operating conditions are severe.

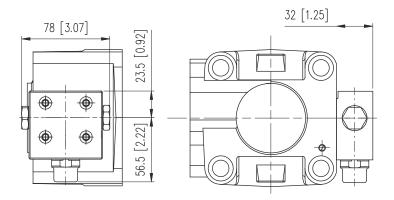


Note: A drain line must always be used because the motors have no built-in check valves



Output signal

Number of pulses per revolution = 42Inductive principle Ouput current PNP Voltage 10-65 V d.c. Max load 300 mA Max frequency 1200 Hz Temperature range -25C +85C Enclosure IP 67



G

23

SPECIAL COVER FOR FLUSHING VALVE

To mount the flushing valve on motors, it is necessary to use a special cover. This is only possible with the "M10-S10" main ports. If it is necessary to assembly the flushing valve on motors, to specify in the purchase order the valves type 06 - 09 - 15 - 21 (See position 10 of ordering code).

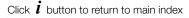
For more informations on the Flushing valve, see the Valves and Accessories section or Service Bulletin - 05-0082-A04

Click **DANA** button to return to section index

Click DANA button to return to section index

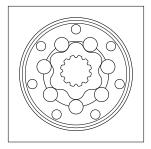
DC5B1A1_000000R2 - 03/2024

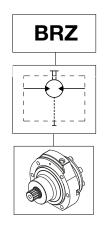
Click ${m i}$ button to return to main index

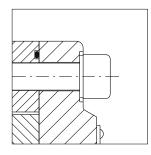


BRZ Orbital Motors

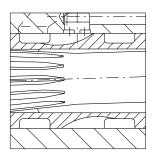
H 1


Motor Features	H2
Technical Specifications	H3
Ordering Code	H4
Pressure Data	H5
Max. Permissible Shaft Pression	H5
Dimensions and Weight	H6
Options	H7
Valve - Dimensions and Weight	H8
Manifold - Dimensions and Weight	H9

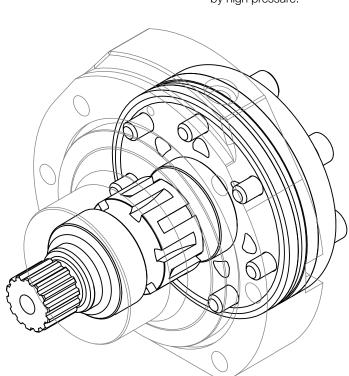



н

2



High-performance roller for improved efficiency and life.



High resistance stainless steel screws capable of withstanding the stress induced by high pressure.

Spool valve integral to the output shaft of new design features optimizing clearance geometry and so minimizing the oil slippage.

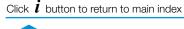
SHORT MOTOR FOR GEAR BOXES

BRZ - Orbital motor with roller design and spool valve distributor. Motion control valve and disengagment brake port as optional. Available with displacement from 50 up to 400 cm³/giro [from 3.05 up to 24.4 in³/rev and power up to 13 kW [17.4 hp].

- Versions:
 BRZV: Valves version motor.
- Optional valves and accessories:
 VCT11-SF: Standard motion control valve.
 VCT11-AF: Motion control valve with disengagment brake port.
 CMZ: Flangeable manifold.

Click **DANA** button to return to section index

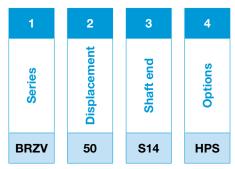
Click $m{i}$ button to return to main index


Technical specifications

Motor	Displacement cm ³ /rev [in ³ /rev]	pr	x. input essure ar [psi]	Max. differential pressure bar [psi]		Max. torque		Max. flow		Max. speed		Max. power kW [hp]	
BRZ 50	51.6 [3.14]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	103 [75.9] 126 [92.8]	Cont Int ¹⁾	40 [10.6] 50 [13.2]	Cont Int ¹⁾	775 969	Cont Int ¹⁾	6.8 [9.1] 8.4 [11.2]
BRZ 65	64.9 [3.95]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	150 [2175] 185 [2682] 225 [3262]	Cont Int ¹⁾	140 [103.1] 166 [122.3]	Cont Int ¹⁾	50 [13.2] 60 [15.9]	Cont Int ¹⁾	770 924	Cont Int ¹⁾	9.2 [12.3] 10.6 [14.2]
BRZ 80	80.4 [4.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	197 [145.1] 218 [160.6]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	746 933	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BRZ 100	100 [6.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	237 [174.6] 277 [204.1]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	600 750	Cont Int ¹⁾	13 [17.4] 15 [20.1]
BRZ 130	125.7 [7.66]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾	300 [221.1] 340 [250.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	477 597	Cont Int ¹⁾	12.5 [16.8] 14.5 [19.4]
BRZ 160	160 [9.76]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	140 [2030] 175 [2540] 225 [3262]	Cont Int ¹⁾	296 [218.1] 375 [276.3]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	375 469	Cont Int ¹⁾	10 [13.4] 12.5 [16.8]
BRZ 200	200 [12.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	115 [1667] 140 [2030] 225 [3262]	Cont Int ¹⁾	297 [218.8] 380 [280]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	300 375	Cont Int ¹⁾	8.5 [11] 10 [13.4]
BRZ 250	250 [15.2]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	90 [1305] 120 [1740] 225 [3262]	Cont Int ¹⁾	297 [218.8] 377 [277.8]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	240 300	Cont Int ¹⁾	7.1 [9.5] 8.5 [11]
BRZ 315	314.5 [19.1]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	70 [1020] 100 [1450] 210 [3045]	Cont Int ¹⁾	300 [221.1] 420 [309.5]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	191 238	Cont Int ¹⁾	5 [6.7] 6.6 [8.8]
BRZ 400	393 [23.9]	Cont Int ¹⁾ Peak ²⁾	175 [2537] 200 [2900] 225 [3262]	Cont Int ¹⁾ Peak ²⁾	55 [800] 85 [1230] 175 [2537]	Cont Int ¹⁾	292 [215.2] 425 [313.2]	Cont Int ¹⁾	60 [15.9] 75 [19.8]	Cont Int ¹⁾	153 191	Cont Int ¹⁾	4.1 [5.4] 6.1 [8.1]

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.


As regards not specified technical features, please refer to the section of the catalogue that concerns BR motors.

Click **DANA** button to return to section index

The following alphanumeric digits system has been developed to identify all of the configuration options for the BRZ motors. Use the model code below to specify the desired features. **All alphanumeric digits system of the code must be present when ordering.** We recommend to carefully read the catalogue before filling the ordering code.

1	
	Series
BRZV	Orbital motor

2	
	Displacement
50	51.6 cm³/giro [3.14 in³/rev]
65	64.9 cm³/giro [3.95 in³/rev]
80	80.4 cm³/giro [4.9 in³/rev]
100	100 cm ³ /giro[6.1 in ³ /rev]"
130	125.7 cm³/giro [7.66 in³/rev]
160	160 cm³/giro[9.76 in³/rev]"
200	200 cm³/giro[12.2 in³/rev]
250	250 cm³/giro[15.2 in³/rev]
315	314.5 cm³/giro [19.1 in³/rev]
400	393 cm³/giro[23.9 in³/rev]

3

	Shaft End
S14	Standard B25x22 DIN 5482 Splined Version

4	
	Options
HPS	High pressure seal
TAC-U	Tachometer + high pressure seal

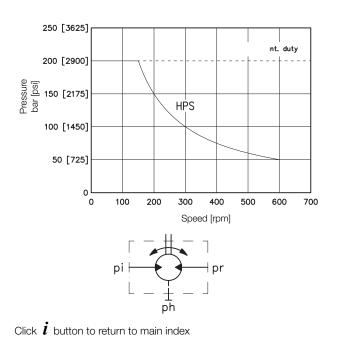
Valves and manifold ordering code

VALVE / MANIFOLD	
	ì
VCT 11 SF Motion control valve without disengagment brake port - Metric version Valve	
VCT11 AF Motion control valve with disengagment brake port - Metric version	
VCT 11 SF SAE Motion control valve without disengagment brake port - SAE version	
VCT11 AF SAE Motion control valve with disengagment brake port - SAE version	
CMZ SF Flangeable manifold without disengagment brake	
CMZ AF Flangeable manifold with disengagment brake	

1)

¹⁾ To be ordered separately to the motor. Click DANA button to return to section index

Click \dot{l} button to return to main index


Motor	Max back pressure with drain line bar [psi]		Max starting pressure in unloaded conditions bar [psi]	Min starting torque Nm [lbf·ft]					
BRZ 50	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	A p max. At max. p	Cont Int ¹⁾	75[55.3] 95[70.0]			
BRZ 65	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	A p max. At max. p	Cont Int ¹⁾	120[88.4] 140[103.1]			
BRZ 80	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	A p max. At max. p	Cont Int ¹⁾	160[118] 180[133]			
BRZ 100	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	10 [145]	A p max. At max. p	Cont Int ¹⁾	200[147] 225[166]			
BRZ 130	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	9 [131]	A p max. At max. p	Cont Int ¹⁾	255[188] 290[214]			
BRZ 160	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	7 [102]	A p max. At max. p	Cont Int ¹⁾	250[184] 300[221]			
BRZ 200	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	A p max. At max. p	Cont Int ¹⁾	250[184] 320[236]			
BRZ 250	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	A p max. At max. p	Cont Int ¹⁾	250[184] 310[228]			
BRZ 315	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	A p max. At max. p	Cont Int ¹⁾	250[184] 300[221]			
BRZ 400	Cont Int ¹⁾ Peak ²⁾	175 [2538] 200 [2900] 225 [3263]	5 [72.5]	A p max. At max. p	Cont Int ¹⁾	250[184] 320[236]			

¹⁾ Intermittent duty must not exceed 10% each minute.

²⁾ Peak duty must not exceed 1% each minute.

As regards not specified technical features, please refer to the section of the catalogue that concerns BR motors..

Max. Permissible Shaft Pression

Motors are supplied in HPS seal version (HPS) BRZ motors don't feature build-in check valves.

The (ph) pressure on the seal is the average between inlet and outlet pressure. If ph exceeds rated figures (see graph on side), the drain line must be connected.

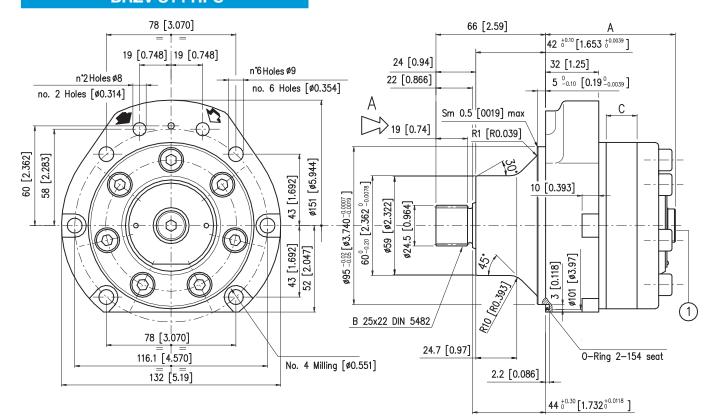
$$=\frac{pi + pr}{2}$$
 [bar]

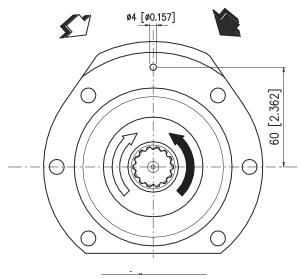
ph = housing pressure pi = inlet. pressure pr = outlet pressure

Ph

Click **DANA** button to return to section index

BRZ


н


6

BRZV S14 HPS

3

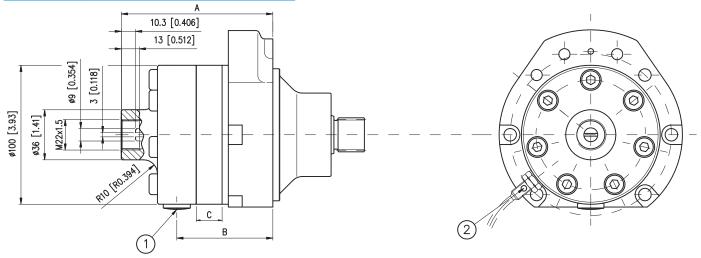
4

View from A

		BRZV 50	BRZV 65	BRZV 80	BRZV 100	BRZV 130	BRZV 160	BRZV 200	BRZV 250	BRZV 315	BRZV 400
Α	mm	67.5	69.8	72.5	75.9	80.3	86.3	93.3	102	113.3	126.9
	[in]	[2.65]	[2.74]	[2.85]	[2.98]	[3.16]	3.39]	[3.67]	[4.01]	[4.46]	[4.99]
С	mm	9	11.3	14	17.4	21.8	27.8	34.8	43.5	54.8	68.38
	[in]	[0.354]	[0.444]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]
Weight	kg	5.6	5.8	5.9	6.2	6.5	6.8	7.1	7.6	8.3	9.5
	lb]	[12.3]	[12.7]	[13.0]	[13.7]	14.3]	[15.0]	[15.6]	[16.8]	[18.3]	[20.9]

Click $\ensuremath{\textbf{DANA}}$ button to return to section index

Click ${m l}$ button to return to main index



(1) 1/4 G (BSPP) motor drain thread depth 15 mm [0.59 in]

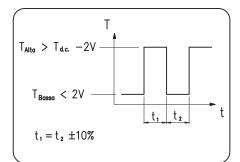
4

Options

① 1/4 G (BSPP) motor drain port thread depth 12 mm [0.472 in]
 ② Sensor connection M8x1

WARNING:

Tacho shaft has a 6 times higher revolution speed than the motor shaft and opposite direction of rotation.


NOTE:

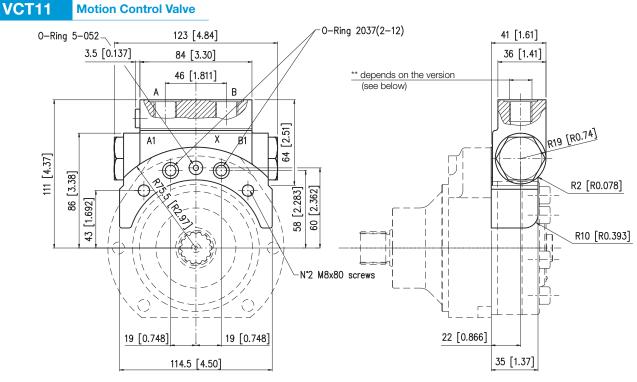
Axial or radial load on tacho shaft must be avoided. Max torque on tacho 1 Nm [0.737 lbf·ft]. The electronic sensor is not supplied: if required, please state it clearly on order form. Max pressure admissible on the shaft seal with closed drain port 25 bar [362 psi].

		BRZV 50	BRZV 65	BRZV 80	BRZV 100	BRZV 130	BRZV 160	BRZV 200	BRZV 250	BRZV 315	BRZV 400
Α	mm	100	102.3	105	108.4	112.8	118.8	125.8	134.5	145.8	159.4
	[in]	[3.93]	[4.02]	[4.13]	[4.26]	[4.44]	[4.67]	[4.95]	[5.29]	[5.74]	[6.27]
В	mm	60.4	62.7	65.4	68.8	73.2	79.2	86.2	94.9	106.2	119.8
	[in]	[2.37]	[2.46]	[2.57]	[2.70]	[2.88]	[3.11]	[3.39]	[3.73]	[4.18]	[4.71]
С	mm	9	11.3	14	17.4	21.8	27.8	34.8	43.5	54.8	68.38
	[in]	[0.354]	[0.444]	[0.551]	[0.68]	[0.85]	[1.09]	[1.37]	[1.71]	[2.15]	[2.69]
Weight	kg	6.1	6.3	6.4	6.7	7.0	7.3	7.6	8.1	8.8	9.5
	[lb]	[13.4]	[13.8]	[14.1]	[14.8]	[15.4]	[16.1]	[16.8]	[17.9]	[19.4]	[20.9]

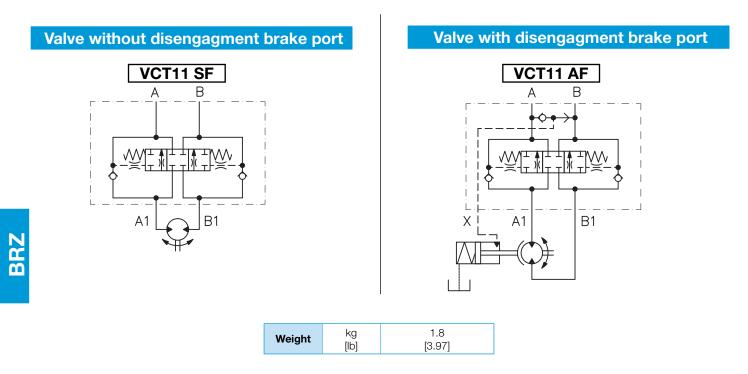
Electronic sensor technical features

Output signal electronic tacho

Number of pulses per revolution = 90 Inductive principle Ouput current PNP Voltage 10-65 V d.c. Max load 300 mA Max frequency 10000 Hz Temperature range -25C +85C Enclosure IP 67 Available versions:


Sensor with 2 metres three wires cable (cod.424.0050.0000) Sensor with binder plug connection (cod.424.0060.0000) + binder connecting plug with 5 metres three wires cable (cod.424.0080.0000)

Click \boldsymbol{i} button to return to main index

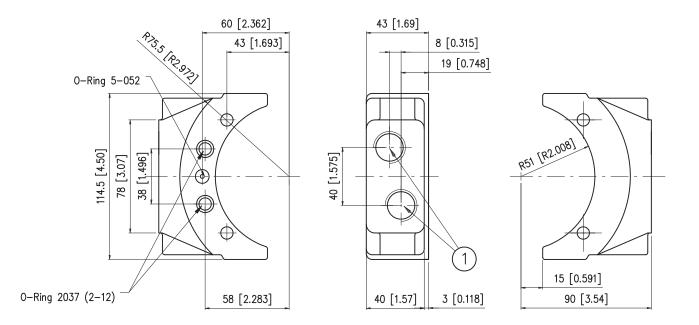


Click $\ensuremath{\text{DANA}}$ button to return to section index

** METRIC VERSION 3/8 G (BSPP) thread depth 15 mm [0.59 in] SAE VERSION 3/4-16 UNF thread depth 15 mm [0.59 in]

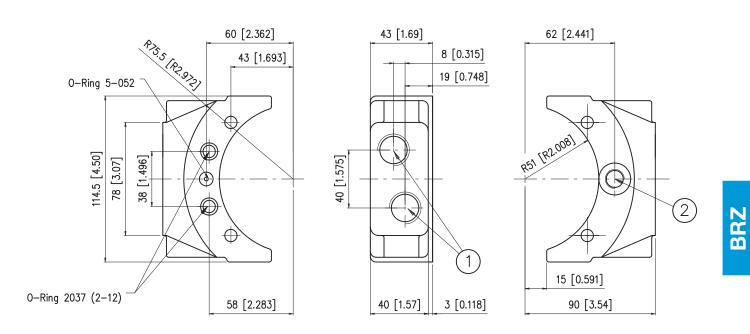
Spool opening min pressure: 11 bar Full spool opening pressure: 15 bar

Click DANA button to return to section index



DC5B1A1_000000R2 - 03/2024

Click \dot{l} button to return to main index



CMZ SF Manifold without brake opening

(1) N° 2 1/2 G (BSPP) main ports thread depth 19 mm [0.74 in]

CMZ AF Manifold with brake opening

(1) N° 2 1/2 G (BSPP) main ports thread depth 19 mm [0.74 in] 2 1/4 G (BSPP) drain port thread depth 13 mm [0511 in]

Click DANA button to return to section index

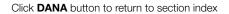
Click DANA button to return to section index

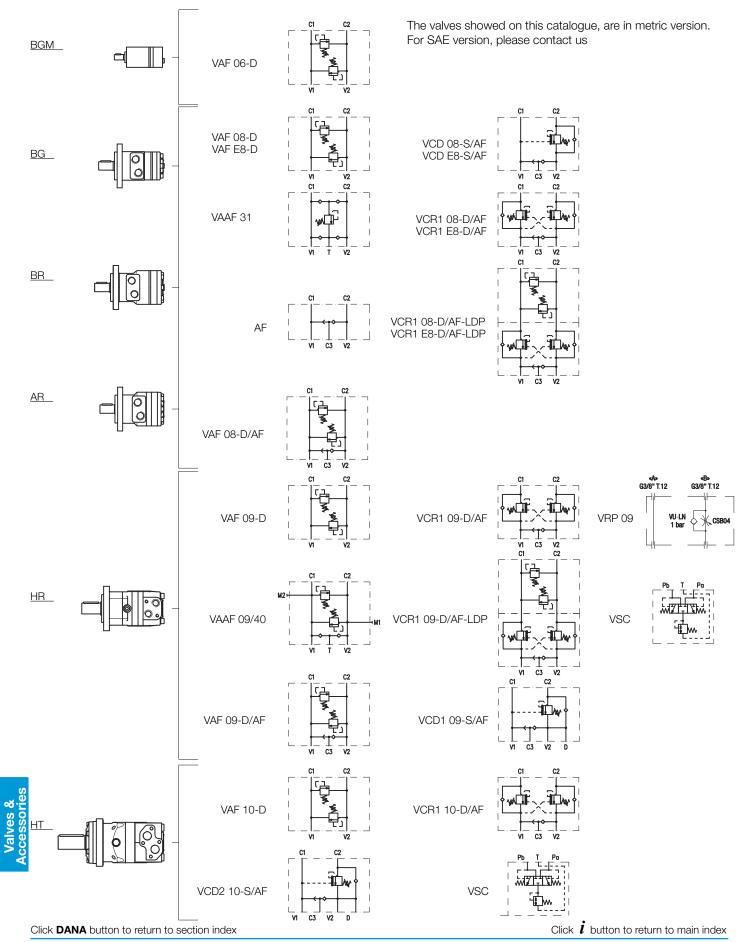
DC5B1A1_000000R2 - 03/2024

Click ${m i}$ button to return to main index

VALVES & ACCESSORIES

Page

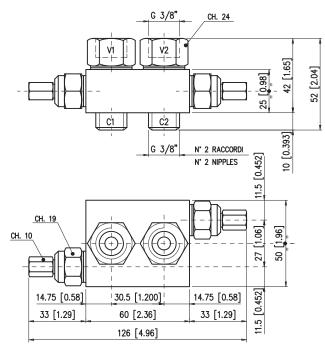

1

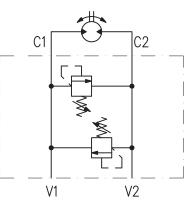

	ф
Valve Features	12
VAF 06-D	13
VAF 08-D	13
VAF E8-D	14
VAF 09-D	14
VAAF - 31	15
VAFF 09/40	15
AF	I 6
VAF 08 - D/AF	I 6
VAF 09 - D/AF	17
VCD 08 - S/AF	17
VCD E8 - S/AF	18
VCD1 09 - S/AF	18
VCR1 08 - D/AF	19

Page

	ч [,]
VCR1 08 - D/AF - LDP	19
VCR1 E8 - D/AF	l10
VCR1 E8 - D/AF - LDP	l10
VCR1 09 - D/AF	l11
VCR1 09 - D/AF - LDP	I11
VAF 10 - D	l12
VCD2 10 - S/AF	l12
VCR1 10 - D/AF	I13
VSC	I13
VRP09	I 14
VCT11	I 14
How to select the best pilot ratio for overcentre valves	l15
BFL 1 - Manifold (Base block)	l16
Bushings	l16

DANA DC5B1A1_000000R2 - 03/2024


I 2


VAF 06-D

Pressure relief valve, flangeable on **BGM** series hydraulic motors which protects the motor from excessive peak pressure, especially at start, stop and inversion. Double cartridge (VAF 06-D) as standard.

For shaft rotation in one direction only, a single cartridge version (VAF 06-S) is available as well. If not requested, valves are supplied not set.

Any setting requirement must be specified at ordering by stating pressure and flow. Setting range between 50 and 150 bar [725 and 2175 psi].

Max working pressure	250 bar [3625 psi]
Max flow	20 l/min [5.28 U.S. gpm]
Weight	0.2 kg [0.4 lb]

VAF 06 - S (50÷150 bar / 725÷2175 psi) Code: 521.3025.0111 VAF 06 - D (50÷150 bar / 725÷2175 psi) Code: 521.3025.0121

VAF 08 - D

Pressure relief valve, flangeable on AR, BR, BG series motors which protects the motor from excessive peak pressure, particularly at start, stop and inversion.

Double cartridge (VAF 08-D) as standard.

For shaft rotation in one direction only, a single cartridge version (VAF 08-S) is available as well. If not requested, valves are supplied not set.

Any setting requirement must be specified at ordering by stating pressure and flow. Two setting ranges are available:

70 to 200 bar [1015 to 2900 psi] as standard and 30 to 70 bar [435 to 1015 psi] as optional.

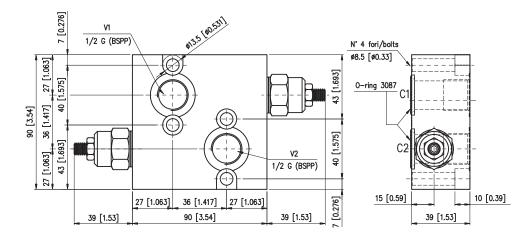
Click \boldsymbol{l} button to return to main index

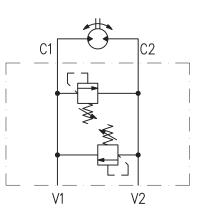
VAF 08 - S (30+70 bar / 435+1015 psi) Code: 521.3030.1111 VAF 08 - D (30÷70 bar / 435÷1015 psi) Code: 521.3030.1121 VAF 08 - S (70÷200 bar / 1015÷2900 psi) Code: 521.3030.0111 VAF 08 - D (70+200 bar / 1015+2900 psi) Code: 521.3030.0121

CH. 27 0.59 15 [0.59] [0.82] C1 C2 V2 50.5 [1.98] 29.5 [1.16] 21 [2.55] 65 [0.570] c2 сi 14.5 [0.570] G 1/2" G 1/2" 4.5 0.62 CH. 24 CH. 13 V1 ٧2 9 26 [1.02] 8 [0.314] [2.36] 28 [1.09] 8 26 [1.02] 16 [0.62] 40 [1.574] 20 [0.787] 20 [0.787] 38 [1.49] 38 [1.49] 80 [3.14] 156 [6.14] Max working 250 bar pressure [3625 psi] 50 l/min Max flow [13.2 U.S. gpm] 0.8 kg

Weight

[1.76 lb]


Accessories


Valves

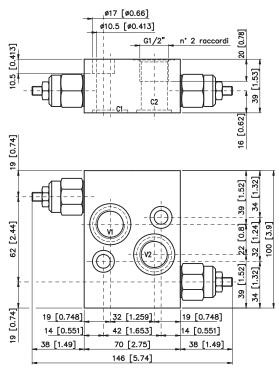
VAF E8 - D

Pressure relief valve, flangeable on **BR E, BG E** series motors which protects the motor from excessive peak pressure, particularly at start, stop and inversion. If not requested, valves are supplied not set. Any setting requirement must be specified at ordering by stating pressure and flow.

Two setting ranges are available: 50 to 130 bar [725 to 1885 psi] as standard and 100 to 200 bar [1450 to 2900 psi] as optional.

Max working pressure	250 bar [3625 psi]
Max flow	50 l/min [13.2 U.S. gpm]
Weight	0.8 kg [1.76 lb]

Warning: minimum quantity for order 20 pieces


VAF E8 - D (100÷200 bar / 1450÷2900 psi) Code: SPO00000206 VAF E8 - D (50÷130 bar / 725÷1885 psi) Code: SPO00000207

VAF 09 - D

Pressure relief valve flangeable on **HR** series motors which protects the motor from excessive peak pressare build-up particularly at start, stop and inversion. If not requested, valves are supplied not set.

Any settino requirement must be specified at ordering by stating pressure and flow.

Two setting ranges are available: 100 to 200 bar [1450 to 2900 psi] as standard and 50 to 100 bar [725 to 1450 psi] as optional.

VAF 09 - D (100÷200 bar / 1450÷2900 psi) Code: SPO00000209 VAF 09 - D (50÷100 bar / 725÷1450 psi) Code: SPO00000210

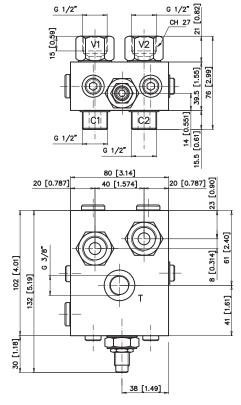
Click **DANA** button to return to section index

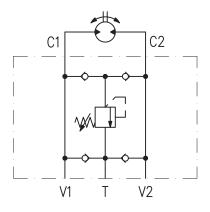
Valves &

DC5B1A1_000000R2 - 03/2024

Max working pressure	250 bar [3625 psi]
Max flow	50 l/min [13.2 U.S. gpm]
Weight	0.8 kg [1.76 lb]

Click \boldsymbol{i} button to return to main index



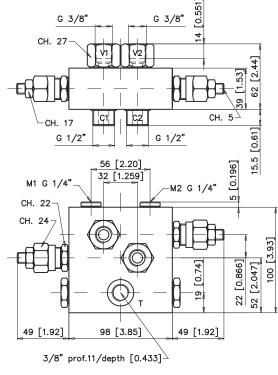

VAAF - 31

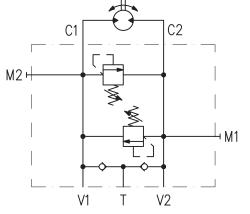
Anticavitation and antishock valve, flangeable on AR, BR, BG motors, which protects from excessive peak pressure when driving a high inertia mass, as well as protects from cavitation at stop and inversion.

If not requested, valves are supplied not set.

The standard settino range is 50÷130 bar [725÷1885 psi] (100÷250 bar [1450÷3625 psi] on option).

Max working pressure	250 bar [3625 psi]
Max flow	45 l/min [11.88 U.S. gpm]
Weight	1.2 kg [2.64 lb]


VAAF 31 (50÷130 bar / 725÷1885 psi) Code: 521.2030.0114 VAAF 31 (100÷250 bar / 1450÷3625 psi) Code: 521.2030.0115


VAAF 09/40

Anticavitation and antishock valve, flangeable on **HR** motors, that protects from excessive pressure buildup when driving a high inertial mass, as well as protect from cavitation at stop and inversion. Unless otherwise requested, valves are supplied not set.

The setting range is 50÷210 bar [725÷3045 psi]

(pressure increase: 47 bar [681 psi] screw turn).

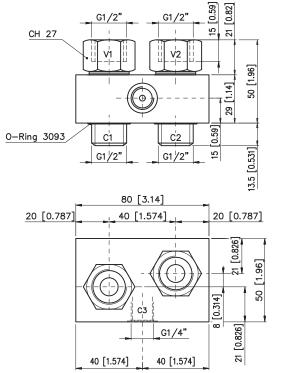
Max working pressure	210 bar [3045 psi]	
Max flow	40 l/min [10.5 U.S. gpm]	
Weight	1.7 kg [3.74 lb]	

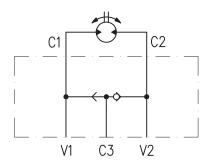
VAAF 09/40 Code: 521.2040.0123

Click \boldsymbol{i} button to return to main index

Click DANA button to return to section index

Accessories


AF


Shuttle-valve flangeable on **AR, BR, BG** motors, which diverts oil under pressure to negative brakes in order to disengage them.

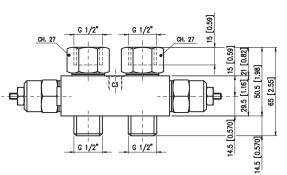
Suitable for ARF brake motors as well as for FP brake.

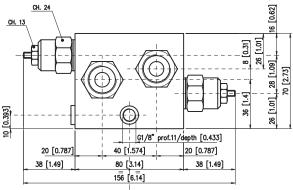
The brakes featured by the ARF are, like the FP brakes, for static use. Hence the AF shuttle valve can be used only for those applications where the brake will not be used as dynamic.

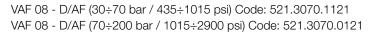
An open centre control valve bank is recommended.

Max working pressure	250 bar [3625 psi]
Max flow	60 l/min [15.8 U.S. gpm]
Weight	0.5 kg [1.10 lb]

AF Code: 521.9010.0000

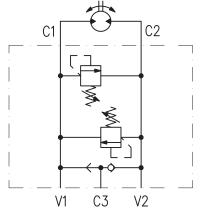

VAF 08 - D/AF


Pressure relief valve with shuttle valve, flangeable on **AR**, **BR**, **BG** series motors which protects the motor from excessive peak pressure particularly at start, stop and inversion.


If not requested, valves are supplied not set.

Any setting requirement must be specified at ordering by stating pressure and flow.

Two setting ranges are available: 70 to 200 bar [1015 to 2900 psi] as standard and 30 to 70 bar [435 to 1015 psi] as optional.

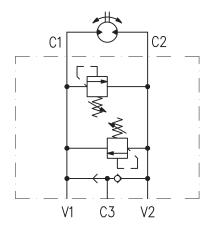


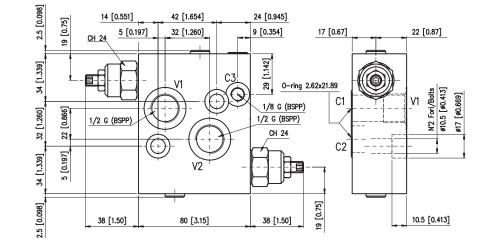
Click DANA button to return to section index

/alves &

Max working pressure	250 bar [3625 psi]
Max flow	50 l/min [13.2 U.S. gpm]
Weight	0.9 kg [1.98 lb]

Click \dot{l} button to return to main index


VAF 09 - D/AF


Pressure relief valve with shuttle valve, flangeable on HR series motors which protects the motor from excessive peak pressure particularly at start, stop and inversion.

If not requested, valves are supplied not set.

Any setting requirement must be specified at ordering by stating pressure and flow.

Setting ranges between 100 to 280 bar [1450 to 4060 psi].

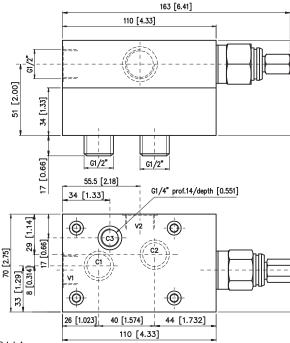
Max working pressure	250 bar [3625 psi]
Max flow	50 l/min [13.2 U.S. gpm]
Weight	0.9 kg [1.98 lb]

VAF 09 - D/AF (100÷280 bar / 1450÷4060 psi) Code: SPO00000211

VCD 08 - S/AF

Single-acting overcentre valve with shuttle valve, flangeable on AR, BR, BG motors.

Usually flanged on winch driving brake motors with pressure released brake to control load lowering and avoid unwanted cceleration. For such application ARF brake motors, as well as FP brakes, are widely


employed. If not specified the valve is supplied

not set. Setting range between 100 and 210 bar [1450 and 3045 psi]. The

standard pilot ratio is 7:1 (3,5:1 on option).

VCD 08 - S/AF (7:1) Code: 521.1060.0114 VCD 08 - S/AF (3.5:1) Code: 521.1060.4114

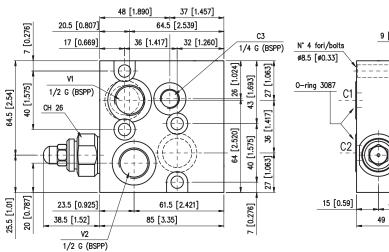
Click \boldsymbol{l} button to return to main index

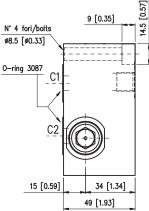
[2.67]

68

30 [1.18]

Pilot ratio	7:1 3.5:1	ې مې
Max working pressure	250 bar [3625 psi]	alves
Max flow	60 l/min [15.8 U.S. gpm]	
Weight	1.7 kg [3.74 lb]	


Click DANA button to return to section index



VCD E8 - S/AF

Single-acting overcentre valve with shuttle valve, flangeable on BR E, BG E motors. Usually flanged on winch driving brake motors with pressure released brake to control load lowering and avoid unwanted cceleration.

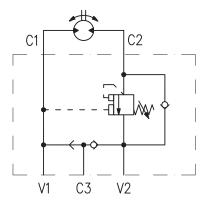
If not specified the valve is supplied not set. Setting range between 100 and 350 bar [1450 and 5075 psi]. The standard pilot ratio is 3.5:1.

Warning: minimum quantity for order 20 pieces VCD E8 - S/AF (3,5:1) Code: SPO00000208

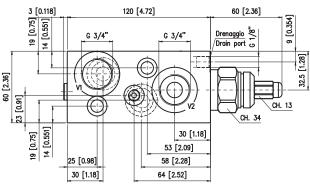
Single acting overcentre valve with shuttle valve meant for HR motors, usually flanged on winch driving brake motors with pressure released brake to control load-lowering and avoid unwanted acceleration.

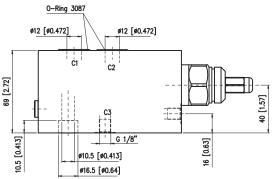
It's widely used also to slow down the travelling of mobile machinery before the static brake engages. It operates, of course, in one direction only. If not specified the valve is supplied not set.

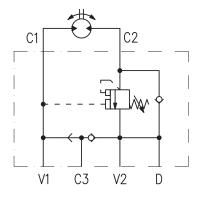
It is possible to use the valve with open centre distributors. Setting range between 100 and


210 bar [1450 and 3045 psi].

VCD1 09 - S/AF (7:1) Code: SPO00000155 VCD1 09 - S/AF (3:1) Code: SPO00000156


Click DANA button to return to section index




DC5B1A1_000000R2 – 03/2024

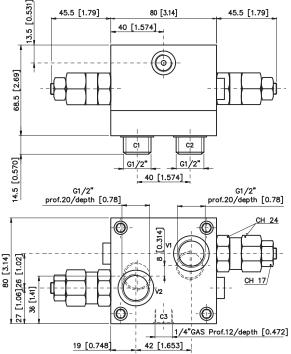
Pilot ratio	3.5:1
Max working pressure	250 bar [3625 psi]
Max flow	50 l/min [13.2 U.S. gpm]
Weight	1.7 kg [3.74 lb]

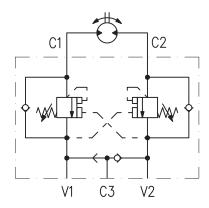
	7:1				
Pilot ratio	3:1				
Max working pressure	250 bar [3625 psi]				
Max flow	75 l/min [19.8 U.S. gpm]				
Weight	1.5 kg [3.3 lb]				

Click \dot{l} button to return to main index

VCR1 08 - D/AF

Double-acting overcentre valve with shuttle valve, flangeable on **AR**, **BR**, **BG** motors.


Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration.


Slew drive control of cranes, aerial platforms, etcetera are common applications too.

For such applications ARF brake motors, as well as FP brakes, are widely employed.

If not specified the valve is supplied not set.

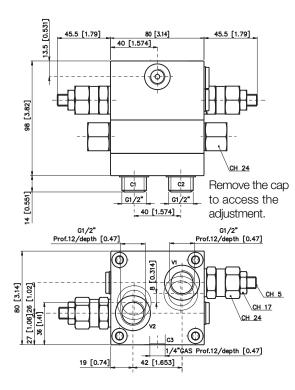
Setting range between 30 and 220 bar [435 and 3190 psi].

q

Pilot ratio	8:1 4.25:1 350 bar [5075 psi]				
Max working pressure					
Max flow	60 l/min [15.8 U.S. gpm]				
Weight	1.8 kg [3.96 lb]				

VCR1 08 - D/AF (4.25:1) Code: 521.2060.1007 VCR1 08 - D/AF (8:1) Code: 521.2061.1007

VCR1 08 - D/AF - LDP


Double-acting overcentre valve with shuttle valve, flangeable on **AR, BR, BG** motors.

Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration. Slew drive control of cranes, aerial platforms, etcetera are common applications too.

When it is employed in hoisting equipment the main relief valve or any anti-shock valve fitted on the hydraulic motor control valve section shall be set at pressure values higher than the VCR1 08 - D/AF - LDP relief valve. If not required the valve is supplied not set.

Setting range between 30 and 220 bar [435 and 3190 psi].

VCR1 08 - D/AF - LDP (8:1) Code: 521.2062.1017 VCR1 08 - D/AF - LDP (4.25:1) Code: 521.2060.1017 Click **i** button to return to main index

Click **DANA** button to return to section index

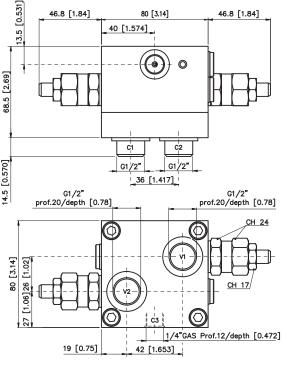
60 l/min

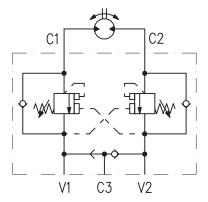
[15.8 U.S. gpm] 2.5 kg

[5.51 lb]

Max flow

Weight


VCR1 E8 - D/AF


Double-acting overcentre valve with shuttle valve, flangeable on **BR E, BG E** motors.

Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration.

Slew drive control of cranes, aerial platforms, etcetera are common applications too.

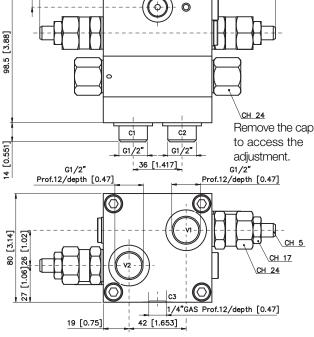
If not specified the valve is supplied not set. Setting range between 30 and 220 bar [435 and 3190 psi].

Pilot ratio	4.25:1				
Max working pressure	350 bar [5075 psi]				
Max flow	60 l/min [15.8 U.S. gpm]				
Weight	1.8 kg [3.96 lb]				

Warning: minimum quantity for order 20 pieces VCR1 E8 - D/AF (4.25:1) Codice/Code: 521.3185.0000

0.531

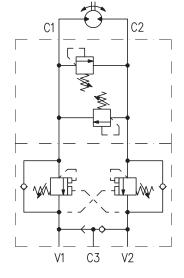
13.5


46.8 [1.84]

VCR1 E8 - D/AF - LDP

Double-acting overcentre valve with shuttle valve, flangeable on **BR E, BG E** motors.

Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration. Slew drive control of cranes, aerial platforms, etcetera are common applications too.


When it is employed in hoisting equipment the main relief valve or any anti-shock valve fitted on the hydraulic motor control valve section shall be set at pressure values higher than the VCR1 E8 - D/AF - LDP relief valve. If not required the valve is supplied not set. Setting range between 30 and 220 bar [435 and 3190 psi].

80 [3.14]

40 [1.574]

46.8 [1.84]

Pilot ratio	4.25:1				
Max working pressure	350 bar [5075 psi]				
Max flow	60 l/min [15.8 U.S. gpm]				
Weight	2.5 kg [5.51 lb]				

Valves & Accessories

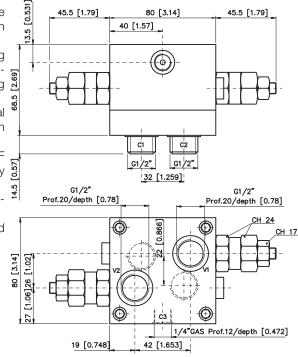
> Warning: minimum quantity for order 20 pieces VCR1 E8 - D/AF - LDP (4.25:1) Code: 521.3190.0000

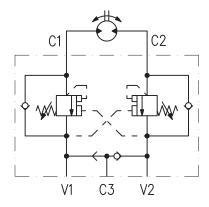
Click **DANA** button to return to section index

DC5B1A1_000000R2 - 03/2024

Click ${\it i}$ button to return to main index

VCR1 09 - D/AF


Double-acting overcentre valve with shuttle valve, flangeable on **HR** motors.


Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration. Slew drive control of cranes, aerial platforms, etcetera are common applications too.

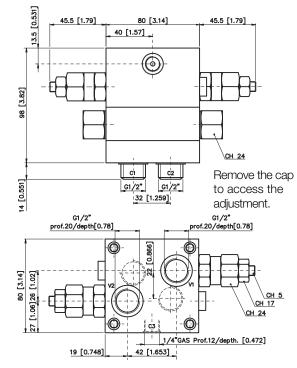
For such applications versions F , and L brake motors, are widely imployed.

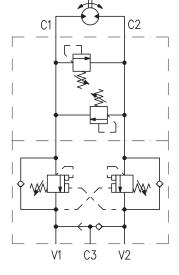
If not specified the valve is supplied not set.

Setting range between 30 and 220 bar [435 and 3190 psi].

Pilot ratio	4.25:1				
Max working pressure	250 bar [3626 psi]				
Max flow	60 l/min [15.8 U.S. gpm]				
Weight	1.8 kg [3.96 lb]				

VCR1 09 - D/AF (4.25:1) Code: 521.2060.1037


VCR1 09 - D/AF - LDP


Double-acting overcentre valve with shuttle valve, flangeable on **HR** motors.

Usually flanged on winch driving brake motors with pressure released brake, to control load lowering and avoid unwanted acceleration Slew drive control of cranes, aerial platforms, etcetera are common applications too. When it is employed in hoisting equipment, the main relief valve or any anti-shock valve fitted on the hydraulic-motor control valve section shall be set at pressare values higher than the VCR1 09-D/AF-LDP relief valve.

If not required the valve is supplied not set.

Setting range between 30 and 220 bar [435 and 3190 psi].

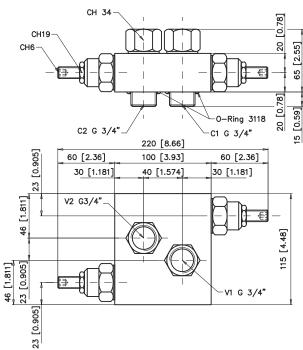
Pilot ratio	4.25:1	å ries
Max working pressure	250 bar [3626 psi]	alves essoi
Max flow	60 l/min [15.8 U.S. gpm]	A A C C C
Weight	2.5 kg [5.51 lb]	

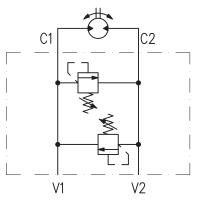
VCR1 09 - D/AF - LDP (4.25:1) Code: 521.2060.1047

Click \boldsymbol{l} button to return to main index

Click **DANA** button to return to section index

12


VAF 10 - D


Pressure relief valve flangeable on HT and HTC series motors which protects the motor from excessive peak of pressure particularly at start, stop and inversion.

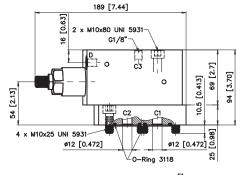
If not requested, valves are supplied not set.

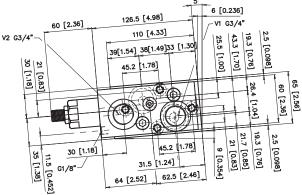
Any setting requirement must be specified at ordering by stating pressure and flow.

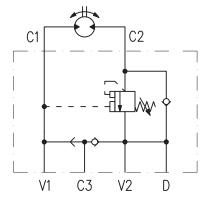
Two setting ranges are available: 100 to 200 bar [1450 to 2900 psi] as standard and 210 to 300 bar [3045 to 4350 psi] as optional.

Max working pressure	250 bar [3625 psi]				
Max flow	100 l/min [26.4 U.S. gpm]				
Weight	1.5 kg [3.30 lb]				

VAF 10 - D (100÷200 bar / 1450÷2900 psi) Code: 521.2080.0100 (Standard) VAF 10 - D (210÷300 bar / 3045÷4350 psi) Code: 521.2080.0101


VCD2 10 - S/AF


Single acting overcentre valve with shuttle valve flangeable on **HT** and **HTC** motors, usually flanged on winch with pressure released brake to control load lowering and avoid unwanted acceleration.


If not specified the valve is supplied not set.

Available setting range: standard between 100 and 350 bar [1450 and 5075 psi]

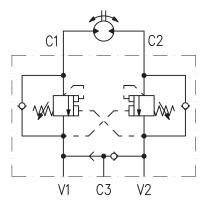
Optional: between 30 and 210 bar [435 and 3045 psi].

Pilot ratio	7:1				
Max working pressure	350 bar [5075 psi]				
Max flow	100 l/min [26.4 U.S. gpm]				
Weight	2.05 kg [4.51 lb]				

VACD2 10 - S/AF (100÷350 bar / 1450÷5075 psi) Code: SP00000192 (Standard) VACD2 10 - S/AF (30÷210 bar / 435÷3045 psi) Code: SP00000193

Click DANA button to return to section index

Valves & Accessories

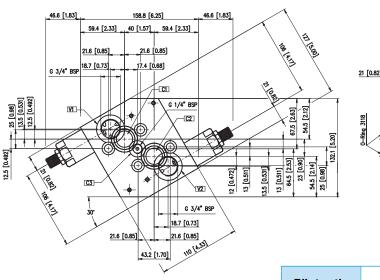

Click $m{i}$ button to return to main index

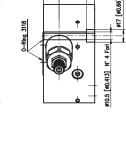
VCR1 10 - D/AF

Double-acting overcentre valve with shuttle valve, flangeable on **HT** and **HTC** motors. Usually flanged on winch with pressure released brake, to control load lowering and avoid unwanted acceleration.

Slew drive control of cranes, aerial platforms, etcetera are common applications too. If not specified the valve is supplied not set. Setting range between 100 and 350 bar [1450 and 5075 psi].

VCR1 - 10 D/AF (7:1) Code: SPO0000212 VCR1 - 10 D/AF (10:1) Code: SPO00000189

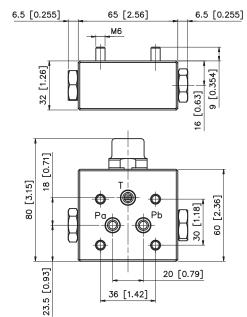

VSC

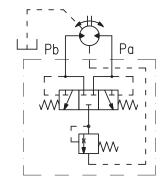

Flushing valve for HR and HT motors used in closed circuit hydrostatic transmissions. Allows an oil cooling action, which is recommended when operating at high speed and power.

The unit is made by a three positions - three way spool valve that allows a small oil flow from the low pressure line of the circuit into the motor casing, then into the tank.

For a correct operation it is necessary to connect the drain port of the motor with the tank. The valve can be mounted only with a dedicated cover on the motor (see motor catalogue).

The shuttle valve can be fitted in following versions:




69 [2.71]

48 [1.88]

11 [0.433]

Pilot ratio	10:1 7:1 250 bar [3626 psi]			
Max working pressure				
Max flow	100 l/min [26.4 U.S. gpm]			
Weight	2.0 kg [4.40 lb]			

Orifice Diameter	യ് ഗ
1.5 mm [0.05 in]	alve
2 mm [0.07 in]	>
2.5 mm [0.09 in]	

Code	Description	Theoretical flow [319 psi]	Orifice Diameter
521.5200.0000	VSC 06F VALVE	6 l/min [1.5 U.S. gpm]	1.5 mm [0.05 in]
521.5210.0000	VSC 09F VALVE	10.5 l/min [2.7 U.S. gpm]	2 mm [0.07 in]
"521.5220.0000	VSC 15F VALVE	15 l/min [3.9 U.S. gpm]	2.5 mm [0.09 in]
521.5230.0000	VSC 21F VALVE	20 l/min [5.2 U.S. gpm]	3.3 mm [0.12 in]

Click ${\it l}$ button to return to main index

Click DANA button to return to section index

Accessories

DC5B1A1_000000R2 - 03/2024 <

14

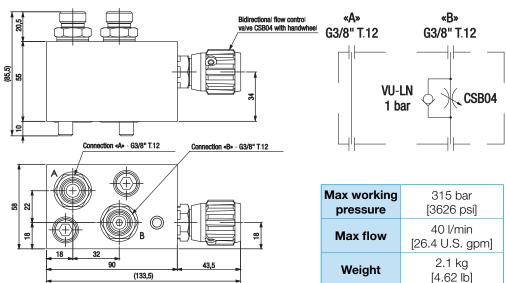
VRP 09

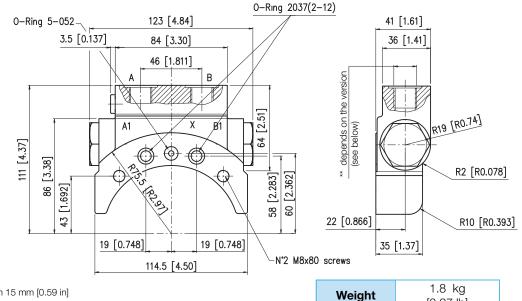
The valve flangeable on **HR** motor series permit the flow control by the means of a non-compensated throttle valve.

The control is possible in one direction only and the regulation is obtained by turning to the left or right the screw or the hand wheel. The valves are made completely in steel and are protected on surface by tropicalized zinc plating.

A high degree of mechanical sealing is eusured along with negligible leakage.

VRP 09 Code: P15111618

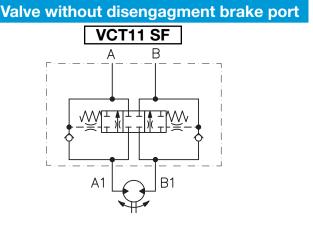

VCT 11


VCT11 is a standard motion control valve flangeable to **BRZV** orbital motors.

It is used to control the rotation of the motor and of the connected gearbox.

It is available in the standard version (VCT11 SF) or with brake disengagement port (VCT11 AF)

Spool opening min pressure: 11 bar Full spool opening pressure: 15 bar



Х

A1

** METRIC VERSION 3/8 G (BSPP) thread depth 15 mm [0.59 in] SAE VERSION 3/4-16 UNF thread depth 15 mm [0.59 in]

Click DANA button to return to section index

DANA

alves &

DC5B1A1_000000R2 – 03/2024

B1

Valve with disengagment brake port

Click ${m i}$ button to return to main index

[3.97 lb]

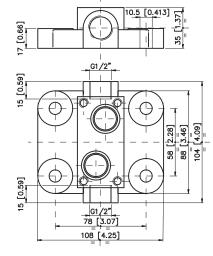
How to select the best pilot ratio for overcentre valves

High pilot ratios ensure small energy losses during load lowering (or any time the motor is driven by load), while low pilot ratios ensure a better control of variable intensity loads, but with a higher energy loss during lowering.

For brake motors we recommend low pilot ratios: they ensure a higher brake disengagement pressure when the motor is driven by the load, in order to have the brake completely disengaged during load lowering.

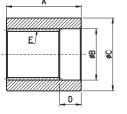
The minimum pilot pressure must be higher (even during load lowering) than the full disengagement pressure, to avoid interferences between brake and valve.

The overcentre and slewing control valves (VCR1 - VCD) have to be set at pressure values 30% higher (at least) than the nominal pressure induced by the load and must be used with open centre directional valves.



Manifold (base block)

Base Block fo AR, BR, BG motors with BFL1 configuration


Code: 109.0100.9000

1

SERIES BS - BSD

Bushings

Bushings

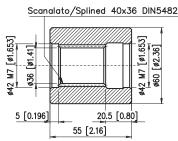
Ø6.5 [Ø0.255] N3x120

ø24 [ø0.944]

Bushings

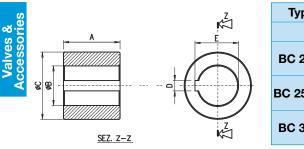
ø42 f7 [ø1.653] \$35 P7 [\$1.377]

ø1.96]


ø50

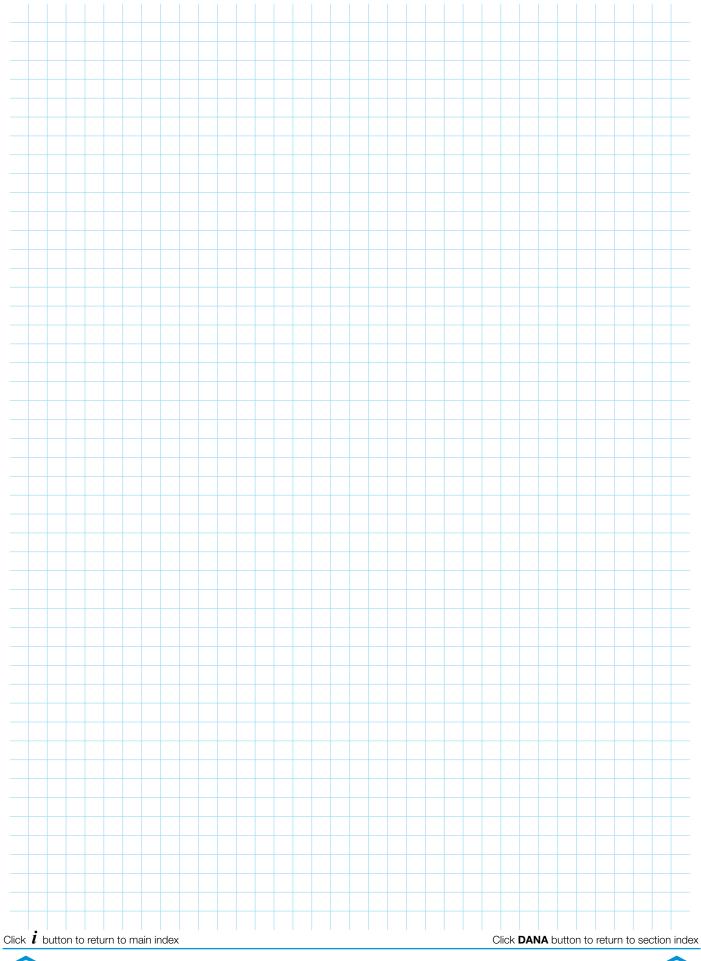
4.7 [0.185] 11 [0.433]

FBS 12 Code: 319.0050.0000

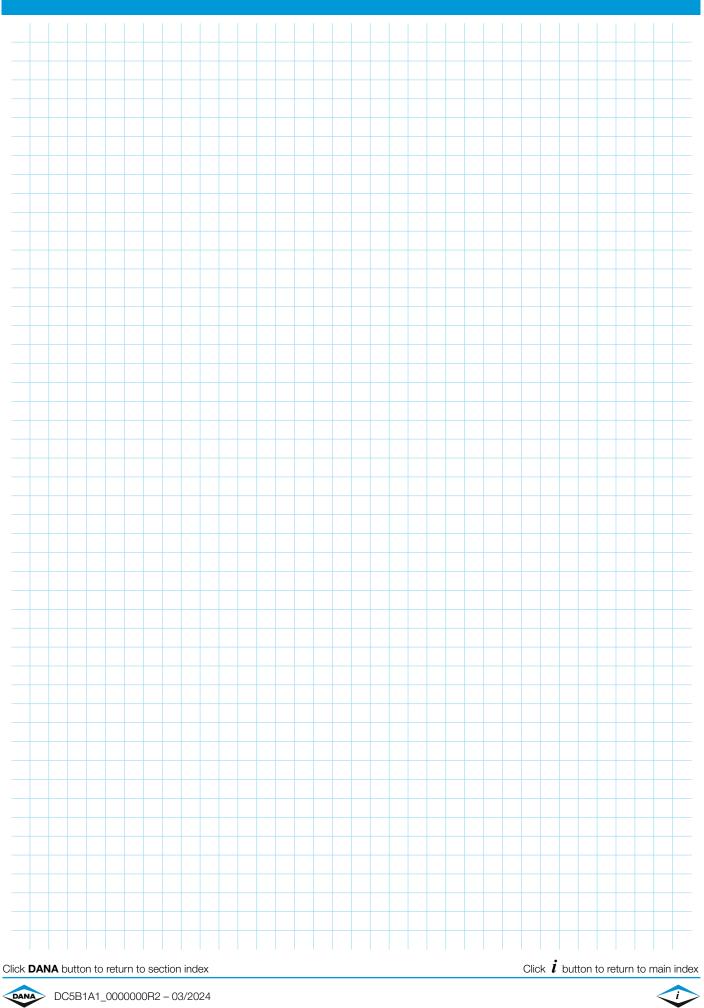

Туре	Dimensions						
		Α	В	С	D	Е	COD.
BS 16/P	mm [in]	27 [1.06]	-	24 [0.94]	-	17x14 DIN 5482	320.0070.0000
BS 25/P	mm [in]	43 [1.69]	25,3 [0.99]	40 [1.57]	9 [0.354]	25X22 DIN 5482	320.0130.0000
BSD 25/P	mm [in]	37 [1.45]	25,7 [1.01]	40 [1.57]	9 [0.354]	SAE 1"6 B	320.0210.0000
BS 32/P	mm [in]	48 [1.88]	32 [1.25]	50 [1.96]	10 [0.393]	ANSI B92.1a 1976	320.0090.0000

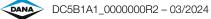
SERIES BS - FBS

BS 12 Code: 320.0150.0000


Click DANA button to return to section index

Туре Dimensions Α В D COD. С Е 43 25 40 8 28.3 mm BC 25/P 320.0110.0000 [in] [1.69] [0.98] [1.57] [0.314] [1.11] 43 25.4 40 6.35 28,3 mm 320.0050.0000 BC 25.4/P [in] [1.69] [1.00] [1.57] [0.25] [1.11] 50.5 32 50 10 35.3 mm BC 32/P 320.0280.0000 [1.25] [1.96] [0.393] [1.38] [in] [1.98] Click $m{i}$ button to return to main index


17



Technologies Customized to **Every Part** of the Globe

With a presence in 31 countries, Dana Incorporated boasts more than 150 engineering, manufacturing, and distribution facilities. Our worldwide network of local service centers provides assurance that each customer will benefit from the local proximity and responsiveness.

About Dana Incorporated

Dana is a leader in the design and manufacture of highly efficient propulsion and energy-management solutions that power vehicles and machines in all mobility markets across the globe. The company is shaping sustainable progress through its conventional and clean-energy solutions that support nearly every vehicle manufacturer with drive and motion systems; electrodynamic technologies, including software and controls; and thermal, sealing, and digital solutions. Founded in 1904, we employ thousands of people across six continents.

About Dana Off-Highway Drive and Motion Systems

Dana delivers fully optimized Spicer[®] drivetrain and Brevini[®] motion systems to customers in construction, agriculture, material-handling, mining, and industrial markets. We bring our global expertise to the local level with technologies customized to individual requirements through a network of strategically located technology centers, manufacturing locations, and distribution facilities.

Learn more about Dana's drivetrain and motion systems at dana.com/offhighway.

Dana-Industrial.com

Application Policy

Capacity ratings, features, and specifications vary depending upon the model and type of service. Application approvals must be obtained from Dana; contact your representative for application approval. We reserve the right to change or modify our product specifications, configurations, or dimensions at any time without notice.

